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Small functions and iterative methods

Michal Fečkan

Abstract. Iterative methods based on small functions are used both to show local surjec-
tivity of certain operators and a fixed point property of mappings on scales of complete
metric spaces.
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1. Introduction.

This paper will be concerned with the study of an equation F (x) = y. We shall
use iteration methods based on small functions introduced by V. Pták [1] .

In the first part of Section 2, we present two theorems which guarantee local
surjectivity for certain operators. In the second part, we generalize Pták’s nondis-
crete mathematical induction on scales of metric spaces. Then we use this result to
a generalized implicit function theorem [2]; [3] obtaining a relatively simple proof.

2. Results.

Firstly we give two theorems ensuring surjectivity of certain operators.

Theorem 2.1. Let F ∈ C1(B1, Y ), where B1 = {x ∈ X, |x| ≤ 1}, X, Y are Banach
spaces, m > 0, y1 ∈ Y , and A : B1 → L(X, Y ) be such that

i) The inverse A−1(x) of A(x) exists for any
x ∈ B1, |A

−1(x)| ≤ c, and the mapping
A is Lipschitz.

ii) |y1 − y0| ≤ m, y0 = F (0).
iii) |DF (x) − A(x)| ≤ g(|x|) for all x ∈ B1.
iv) g is nondecreasing on [0, 1],

c.m+ c.r(c.m) + c.r(c.r(c.m)) + · · · < 1,
where Dr = g, r(0) = 0.

Then there exists an x ∈ B1 such that F (x) = y1 .

Proof: We shall use the continuation method. Consider the following equation

x′ = A−1(x)(y1 − y0),

x(0) = 0.
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We have |x(t)| ≤
t
∫

0
c.m ≤ t.c.m ≤ c.m < 1. Hence x(t) ∈ B1 for each t ∈ [0, 1].

Since

d

dt
F (x(t)) = DF (x).x′(t) = DF (x).A−1(x)(y1 − y0),

F (x(1)) = y0 +

1
∫

0

d

dt
F (x(t)) dt = y0 +

1
∫

0

DF (x).A−1(x)(y1 − y0) dt.

Hence

|F (x(1)) − y1| =|y0 − y1 +

1
∫

0

DF (x).A−1(x)(y1 − y0) dt|

≤

1
∫

0

|y0 − y1 +DF (x).A−1(x)(y1 − y0)| dt

≤

1
∫

0

g(|x(t)|).c.|y0 − y1| dt

≤

1
∫

0

g(t.c.m).c.m dt = r(c.m).

Finally
|F (x(1)) − y1| ≤ r(c.m) and |x(1)| ≤ c.m < 1.

For x(1), F (x(1)) = z1, we can apply the above method to obtain x(2), F (x(2)) = z2
with the properties

|z2 − y1| ≤ r(c.r(c.m)),

|x(2)− x(1)| ≤ c.r(c.m).

By the assumptions of the theorem we have

c.m+ c.r(c.m) + c.r(c.r(c.m)) + · · · < 1

and hence x(n) → x ∈ B1 and F (x) = y1, where x(n) is constructed by the
induction in the above way. This completes the proof. �

We recall that a function w on T = {t, 0 < t < t0} is a small function [1, p. 224]
if w : T → T and the sum

W (t) = t+ w(t) + w(w(t)) + w(w(w(t))) + · · ·

is finite for each t ∈ T .
Now we shall study the local surjectivity of operators on more general spaces.
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Theorem 2.2. Let X be a Fréchet space with the F -norm |.| and we consider
a mapping g : U → X, U = {x ∈ X, |x| < δ} with the following properties

a) g is continuous.
b) |g(x)− g(y)− (x − y)| ≤ w(|x − y|),

where w : R+ = [0,∞) → R+, w(0) = 0, and w is a nondecreasing small function
such that W (δ1) < δ for some δ1, 0 < δ1 < δ.
Then there is a neighbourhood V of 0 such that the restriction g/V is an open

mapping.

Proof: We define a sequence {zk} as follows:

z1 = x for |x| < δ − W (δ1),

zi+1 = zi + (y − g(zi)) for |y − g(x)| = h1 < δ1.

We see that for i > 1

|zi+1 − zi| = |y − g(zi)| = |y − g(zi−1) + g(zi−1)− g(zi)|

= |zi − zi−1 + g(zi−1)− g(zi)| ≤ w(|y − g(zi−1)|).

Hence for i ≥ 1

|zi+1| ≤ |zi|+ |y − g(zi)|,

|zi+1 − x| ≤ |zi − x|+ |y − g(zi)|.

Putting hi = |y − g(zi)| we obtain

hi ≤ w(hi−1),

|zi+1| ≤ |x|+ h1 + h2 + · · ·+ hi ≤ |x|+W (h1),

|zi+1 − x| ≤ h1 + h2 + · · ·+ hi ≤ W (h1).

We have shown that B(g(x), δ1) ⊂ g(B(x, W (δ1)), where B(z, r) = {x ∈ X,
|x − z| < r}. This ends the proof. �

Now we shall generalize the meaning of small functions. Let T be a positive real
number and w(t, s) = (w1(t, s), w2(t, s)) be a mapping of a set (0, T )×S into itself,
where S is a metric space and w1(t, s) ∈ R, w2(t, s) ∈ S. For any nonnegative
integer n define

sn+1 = w2(tn, sn), t0 = t,

tn+1 = w1(tn, sn), s0 = s.

We put W (t, s) = t0+ t1+ · · · , and the function w is said to be small on (0, T ′)×S,
(0 < T ′ ≤ T ) if W (t, s) < ∞ and {sn} is a convergent sequence in S for all
(t, s) ∈ (0, T ′)× S. If S = {x} then we obtain the definition from [1] .



592 M.Fečkan

Now we consider a scale of complete metric spaces (Xs, ds)s∈S with the following
properties:
for each s ∈ S there exists s′ ∈ S and a neighbourhood U(s) ⊂ S, s ∈ U(s) such
that for each s1 ∈ U(s) it holds

(+) Xs′ ⊃ Xs1 , ds′(x, y) ≤ ds1(x, y) for x, y ∈ Xs1 .

Let I be an interval of the form I = {t, 0 < t < t0} for a positive t0. For each t ∈ I
and s ∈ S let Z(t, s) be a subset of Xs. Suppose that these sets are not all empty
on each orbit {(ti, si)} of w and

Z(t, s) ⊂ Uw2(t,s)(Z(w1(t, s), w2(t, s)), t)

= {x ∈ Xw2(t,s), dw2(Z(w1, w2), x) < t}.

We have the following theorem:

Theorem 2.3. Suppose that the subsets Z(t, s) have the above properties and,
moreover, w = (w1, w2) is small (see the above definition of smallness). Further,
for s0, which is a limit of {sn}, we find s′0 ∈ S by the property (+). Then

Z(0) =
⋂

t>0,n≥1

∪r<t ∪p>n Z(r, sp)

exists in Xs′
0
and

Z(ti, si) ⊂ Us′
0
(Z(0), W (t, s))

for i ≫ 1 .

Proof: If z ∈ Z(ti, si) ⊂ Usi+1
(Z(ti+1, si+1), ti) then there exists

z1 ∈ Z(ti+1, si+1)

such that
dsi+1

(z, z1) < ti.

In the same way we can find z2 ∈ Z(ti+2, si+2) such that dsi+2
(z1, z2) < ti+1. If

we consider that si ∈ U(s0) for i ≥ i0 then

ds′
0
(z, z2) ≤ ds′

0
(z, z1) + ds′

0
(z1, z2)

≤ dsi+1
(z, z1) + dsi+2

(z1, z2)

< ti + ti+1.

By the induction we have {zn}∞1 ⊂ Xs′
0
such that

ds′
0
(z, zn) < W (t, s) and zn ∈ Z(ti+n, si+n).

The proof is finished. �



Small functions and iterative methods 593

Corollary 2.4. Let (Xs, |.|s), (0 < s < ∞) be a scale of Banach spaces such that
Xs ⊃ Xs′ , |u|s ≤ |u|s′ for s′ ≥ s. Let Z(ti, si) be subsets of Xsi

, 0 < s < si+1 ≤ si,
i = 1, 2, · · · and suppose

∅ 6= Z(ti, si) ⊂ Uti+1(Z(ti+1, si+1), ti),

t1 + t2 + · · · < ∞

for a sequence {ti}. Then ∅ 6= Z(0) ⊂ Xs.

Theorem 2.5. Let (Xs, ds)s∈S be a scale with the above properties and let G :
∪ Xs → ∪Xs = X be a mapping such that

(1) X has a complete metric d such that
d(x, y) ≤ ds(x, y) for each s, x, y ∈ Xs.

(2) G : Xs → X is continuous
(3) There exist g : S → S, w : T × S → T such that
for each s ∈ S it holds
G : Xs → Xg(s), Xs ⊂ Xg(s), dg(s)(Gx, Gy) ≤ w(ds(x, y), s)

and w(., s) is increasing.

If (g(.), w(., g(.))) is small, i.e., {sn} is convergent in S and t1 + t2 + · · · < ∞ for
any sn+1 = g(sn), tn+1 = w(tn, sn+1). Then G : X → X has a fixed point.

Proof: Put Z(t, s) = {x ∈ Xs, dg(s)(x, Gx) < t} ⊂ Xs ⊂ Xg(s). By the assump-

tions of the theorem we obtain: if x ∈ Z(t, s) then

dg(s)(x, Gx) < t and

dg2(s)(Gx, G2x) ≤ w(dg(s)(Gx, x), g(s)) < w(t, g(s)).

Thus
Z(t, s) ⊂ Ug(s)(Z(w(t, g(s)), g(s)), t).

Applying the above theorem we obtain the proof. �

Finally, we give a proof of a generalized implicit function theorem from [3] based
on the above results.

Theorem 2.6. For each number s, 0 ≤ s ≤ 1, we are given a Banach space (Ys, |.|s)
with the following properties:
1. Ys′ ⊃ Ys, and |.|s′ ≤ |.|s for s′ ≤ s.
2. Let R be a positive number and set Rs = {u ∈ Ys, |u|s < R}. Let f be a mapping
defined on R0 with values in Y0 such that f maps each Rs into Y0. Suppose that
the following conditions are satisfied:
a) f : Rs → Y0 is continuous for each s.
b) For each u ∈ ∪0<sRs there exists a mapping f ′(u) : ∪s>0 Ys → ∪s>0Ys such
that for each s′ < s, u ∈ Rs implies f ′(u)Ys ⊂ Ys′ , and

|f(u+ v)− f(u)− f ′(u)v|s′ ≤ K1(s − s′).|v|2s
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whenever u and u+ v belong to Rs.
c) If u ∈ Rs, there exists v ∈ ∩s′<sYs′ such that for each s′ < s

|f ′(u)v + f(u)|s ≤ K2(s − s′).|f(u)|2s′ , |v|s′ ≤ K3(s − s′).|f(u)|s,

where Ki are positive nonincreasing functions defined on the interval (0,1].
If there are S(1) ∈ R+ and sn ∈ (0, 1), (0 < s < sn+1 < sn) such that for

K(n) = K1(wn).K
2
3 (wn) +K2(wn),

K̃3(n) = K3(wn),

wn = (sn − sn+1)/2,

the following expression comes true:

K̃3(1)S(1) +
∑

1<i

K̃3(i).S
2i−1(1).K2

i−2

(1) · · ·K(i − 1) < R − |u0|s1 ,

|f(u0)|s1 < S(1), u0 ∈ Rs1 .

Then there exists u ∈ Rs such that f(u) = 0.

Proof: We follow the proof from [2]; [3]. We put for i ∈ N ∪ {∞}

k(i) = k(i+ 1) + K̃3(i).S(i), k(∞) = 0,

S(i+ 1) = K(i).S2(i).

The above condition guarantees that such k(i) exists for each i. We set

Z(i, si) = {u ∈ Rsi
, |f(u)|si

< S(i) and |u − u0|si
< R − |u0|s1 − k(i)− d}

for each i ∈ N and d > 0 small fixed. Then using the same arguments as in [2]; [3]
we obtain: for each u ∈ Z(i, si) there exists ũ ∈ Rsi+1

with the properties

|f(ũ)|si+1
< K(i).S2(i), |ũ − u|si+1

< K̃3(i)S(i).

Indeed, by c) there is v ∈ ∩s′<si
Ys′ such that

|f ′(u)v + f(u)|si
≤ K2(wi).|f(u)|

2
(si+si+1)/2

,

|v|(si+si+1)/2 ≤ K3(wi).|f(u)|si
.

Since

|v|(si+si+1)/2 ≤ K̃3(i).|f(u)|si
< K̃3(i).S(i),

|u|(si+si+1)/2 ≤ |u − u0|si
+ |u0|s1 < R − k(i),
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thus
|u+ v|(si+si+1)/2 < K̃3(i).S(i) +R − k(i) = R − k(i+ 1) < R,

i.e.,
u+ v ∈ R(si+si+1)/2.

According to b) we have

|f(u+ v)− f(u)− f ′(u)v|si+1
≤ K1(wi).|v|

2
(si+si+1)/2

.

Thus

|f(u+ v)|si+1
≤ K2(wi).|f(u)|

2
(si+si+1)/2

+K1(wi).K
2
3 (wi).|f(u)|

2
si

≤
(

K2(wi) +K1(wi).K
2
3 (wi)

)

.|f(u)|2si

< K(i).S2(i),

|v|si+1
< K3(wi).S(i) = K̃3(i).S(i).

We take ũ = u+ v.
Hence

|ũ − u0|si+1
< R − |u0|s1 − k(i) + K̃3(i).S(i)− d ≤ R − |u0|s1 − k(i+ 1)− d.

Finally, we have

Z(i, si) ⊂ Usi+1
(Z(i+ 1, si+1), K̃3(i).S(i)).

Since
∑

i K̃3(i).S(i) < ∞, we can apply Corollary 2.4. From the definition of Z(0)
we have: u ∈ Z(0)⇒ |u−u0|s ≤ R− |u0|s1 − d. Thus |u|s < R. We conclude by a)
that: u ∈ Z(0) ⊂ Rs ⇒ f(u) = 0. The proof is completed. �
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