Characteristic of convexity of Musielak-Orlicz function spaces equipped with the Luxemburg norm

HENRYK HUDZIK, THOMAS LANDES

Abstract. In this paper we extend the result of [6] on the characteristic of convexity of Orlicz spaces to the more general case of Musielak-Orlicz spaces over a non-atomic measure space. Namely, the characteristic of convexity of these spaces is computed whenever the Musielak-Orlicz functions are strictly convex.

Keywords: Musielak-Orlicz space, modulus of convexity, characteristic of convexity, the $\Delta_2\text{-condition}$

Classification: Primary 46E30; Secondary 46B20

In the sequel, (S, Σ, μ) denotes a non-atomic σ -finite measure space and Φ denotes a Musielak-Orlicz function, i.e. a function from $S \times \mathbb{R}$ into \mathbb{R}_+ satisfying the Carathéodory conditions which means that $\Phi(s, \cdot)$ is convex, even, continuous, and vanishing at 0, left continuous on the whole \mathbb{R}_+ and not identically equal to 0 for μ -a.e. $s \in S$ and $\Phi(\cdot, u)$ is a Σ -measurable function for every $u \in \mathbb{R}$. For any $A \in \Sigma$, 1_A denotes the characteristic function of A.

The Musielak-Orlicz space $L^{\Phi} = L^{\Phi}(\mu)$ is defined to be the space of all (equivalence classes of) Σ -measurable functions $x : S \to \mathbb{R}$ such that

$$I_{\Phi}(\lambda x) = \int_{S} \Phi(s, \lambda x(s)) \, d\mu < \infty$$

for some $\lambda > 0$ depending on x. This space endowed with the Luxemburg norm

$$||x|| = ||x||_{\Phi} = \inf\{\lambda > 0 \mid I_{\Phi}(\frac{x}{\lambda}) \le 1\}$$

is a Banach space (cf. [10], [11] and in the case of Orlicz spaces also [7], [9]).

We further denote by $G(\Phi)$ $(G(\Phi, \varepsilon))$ the set of all non-negative Σ -measurable functions g on S such that $I_{\Phi}(g) < \infty$ $(I_{\Phi}(g) \leq \varepsilon)$.

The Musielak-Orlicz function Φ is said to satisfy the Δ_2 -condition if there are a null-set S_0 , a positive constant K and $h \in G(\Phi)$ such that

$$\Phi(s, 2u) \le K\Phi(s, u)$$
 for all $s \in S \setminus S_0, u \ge h(s)$.

For any Banach space X, we denote by δ_X and $\varepsilon_0(X)$ the modulus of convexity and the characteristic of convexity of X, i.e.

$$\delta_X(\varepsilon) = \inf\{1 - \frac{1}{2} \|x + y\| \mid x, y \in X, \|x\| = \|y\| = 1, \|x - y\| > \varepsilon\}$$

for any $\varepsilon \in [0, 2]$, and

$$\varepsilon_0(X) = \sup\{\varepsilon \in [0,2] \mid \delta_X(\varepsilon) = 0\},\$$

see [1], [2], [8]. To compute $\varepsilon_0(L^{\Phi})$ for L^{Φ} generated by strictly convex Musielak-Orlicz functions we start with the following

Lemma 1. Let Φ satisfy the Δ_2 -condition and vanish only at 0 for μ -a.e. $s \in S$. Then, for every $\varepsilon > 0$ and c > 0, there are a null-set S_0 , a constant $K = K(\varepsilon, c) > 0$ and a function $h \in G(\Phi)$ such that

$$ch \in G(\Phi, \varepsilon),$$

 $\Phi(s, 2u) \le K\Phi(s, u) \text{ for all } s \in S \setminus S_0, \ u \ge h(s).$

PROOF: By Lemma 1.6 in [4], there are a null-set S_0 , a sequence $\{h_n\}$ with $h_n \in G(\Phi, \frac{1}{n})$ for every $n \in \mathbb{N}$, and a sequence $\{K_n\}$ of positive reals such that

$$\Phi(s, 2u) \le K_n \Phi(s, u)$$
 for all $s \in S \setminus S_0, u \ge h_n(s), n \in \mathbb{N}$.

In virtue of the Δ_2 -condition we have $I_{\Phi}(ch_n) \to 0$ as $n \to \infty$ for every c > 0 (cf. [5, Theorem 3.3.1]). Therefore, it suffices to put $h = h_n$ and $K(\varepsilon, c) = K_n$ for sufficiently large n depending on ε and c.

We define for every $c, \sigma \in (0, 1)$ and $s \in S$:

$$\begin{split} q(s, u, v) &= \begin{cases} 0 & \text{if } \Phi(s, \frac{1}{2}(u+v)) = 0\\ \frac{2\Phi(s, \frac{1}{2}(u+v))}{\Phi(s, u) + \Phi(s, v)} & \text{otherwise,} \end{cases} \\ A(c, \sigma, s) &= \{u > 0 \mid q(s, u, cu) > 1 - \sigma\}, \\ h_{c,\sigma}(s) &= \sup\{u > 0 \mid u \in A(c, \sigma, s)\}, \\ p(\Phi) &= \sup\{c \in (0, 1) \mid h_{c,\sigma} \in G(\Phi) \text{ for some } \sigma \in (0, 1)\}. \end{split}$$

Theorem 2. Assume that $\Phi(s, \cdot)$ is a strictly convex function on \mathbb{R} for μ -a.e. $s \in S$ and let $a \in (0, 2)$. Then the following statements are equivalent:

1.
$$\delta_{L^{\Phi}(\mu)}(a) > 0.$$

2. (a) $p(\Phi) > \frac{2-a}{2+a},$
(b) Φ satisfies the Δ_2 -condition.

PROOF: $2 \Rightarrow 1$. If 2 (a) holds, then there is a number $b \in (0, 2), b < a$, such that

$$p(\Phi) > c > \frac{2-a}{2+a}, \ c = \frac{2-b}{2+b}.$$

Choose $\sigma \in (0, 1)$ such that $f = h_{c,\sigma} \in G(\Phi)$. We first prove the following property of Φ :

(1) There is a number $\varepsilon \in (0, 1)$ such that $q(s, u, v) \leq 1 - \varepsilon$ whenever $\max\{|u|, |v|\} \geq f(s)$ and $2|u - v| \geq a(1 - \varepsilon)|u + v|$. First, assume that $0 \le v \le cu$. Then, in view of the definition of $p(\Phi)$, we have $q(s, u, v) \le 1 - \sigma$ if $u \ge f(s)$. Here and in the sequel all inequalities in which the parameter s is used are to be understood in the sense "for μ -a.e. $s \in S$ ". The inequality $0 \le v \le cu$ is equivalent to: $\frac{u-v}{a} \ge \frac{b}{2a}(u+v)$ and $u, v \ge 0$. Since b < a we obtain (1) for non-negative u, v. In the same way, the condition (1) can be proved for negative u, v. It remains to prove (1) in the case $u \cdot v \le 0$. So, fix u, v with $u \cdot v \le 0$. Since the function

$$f_{\Phi}(t) = \operatorname{ess\,sup}_{s \in S} \sup_{u > f(s)} q(s, u, tu)$$

is increasing in (0,1], it follows that $\eta = f_{\Phi}(0) < 1$. Thus

$$\begin{split} \Phi(s, \frac{1}{2}(u+v)) &\leq \Phi(s, \frac{1}{2} \max\{|u|, |v|\}) \\ &\leq \frac{1}{2} \Phi(s, \max\{|u|, |v|\}) \\ &\leq \frac{1}{2} [\Phi(s, u) + \Phi(s, v)]. \end{split}$$

Combining this with the previous case, we obtain (1) with

$$\varepsilon = \min\{1 - \frac{b}{a}, \sigma, 1 - \eta\}.$$

Let $\lambda \in (0,1)$ be such that $I_{\Phi}(\frac{2\lambda}{a}f) \leq \frac{\varepsilon}{12}$. Define

$$\begin{split} A_k &= \{s \in S \mid \quad q(s, u, v) \leq 1 - \frac{1}{k} \\ & \text{if } \lambda f(s) \leq \max\{|u|, |v|\} \leq f(s) \\ & \text{and } 2|u - v| \geq a(1 - \varepsilon)|u + v|\}. \end{split}$$

Then, $A_k \uparrow U$ with $\mu(S \setminus U) = 0$ by the strict convexity of Φ . Thus, in virtue of the Beppo-Levi theorem, we have

$$I_{\Phi}(rac{2}{a}f1_{A_k}) \to I_{\Phi}(rac{2}{a}f) \ \ ext{as} \ \ k \to \infty.$$

Therefore, we can pick $n \in \mathbb{N}$ with $I_{\Phi}(\frac{2}{a}\mathbf{1}_{S \setminus A_n}) \leq \frac{\varepsilon}{12}$. Defining

$$g_1 = \lambda f \mathbf{1}_{A_n} + f \mathbf{1}_{S \setminus A_n}$$

we estimate

$$I_{\Phi}(\frac{2}{a}g_1) = I_{\Phi}(\frac{2}{a}\lambda f \mathbf{1}_{A_n}) + I_{\Phi}(\frac{2}{a}f \mathbf{1}_{S\setminus A_n})$$
$$\leq \frac{\varepsilon}{12} + \frac{\varepsilon}{12} = \frac{\varepsilon}{6}.$$

Let h be a function from Lemma 1 corresponding to $\frac{\varepsilon}{6}$ instead of ε and $\frac{2}{a}$ instead of c. Define $\tilde{g} = \max\{g_1, h\}$. Then we obtain

$$I_{\Phi}(\frac{2}{a}\tilde{g}) \le I_{\Phi}(\frac{2}{a}g_1) + I_{\Phi}(\frac{2}{a}h) \le \frac{\varepsilon}{6} + \frac{\varepsilon}{6} = \frac{\varepsilon}{3}.$$

Denoting $\gamma = \min\{\varepsilon, \frac{1}{n}\}$, we obtain

 $(2) \ q(s,u,v) \leq 1 - \gamma \text{ whenever } \max\{|u|,|v|\} \geq \tilde{g}(s) \text{ and } 2|u-v| \geq a(1-\varepsilon)|u+v|.$

Fix $x, y \in L^{\Phi}(\mu)$ with $||x|| \le 1$, $||y|| \le 1$ and $||x - y|| \ge a$. Then $I_{\Phi}(x) \le 1$, $I_{\Phi}(y) \leq 1$ and $I_{\Phi}(\frac{x-y}{a}) \geq 1$. Put $A = S \setminus (B \cup C)$ where the sets B, C are defined by

$$B = \{ s \in S \mid 2|x(s) - y(s)| < a(1 - \varepsilon)|x(s) + y(s)| \},\$$

$$C = \{ s \in S \mid \max\{|x(s)|, |y(s)|\} < \tilde{g}(s) \}.$$

Then

$$I_{\Phi}(\frac{x-y}{a}\mathbf{1}_B) \leq \frac{1-\varepsilon}{2} [I_{\Phi}(x\mathbf{1}_B) + I_{\Phi}(y\mathbf{1}_B)] \leq 1-\varepsilon,$$
$$I_{\Phi}(\frac{x-y}{a}\mathbf{1}_C) \leq I_{\Phi}(\frac{2}{a}\tilde{g}) \leq \frac{\varepsilon}{3}$$

so that

$$I_{\Phi}\left(\frac{x-y}{a}\mathbf{1}_{A}\right) \geq 1 - I_{\Phi}\left(\frac{x-y}{a}\mathbf{1}_{B}\right) - I_{\Phi}\left(\frac{x-y}{a}\mathbf{1}_{C}\right) \geq 2\frac{\varepsilon}{3}.$$

Define further

$$D = \{s \in A \mid rac{|x(s) - y(s)|}{2} \leq \tilde{g}(s)\} ext{ and } E = A \setminus D.$$

A repeated application of $\Phi(s, 2u) \leq K\Phi(s, u), u \geq h(s)$, yields

$$\Phi(s, \frac{2}{a}u) \le M\Phi(s, u), \ u \ge h(s), \ \text{with} \ M = K^{2-\log_2(a)}$$

so that

$$\begin{aligned} 2\frac{\varepsilon}{3} &\leq I_{\Phi}(\frac{x-y}{a}\mathbf{1}_{A}) = I_{\Phi}(\frac{x-y}{a}\mathbf{1}_{D}) + I_{\Phi}(\frac{x-y}{a}\mathbf{1}_{E}) \\ &\leq I_{\Phi}(\frac{2}{a}\tilde{g}\mathbf{1}_{D}) + I_{\Phi}(\frac{2}{a}\frac{x-y}{a}\mathbf{1}_{E}) \\ &\leq \frac{\varepsilon}{3} + MI_{\Phi}(\frac{x-y}{a}\mathbf{1}_{E}) \\ &\leq \frac{\varepsilon}{3} + \frac{M}{2}[I_{\Phi}(x\mathbf{1}_{A}) + I_{\Phi}(y\mathbf{1}_{A})]. \end{aligned}$$

Characteristic of convexity of Musielak-Orlicz function spaces equipped with the Luxemburg norm 619

From this inequality, we conclude that

$$I_{\Phi}(x1_A) + I_{\Phi}(y1_A) \ge r = \frac{2\varepsilon}{3M}$$

which implies

$$\begin{split} 1 - I_{\Phi}(\frac{1}{2}(x+y)) &\geq \frac{1}{2}[I_{\Phi}(x) + I_{\Phi}(y)] - I_{\Phi}(\frac{1}{2}(x+y)) \\ &\geq \frac{1}{2}[I_{\Phi}(x1_A) + I_{\Phi}(y1_A)] - I_{\Phi}(\frac{1}{2}(x+y)1_A) \\ &\geq \frac{1}{2}[I_{\Phi}(x1_A) + I_{\Phi}(y1_A)] - \frac{1}{2}(1-\gamma)[I_{\Phi}(x1_A) + I_{\Phi}(y1_A)] \\ &= \frac{\gamma}{2}[I_{\Phi}(x1_A) + I_{\Phi}(y1_A)] \geq \frac{1}{2}\gamma r = \vartheta, \end{split}$$

what is equivalent to

(3) $I_{\Phi}(\frac{1}{2}(x+y)) \leq 1-\vartheta.$

Let w be a function from (0,1) into itself such that $||x|| \leq 1 - w(\delta)$ whenever $I_{\Phi}(x) \leq 1 - \delta$ (such a function exists by the Δ_2 -condition, cf. [4, Lemma 1.5]). Then inequality (3) yields

$$\left\|\frac{1}{2}(x+y)\right\| \le 1 - w(\vartheta), \text{ i.e., } \delta_{L^{\Phi}(\mu)}(a) \ge w(\vartheta) > 0$$

which finishes the proof of the implication $2 \Rightarrow 1$.

 $1 \Rightarrow 2$. If Φ does not satisfy the Δ_2 -condition, then $L^{\Phi}(\mu)$ contains an isometric copy of ℓ_{∞} (cf. [3]). Therefore $\delta_{L^{\Phi}(\mu)}(a) \leq \delta_{\ell_{\infty}}(a) = 0$ for any $a \in (0, 2]$.

Assume now that Φ satisfies the Δ_2 -condition but not 2 (a). Fixing an arbitrary $b \in (0, a)$ we then get $p(\Phi) < c = \frac{2-b}{2+b}$ and therefore

$$I_{\Phi}(h_{c,\sigma}) = \infty$$
 for all $\sigma \in (0,1)$.

Take an arbitrary such σ and denote $g = h_{c,\sigma}$. From the definition of g and the continuity of Φ we can conclude that $q(s, g(s), cg(s)) = 1 - \sigma$ whenever $g(s) < \infty$.

Put $H = \{s \mid g(s) = \infty\}$. If H is a null-set, then we put f = g, otherwise we choose $u_0 > 0$ and $C \subset H$ with $I_{\Phi}(u_0 \mathbf{1}_C) = 2$ and define f(s) by $\inf\{u > u_0 \mid q(s, u, cu) > 1 - \sigma\}$ on C and by 0 on $S \setminus C$. In any case, f is real valued, measurable and satisfies $I_{\Phi}(f) \geq 2$ and

(4)
$$\Phi(s, \frac{1+c}{2}f(s)) \ge \frac{1-\sigma}{2}[\Phi(s, f(s)) + \Phi(s, cf(s))].$$

We choose $B \in \Sigma$ with $I_{\Phi}(f1_B) + I_{\Phi}(cf1_B) = 2$ and put

$$r(s) = \Phi(s, f(s)) - \Phi(s, cf(s)).$$

There is a set $A \subset B$ such that

$$\int_A r(s) \, d\mu = \int_{B \setminus A} r(s) \, d\mu$$

which is equivalent to

$$I_{\Phi}(f1_A) + I_{\Phi}(cf1_{B\setminus A}) = I_{\Phi}(cf1_A) + I_{\Phi}(f1_{B\setminus A}) = 1.$$

Define $x = f1_A + cf1_{B \setminus A}$ and $y = cf1_A + f1_{B \setminus A}$. We then have

$$\begin{split} I_{\Phi}(x) &= I_{\Phi}(y) = \|x\| = \|y\| = 1, \\ |x - y| &= (1 - c)f1_B = \frac{2b}{2 + b}f1_B, \\ x + y &= (1 + c)f1_B = \frac{4}{2 + b}f1_B \end{split}$$

and hence

$$\frac{|x-y|}{b} = \frac{x+y}{2}$$

So, in view of the inequality (4), we get

$$I_{\Phi}\left(\frac{x-y}{b(1-\sigma)}\right) = I_{\Phi}\left(\frac{x+y}{2(1-\sigma)}\right)$$
$$\geq \frac{1}{1-\sigma}I_{\Phi}\left(\frac{x+y}{2}\right)$$
$$\geq \frac{1}{2}[I_{\Phi}(x) + I_{\Phi}(y)] = 1.$$

whence $||x - y|| \ge b(1 - \sigma)$ and $||\frac{1}{2}(x + y)|| \ge 1 - \sigma$. This means that

$$\delta_{L^{\Phi}(\mu)}(b(1-\sigma)) \le \sigma.$$

Letting $\sigma \to 0$ and $b \to a$ we obtain the desired conclusion $\delta_{L^{\Phi}(\mu)}(a) = 0$ and the proof is finished. \Box

As an immediate consequence of Theorem 2 we obtain

Theorem 3. If Φ is strictly convex then

$$\varepsilon_0(L^{\Phi}(\mu)) = \begin{cases} \frac{2(1-p(\Phi))}{1+p(\Phi)} & \text{if } \Phi \text{ satisfies the } \Delta_2\text{-condition} \\ 2 & \text{otherwise.} \end{cases}$$

Characteristic of convexity of Musielak-Orlicz function spaces equipped with the Luxemburg norm 621

Remark 1. Theorem 3 is not true when the strict convexity condition for Φ is dropped as the following example shows:

Take S = [0, 2) with the Lebesgue measure μ and

$$\Phi(s, u) = \begin{cases} |u| & |u| \le 1\\ u^2 & |u| > 1. \end{cases}$$

Straightforward calculations show that Φ satisfies the Δ_2 -condition and $p(\Phi) = 1$ so that $\frac{2(1-p(\Phi))}{1+p(\Phi)} = 0$. But, for $x = 1_{[0,1)}$ and $y = 1_{[1,2)}$, we have ||x|| = ||y|| = 1 and ||x + y|| = ||x - y|| = 2 whence $\varepsilon_0(L^{\Phi}(\mu)) = 2$.

Remark 2. The parameter $p(\Phi)$ can also be computed in the following way:

$$p(\Phi) = \sup\{p(\Phi, g) \mid g \in G(\Phi)\}$$

where

$$p(\Phi,g) = \sup\{c \in (0,1) \mid f_{\Phi,g}(c) < 1\},\$$

$$f_{\Phi,g}(c) = \operatorname{ess\,sup\,sup}\{q(s,u,cu) \mid u > g(s)\}.$$

Indeed, if $p(\Phi) > c$, then $g = h_{c,\sigma} \in G(\Phi)$ for some $\sigma \in (0,1)$ so that $f_{\Phi,g}(c) \leq 1 - \sigma$ and $p(\Phi,g) \geq c$.

Vice versa, if $p(\Phi, g) > c$ for $g \in G(\Phi)$ then $f_{\Phi,g}(c) = 1 - \sigma < 1$ whence $h_{c,\sigma} \leq q$ μ -a.e. so that $h_{c,\sigma} \in G(\Phi)$ and $p(\Phi) \geq c$.

References

- Chen S., Hudzik H., On some convexities of Orlicz and Orlicz-Bochner spaces, Comment. Math. Univ. Carolinae 29 (1988), 13–29.
- [2] Diestel J., Sequences and Series in Banach Spaces, Springer, 1964.
- [3] Hudzik H., On some equivalent conditions in Musielak-Orlicz spaces, Commentationes Math. (Prace Matemat.) 24 (1984), 57–64.
- [4] _____, Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm, Commentationes Math. (Prace Matemat.) 23 (1983), 21–32.
- [5] Hudzik H., Kaminska A., Some remarks on convergence in Orlicz spaces, Commentationes Math. (Prace Matemat.) 21 (1979), 81–88.
- [6] Hudzik H., Kaminska A., Musielak J., On the convexity coefficient of Orlicz spaces, Math. Zeitschr. 197 (1988), 291–295.
- [7] Krasnoselskii M.A., Rutickii Ya.B., Convex Functions and Orlicz Spaces, translation, Groningen, 1961.
- [8] Lindenstrauss J., Tzafriri L., Classical Banach Spaces II Function Spaces, Springer, 1979.
- [9] Luxemburg W.A.J., Banach function spaces, PhD thesis, Delft, 1955.
- [10] Musielak J., Orlicz Spaces and Modular Spaces, Springer, 1983.
- [11] Musielak J., Orlicz W., On modular spaces, Stud. Math. 18 (1959), 49-65.

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60 769 Poznań, Poland

UNIVERSITÄT-GHS-PADERBORN, FACHBEREICH WIRTSCHAFTSWISSENSCHATTEN, STATISTIK UND ÖKONOMIE, WARBURGERSTR. 100, 4790 PADERBORN, GERMANY

(Received April 13, 1992)