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Characteristic of convexity of Musielak-Orlicz
function spaces equipped with the Luxemburg norm

HENRYK HUDZIK, THOMAS LANDES

Abstract. In this paper we extend the result of [6] on the characteristic of convexity of
Orlicz spaces to the more general case of Musielak-Orlicz spaces over a non-atomic measure
space. Namely, the characteristic of convexity of these spaces is computed whenever the
Musielak-Orlicz functions are strictly convex.
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In the sequel, (5,3, 1) denotes a non-atomic o-finite measure space and ® de-
notes a Musielak-Orlicz function, i.e. a function from S x R into Ry satisfying the
Carathéodory conditions which means that ®(s, -) is convex, even, continuous, and
vanishing at 0, left continuous on the whole R4 and not identically equal to 0 for
p-a.e. s € S and ®(-,u) is a X-measurable function for every u € R. For any A € 3,
14 denotes the characteristic function of A.

The Musielak-Orlicz space L® = L% (1) is defined to be the space of all (equiva-
lence classes of) Y-measurable functions z : S — R such that

Is(\z) = / B(s,Az(s)) dp < o0
S
for some A > 0 depending on x. This space endowed with the Luxemburg norm
. x
Izl = llzlle = inf{A > 0| Is(5) < 1}

is a Banach space (cf. [10], [11] and in the case of Orlicz spaces also [7], [9]).

We further denote by G(®) (G(®,¢)) the set of all non-negative X-measurable
functions g on S such that I3(g) < 0o (Ig(g) < €).

The Musielak-Orlicz function @ is said to satisfy the Ag-condition if there are
a null-set Sp, a positive constant K and h € G(®) such that

D(s,2u) < K®(s,u) forall se&S\Sy, u>h(s).

For any Banach space X, we denote by dx and £9(X) the modulus of convexity
and the characteristic of convexity of X, i.e.

. 1
ox(e) = inf{l = Sllo+yll 2,y € X, llz] = llyl = L, |z — yl| > e}
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for any € € [0, 2], and
eo(X) =sup{e € [0,2] | 6x () = 0},

see [1], [2], [8]. To compute eq(L®) for L® generated by strictly convex Musielak-
Orlicz functions we start with the following

Lemma 1. Let ® satisfy the Ag-condition and vanish only at 0 for u-a.e. s € S.
Then, for every e > 0 and ¢ > 0, there are a null-set Sy, a constant K = K(e,¢) > 0
and a function h € G(®) such that

ch € G(®,¢),
O(s,2u) < K®(s,u) forall se€ S\ Sy, u>h(s).

PrOOF: By Lemma 1.6 in [4], there are a null-set Sp, a sequence {hy} with hy, €
G(9, %) for every n € N, and a sequence {K,} of positive reals such that

D(s,2u) < Kp®(s,u) forall se€ S\ Sy, u>hn(s), neN.

In virtue of the Ag-condition we have Ig(chp) — 0 as n — oo for every ¢ > 0
(cf. [, Theorem 3.3.I]). Therefore, it suffices to put h = hy, and K(e,¢) = Ky, for
sufficiently large n depending on ¢ and c. ([

We define for every ¢,o € (0,1) and s € S:

0 if (s, (u+v)) =0
q(S,’U,,'U) = 2(1)(5,%(11,-{-1)))
D(s,u)+P(s,v)
Ale,0,8) ={u>0]q(s,u,cu) >1 -0},
heo(s) =sup{u >0 |u € A(c,0,5)},
p(®) =sup{c e (0,1) | he,o € G(®) for some o € (0,1)}.

otherwise,

Theorem 2. Assume that ®(s,-) is a strictly convex function on R for u-a.e. s € S
and let a € (0,2). Then the following statements are equivalent:

1. 5L<I>(M)(a) > 0.
2. (a) p(®)> 373,
(b) @ satisfies the Ag-condition.
PROOF: 2 = 1. If 2(a) holds, then there is a number b € (0,2), b < a, such that

2—a 2—-b
C—= ——.
2+a’ 2+b

p(®) > ¢ >

Choose ¢ € (0,1) such that f = h¢ o € G(®). We first prove the following property
of ®:
(1) There is a number € € (0,1) such that ¢(s,u,v) <1—¢
whenever max{|ul|, |v|} > f(s) and 2|u — v| > a(1 — €)|u + v|.
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First, assume that 0 < v < cu. Then, in view of the definition of p(®), we have
q(s,u,v) <1—0if u > f(s). Here and in the sequel all inequalities in which the
parameter s is used are to be understood in the sense “for p-a.e. s € S”. The
inequality 0 < v < cu is equivalent to: *=* > %(u +v) and w,v > 0. Since
b < a we obtain (1) for non-negative u,v. In the same way, the condition (1) can
be proved for negative u,v. It remains to prove (1) in the case u-v < 0. So, fix u,v

with v - v < 0. Since the function

fo(t) =esssup sup q(s,u,tu)
seSu>f(s)

is increasing in (0,1], it follows that n = f$(0) < 1. Thus

B(s, 5 (u+ ) < B(s, g max{ul, u]})

O (s, max{lul, |v[})

IN

IN

1
2
1
5 [CI)(Sv u) + <D(Sa 1))]

Combining this with the previous case, we obtain (1) with

b
e =min{l — — 0,,1 —n}.
a

Let A € (0,1) be such that I@(%f) < {5. Define

1
Ak:{S€S| Q(Svuav)gl_E
if Af(s) < max{|u|, |v|} < f(s)
and 2|u —v| > a(l — €)|u + v]|}.
Then, Ay T U with (S \ U) = 0 by the strict convexity of ®. Thus, in virtue of
the Beppo-Levi theorem, we have

I@(%flAk)_’Ié(2f) as k — oo.

a

£

Therefore, we can pick n € N with I@(%ls\An) < {3 Defining

g1 =Afla, + flg\a,

we estimate

2 2 2
Ip(~91) = Io(ZAf1a,) + La(= fls\a,)
19
g .

<<€+<€
- 12 12
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Let h be a function from Lemma 1 corresponding to g instead of ¢ and % instead

of ¢. Define § = max{g1, h}. Then we obtain

2

2 2
Is(—q) < Igx(— Is(—h) <
<1>(a9)_ @(a91)+ <I>(a ) <

+

€
3

M
| M

Denoting v = min{e, %}, we obtain
(2) q(s,u,v) < 1—+ whenever max{|u|, [v|} > g(s) and 2|u—v| > a(l—¢)|u+v|.
Fix 2,y € L®(u) with |lz|| < 1, |ly|| < 1 and ||z — y|| > a. Then Iy(z) < 1,

Ip(y) < 1and Ip(52) > 1.
Put A =S5\ (BUC) where the sets B, C are defined by

B ={se5[2x(s) —yls)| <a(l —e)|z(s) +y(s)l},
C={se S |max{lz(s)], ly(s)[} < g(s)}-

Then
r—y 1—¢
I ( - 1p) < 5 Ue(xlp) + Ip(ylp)| < 1—¢,
x—y 2 15
I 10) < Is(—q) < =
a( " c) <Is(=7) < 3
so that
.'L'_y y g
Ip( 14) > 11— Ig( 1) — Is( lg) > 2

Define further

D={s€A|M§§(S)} and E=A\D.

A repeated application of ®(s,2u) < K®(s,u), u > h(s), yields

2
O(s,—u) < M®(s,u), v > h(s), with M = K2 log2(a)
a
so that
€ T —y x—y T—y
23 < lo(——14) = la(——1p) + lo(——1k)

2. 22—y
< ch(EQlD) + I@(aTlE)

r—Yy
1g)
a

Ho(z14) + Ia(yla)].

IA
wl ™

-+ MIg(

IN

wlo
vo| 5

+
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From this inequality, we conclude that

2e
I 1)+ Ip(ylsa) >r = —
<I>(‘T A) <I>(y A)—T 3M

which implies

1= Ta(5(e +9) > 2a () + Ia(0)] ~ a3 (2 + 1)

> Slla(eLa) + Ta(yLa)] — Ta(5(x + y)1a)
> S lTa(rLa) + Ta(y1.4)] — (= a(eLa) + Ta(y1a)]
= Lla(e1a) + Ialy1a)] 2 37 =,

what is equivalent to
(3) Ia(z(x+y)) <19

Let w be a function from (0,1) into itself such that ||z| < 1 — w(d) whenever
Is(z) < 1—4 (such a function exists by the Ag-condition, cf. [4, Lemma 1.5]).
Then inequality (3) yields

1 .
||§(x +y)ll £1=w), ie., dpeq,)(a) = w(d) >0

which finishes the proof of the implication 2 = 1.

1 = 2. If ® does not satisfy the Ag-condition, then L® (1) contains an isometric
copy of loo (cf. [3]). Therefore dye(,)(a) < d; (a) = 0 for any a € (0,2].

Assume now that ® satisfies the Ag-condition but not 2 (a). Fixing an arbitrary
b € (0,a) we then get p(P) < ¢ = %l; and therefore

Ip(he,o) =00 forall o€ (0,1).

Take an arbitrary such o and denote g = hc . From the definition of g and the
continuity of ® we can conclude that ¢(s, g(s),cg(s)) =1 — o whenever g(s) < co.

Put H = {s | g(s) = oo}. If H is a null-set, then we put f = g, otherwise
we choose ug > 0 and C' C H with Ig(uplo) = 2 and define f(s) by inf{u > ug |
q(s,u,cu) >1—0c} on C and by 0 on S\ C. In any case, f is real valued, measurable
and satisfies I (f) > 2 and

(4) (s, T f(s)) = L5Z[®(s, f(s)) + (s, cf (s))].
We choose B € ¥ with I (f1g) + Is(cflg) = 2 and put

r(s) = (s, f(s)) — ®(s, cf(s))-
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There is a set A C B such that

[ = [ ROLs

which is equivalent to
Ip(fla) + lo(cflp\a) = lo(cfla) + lo(flp\a) = 1.
Define x = f14 + cle\A and y =cflys + le\A' We then have

Ig(z) = Io(y) = [zl = [lyl = 1,

2b
|$—y|—(1_0)f1B—2—+blea
=(1 lp=—-f1
z+y=(1+c)flp 515 1B
and hence
[z -yl _z+y
b 2
So, in view of the inequality (4), we get
r—Yy T+Yy
Io(= =Y ) = g2 Y
@(b(l _0,)) @(2(1 _0,))
1 T+y
> I
> 1 la(=57)

> (@) + Io)] = 1.

whence ||z — y|| > b(1 — o) and || (2 + y)|| > 1 — 0. This means that
ore(w (b1 —0)) <o

Letting o — 0 and b — a we obtain the desired conclusion 6#(,)(a) = 0 and the
proof is finished. 0

As an immediate consequence of Theorem 2 we obtain

Theorem 3. If ® is strictly convex then

2(1-p(®))

co(L® () = { EZON

if ® satisfies the Ag-condition

2 otherwise.
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Remark 1. Theorem 3 is not true when the strict convexity condition for @ is
dropped as the following example shows:
Take S = [0,2) with the Lebesgue measure p and

ooy {11!
s,u) =
u? lu] > 1.
Straightforward calculations show that ® satisfies the Ag-condition and p(®) =1
2(1—p(®
so that (1++((<I>))) = 0. But, for z = 1jg 1) and y = 1; 5, we have [[z| = [[y[| = 1

and ||z + y|| = ||z — y|| = 2 whence £o(L®(n)) = 2.

Remark 2. The parameter p(®) can also be computed in the following way:

p(®) = sup{p(®,9) | g € G(®)}

where

p(q),g) = sup{c € (05 1) | f@,g(c) < l}a
Jo,g(c) = ess sgpsup{q(s,u,cu) | u>g(s)}.

Indeed, if p(®) > ¢, then g = he o € G(®) for some o € (0,1) so that fg 4(c) <1—0
and p(®,g) > c.

Vice versa, if p(®, g) > ¢ for g € G(®) then fg 4(c) =1 —0 < 1 whence heo < g
p-a.e. so that he o € G(®) and p(®) > c.
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