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Small functions and iterative methods

MicHAL FECKAN

Abstract. Iterative methods based on small functions are used both to show local surjec-
tivity of certain operators and a fixed point property of mappings on scales of complete
metric spaces.
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1. Introduction.

This paper will be concerned with the study of an equation F'(x) = y. We shall
use iteration methods based on small functions introduced by V. Ptdk [1] .

In the first part of Section 2, we present two theorems which guarantee local
surjectivity for certain operators. In the second part, we generalize Ptak’s nondis-
crete mathematical induction on scales of metric spaces. Then we use this result to
a generalized implicit function theorem [2]; [3] obtaining a relatively simple proof.

2. Results.

Firstly we give two theorems ensuring surjectivity of certain operators.

Theorem 2.1. Let F € CY(By,Y), where By = {z € X, |z| <1}, X,Y are Banach
spaces, m >0, y1 €Y, and A: B] — L(X,Y) be such that
i) The inverse A~ (z) of A(z) exists for any
x € By, |A71(2)| < ¢, and the mapping
A is Lipschitz.
ii) |y1 —yol <m, yo = F(0).
iii) |DF(x) — A(x)| < g(|z|) for all x € Bj.
iv) g is nondecreasing on [0, 1],
cm + cr(em) + cr(er(ecm)) +--- <1,
where Dr = g, r(0) = 0.

Then there exists an x € By such that F(x) =y .

PRrROOF: We shall use the continuation method. Consider the following equation

o' = A7) (y1 — o),
z(0) = 0.
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¢
We have |z(t)] < [e.m < t.eem < eom < 1. Hence z(t) € By for each t € [0,1].
0

Since
4 F(a(t)) = DF(@)' (1) = DF(2).A™ )1 — o).
1 1
F() =w+ [ GFG@)d=y+ [ DF@.A ) - o).
0 0
Hence
1
F@() =l =l — w1 + [ DF(@)A7 @)1~ wo) |
) 0
< [1vo =+ DF@)-A7 @)1 ~ o)l de
01
< [ allete)-clon — ]
01
< /g(t.c.m).c.m dt = r(c.m).
0
Finally

|F(z(1)) = y1] <r(e.m)and |z(1)] <em < 1.

For 2(1), F(z(1)) = 21, we can apply the above method to obtain x(2), F(2(2)) = 22
with the properties

|22 = y1| < r(er(cm)),
|2(2) — z(1)| < er(e.m).

By the assumptions of the theorem we have
em+ er(em)+cr(er(em))+---<1

and hence z(n) — = € By and F(x) = y1, where z(n) is constructed by the
induction in the above way. This completes the proof. 0

We recall that a function w on T = {t, 0 < ¢ < to} is a small function [1, p. 224]
ifw: T — T and the sum

W) =t+w(t) + ww(t)) + wlw(w(t))) + -

is finite for each t € T
Now we shall study the local surjectivity of operators on more general spaces.
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Theorem 2.2. Let X be a Fréchet space with the F-norm |.| and we consider
a mapping g: U — X, U = {x € X, |x| < §} with the following properties

a) ¢ Is continuous.
b) lg(z) —g(y) — (z —y)| < w(lz —yl),
where w: Ry = [0,00) — R4, w(0) = 0, and w is a nondecreasing small function
such that W (1) < § for some 01,0 < §; < 9.
Then there is a neighbourhood V' of 0 such that the restriction g/V is an open

mapping.
PROOF: We define a sequence {z;} as follows:

z1 = afor |z] <& — W(d1),
ziy1 = zi + (y — g(z;)) for |y — g(z)| = h1 < 1.
We see that for 7 > 1
|zit1 — zil = [y — 9(2:)| = |y — 9(zi-1) + 9(2i-1) — 9(2i)]
=z — zi-1 + 9(zi-1) — 9(2:)| < w(ly — g(zi-1)])-
Hence for i > 1
lzit1] < lzil + vy — g(20)],
|zit1 — 2| <[z — x| + |y — g(z)].
Putting h; = |y — g(z;)| we obtain
hi <w(hi—1),

|Z,'+1| < |x|+h1+h2+"'+hi < |$L'|+W(h1),
|zig1 — x| < hy 4+ ho + -+ h; <W(hy).

We have shown that B(g(z),01) C ¢g(B(x,W (1)), where B(z,7r) = {z € X,
| — z| < r}. This ends the proof. O

Now we shall generalize the meaning of small functions. Let T be a positive real
number and w(t, s) = (wy (¢, s), wa(t, s)) be a mapping of a set (0,7") x S into itself,
where S is a metric space and wi(t,s) € R, wa(t,s) € S. For any nonnegative
integer n define

Sn—i—l = w2(t7h Sn)a tO = t7
tn41 = w1(tn, sn), o = s.
We put W (t, s)

0<T <T)
(t,s) € (0,T") x

=tg+t1+---, and the function w is said to be small on (0,7”) x S,
if Wi, s) < oo and {sp} is a convergent sequence in S for all
S. If S = {z} then we obtain the definition from [1] .
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Now we consider a scale of complete metric spaces (X, ds)scg with the following
properties:
for each s € S there exists s’ € S and a neighbourhood U(s) C S, s € U(s) such
that for each s; € U(s) it holds

(+) Xg D Xgy, dgr(2,y) < ds, (x,y) for z,y € X, .

Let I be an interval of the form I = {t, 0 < ¢t < tg} for a positive tg. For each t € T
and s € S let Z(t,s) be a subset of X;. Suppose that these sets are not all empty
on each orbit {(¢;,s;)} of w and

Z(t,5) C Uy (t,5)(Z(wi(t, 8), walt, 5)), 1)
= {2 € Xuy(t,6)r duwz(Z(w1,w2), ) <t}

We have the following theorem:

Theorem 2.3. Suppose that the subsets Z(t,s) have the above properties and,
moreover, w = (w1, ws) is small (see the above definition of smallness). Further,
for s, which is a limit of {s,}, we find s, € S by the property (+). Then

Z(O) = ﬂ Ur<t Up>n Z(T, Sp)
t>0,n>1

exists in Xy and
0
Z(ti,si) € Ug (2(0), W(t, 5))

fori>1.
ProoF: If z € Z(t;,5;) C Us;, 1 (Z(ti+1,5i4+1),t;) then there exists
21 € Z(tit1,Si+1)

such that
ds;i1(2,21) < ;.

In the same way we can find 20 € Z(t;j12,5;42) such that ds;, ,(21,22) < tiy1. If
we consider that s; € U(sqg) for i > ig then

dsg)(z, 29) < d56 (z,21) + dsé(zl, 29)

< d5i+1 (Zv Zl) + dsi+2 (Zlv 32)
<t;j+tiy1.

By the induction we have {z,}7° C X s, such that
dgt (z,2n) < W(t,s)and zn € Z(titn, Sitn)-

The proof is finished. O
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Corollary 2.4. Let (Xs,].|s), (0 < s < o) be a scale of Banach spaces such that
Xs D Xy, |uls < |uly for s’ > s. Let Z(t;,s;) be subsets of Xs;, 0 < s < s;+1 < s;,
1 =1,2,--- and suppose

0 # Z(t;,5) C Uty (Z(tig1, si+1), i),
t1+tg+--- <00

for a sequence {t;}. Then () # Z(0) C Xs.

Theorem 2.5. Let (Xs,ds)scs be a scale with the above properties and let G:
U Xs — UXs = X be a mapping such that

(1) X has a complete metric d such that
d(z,y) < ds(x,y) for each s, z,y € Xj.
(2) G: Xs — X is continuous
(3) There exist g: S — S, w: T x S — T such that
for each s € S it holds
G: Xs — g(s)> Xs C Xg(s)? dg(s)(GZC,Gy) < w(ds(x,y), S)
and w(., s) Is increasing.
If (9(.),w(.,g(.))) is small, i.e., {sp} is convergent in S and t; +t3 + -+ < oo for
any sp4+1 = g(sn), tn+1 = w(tn, Spt1). Then G: X — X has a fixed point.

PROOF: Put Z(t,s) = {z € X, dy(s)(z, Gz) < t} C X5 C Xy(5). By the assump-
tions of the theorem we obtain: if z € Z(¢, s) then

dg(s) (:Z?, G{E) < t and
dgz(s) (GI’ GQI) < w(dg(s) (GI, x),g(s)) < w(t,g(s)).

Thus
Z(tv s) C Ug(s)(Z(w(tv g(S)), g(S)), t).

Applying the above theorem we obtain the proof. O

Finally, we give a proof of a generalized implicit function theorem from [3] based
on the above results.

Theorem 2.6. For each number s, 0 < s < 1, we are given a Banach space (Ys, |.|s)
with the following properties:

1. Yy D Ys, and |.|g < |.|s for s’ < s.

2. Let R be a positive number and set Ry = {u € Ys, |u|s < R}. Let f be a mapping
defined on Ry with values in Yy such that f maps each Rs into Yy. Suppose that
the following conditions are satisfied:

a) f: Rs — Yy is continuous for each s.

b) For each u € Ug<sRs there exists a mapping f'(u): Ugso Ys — UgsqYs such
that for each s’ < s, u € Ry implies f'(u)Ys C Yy, and

|f(u+v) = f(u) = f'(wv]y < Ki(s—s').|v[2
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whenever u and u + v belong to Rs.
c) If u € R, there exists v € Ny ;Y such that for each s’ < s

/(o + f(u)]s < Ka(s = ") f ()3, [olg < Ks(s = ). f(u)]s,

where K; are positive nonincreasing functions defined on the interval (0,1].
If there are S(1) € Ry and s, € (0,1), (0 < s < sp41 < Sp) such that for

K(n) = Kl(wn)K?%(wn) + Ka(wn),
f(g(n) = K3(wp),

Wn = (Sn - 5n+1)/27

the following expression comes true:

R3(1)S(1) + Y K3(i).8% (1).K* (1) K(i — 1) < R — |ugs,,
1<i
|f(“0)|s1 < S(l), ug € Rs,.

Then there exists u € Rg such that f(u) = 0.
ProoF: We follow the proof from [2]; [3]. We put for i € N U {oo}

k(i) = k(i + 1) 4+ K3(i).S(i), k(c0) = 0,
)

The above condition guarantees that such k(7) exists for each i. We set
Z(i,5i) = {u € Rs;, [f(u)ls; < S(i) and [u —wugls; < R —[uols, — k(i) — d}

for each i € N and d > 0 small fixed. Then using the same arguments as in [2]; [3]
we obtain: for each u € Z(i, s;) there exists @& € Rs,,, with the properties

F@)ls < K(0)-5%(), @ = uls,yy < K3(0)S(0).

Indeed, by c) there is v € Ny g, Yy such that

|f/(’u)’U + f(u)|sl < KQ(wi)'|f(u)|%si+si+1)/27
|U|(5i+si+1)/z < Ka(w;).[f(u)ls;-

Since

[0l (s,45100)2 < B3(0):1f (w)ls; < K3(0).5(0),
|u|(8i+8i+1)/2 S |'LL - u0|sz + |’LL0|31 < R - k(l)7
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thus
|u 4+ v|(8i+5z‘+1)/2 < K3(i).S@)+R—k(i)=R—-k(i+1) <R,

ie.,
uU+ve R(5i+3i+1)/2'

According to b) we have

|flu+v) = f(u) - f/(“)v|si+1 < Kl(wi)-|v|%si+si+l)/2-
Thus
@t 0)lsssn < Kalw) SR, 1o,y + Ka(wg) K3 w1 @),
(KQ(’LUZ)—FKl (w;) K3 w;) ) |sz
< K(i).5%(i),
[v]s;q < K3(w;).S(i) = K3(4).8(i).

We take @ = u + v.
Hence

|4 — u0|8i+1 < R —|uols; — k(i) + KB(Z)S(Z) —d < R—|ugls; —k(i+1) -

Finally, we have

Z(ia SZ) C U5i+1(Z(i +1, Si+1)7 Kg(Z)S(l))

Since 3", K3(i).S(i) < oo, we can apply Corollary 2.4. From the definition of Z(0)
we have: u € Z(0) = |u—wugls < R—|ugls; —d. Thus |u]s < R. We conclude by a)

that: w € Z(0) C Ry = f(u) = 0. The proof is completed.
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