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∈-representation and set-prolongations

Josef Mlček

Abstract. By an ∈-representation of a relation we mean its isomorphic embedding to E =
{〈x, y〉; x ∈ y}. Some theorems on such a representation are presented. Especially, we
prove a version of the well-known theorem on isomorphic representation of extensional and
well-founded relations in E, which holds in Zermelo-Fraenkel set theory. This our version
is in Zermelo-Fraenkel set theory false. A general theorem on a set-prolongation is proved;
it enables us to solve the task of the representation in question.
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We prove that, in the alternative set theory, each weakly extensional and well-
founded set-relation is strongly ∈-representable. It means that there exists a set-
mapping which is an isomorphism of the relation in question and a subrelation of the
relation E = {〈x, y〉; x ∈ y}. We present a general theorem on a set-prolongation.
This theorem guarantees, to a given weakly extensional and well-founded relation,
its set-superrelation with the same two properties. Thus the relation in question has
an ∈-representation. Consequently, each model with absolute equality of Zermelo-
Fraenkel set theory is ∈-representable. For countable models, this result was firstly
proved by Vopěnka (unpublished).

Convention. We use the usual notation of the alternative set theory. We put,
having a relation R, fld(R) = dom(R) ∪ rng(R). We denote the class of all finite
subsets of a class X as Pf (X).

∈-representations of set-relations.

Let R be a binary relation. We shall write R(x) instead of R′′{x} and R[y]
instead of R−1′′{y}.

Convention. In this paper, let R be a binary nonempty relation and let 0R be an
element from dom(R)− rng(R).
We have, consequently, R[0R] = ∅.
A mapping H is said to be an ∈-representation of 〈R, 0R〉 if we have

1) H : fld(R)→ V is a one-one mapping,
2) x, y ∈ fld(R)⇒ (〈x, y〉 ∈ R ⇔ H(x) ∈ H(y) & H(0R) = ∅).

An ∈-representation H is strong if we have, moreover,

3) y ∈ rng(R)⇒ H(y) = H ′′R[y],
4) x ∈ dom(R)− rng(R)− {0R} ⇒ H(x) is infinite.
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We say that R is weakly extensional – formally wex(R) – if we have

x, y ∈ rng(R) & x 6= y ⇒ R[x] 6= R[y].

R is said to be well-founded – formally wf(R) – if we have

(∀u ⊆ fld(R))(u 6= ∅ ⇒ (∃y ∈ u)(R[y] ∩ u = ∅)).

Note that having a nonempty well-founded set-relation r, we can see that (∃x ∈
dom(r) − rng(r))(r[x] = ∅). Especially, dom(r) − rng(r) 6= ∅ holds.

Theorem. Let r be a set-relation, 0r ∈ dom(r) − rng(r).Then r is weakly exten-

sional and well-founded iff there exists a strong ∈-representation of 〈r, 0r〉 which is
a set.

Proof: The implication from the right to the left is easy. Suppose that r is weakly
extensional and well-founded. Put v = rng(r) and w = dom(r) − rng(r). We have
0R ∈ w. We denote by τ(x) the type of a set x, i.e. τ(x) = min{α;x ∈ Pα} − 1,
where P0 = ∅ and Pα+1 = P (Pα). By an ∈-chain of the length δ we mean a set
{zα; 1 ≤ α ≤ δ} such that we have zδ ∈ zδ−1 ∈ · · · ∈ z1. We denote such a chain
as z|δ. We say that z|δ is under x if we have z1 ∈ x. We have for each δ ≥ 1:
τ(x) = δ implies that there is an ∈-chain of the length δ which is under x. Assume
γ ≥ 1. Suppose, moreover, that each ∈-chain under x has the length less than γ.
Then τ(x) < γ.
Suppose that θ ∈ N is such a number that we have

i) θ > ||v||, where ||v|| is the set-cardinality of the set v, i.e. ||v|| ∈ N and
there exists a one-one set-mapping between v and ||v||,

ii) there exists a set {ex; x ∈ w − {0r}} such that each ex is infinite, τ(z) = θ

holds for each z ∈ ex and we have, for each x, y ∈ w−{0r}, x 6= y ⇒ ex 6= ey.

We define sets uα as follows: u0 = w, uα+1 = {x ∈ v; r[x] ⊆ uα} ∪ w. We can
see that uα ⊆ uα+1 holds for each α. We have, moreover, a number γ such that
α ≥ γ ⇒ uα = uγ = v ∪ w.
We define, for each α, the mapping hα : uα → V by the relations: h0(0r) =

∅, h0(x) = ex for each x ∈ w − {0r}, hα+1(y) = hα
′′r[y] for each y ∈ uα+1 − w (=

uα+1 ∩ v), hα+1(y) = h0(y) for each y ∈ w. We can easily prove that, for each α,
hα ⊆ hα+1 holds.
Let us formulate two lemmas. We denote by Univ(x) the universe of the set x.

Lemma. Assume that y ∈ rng(r)∩uα and let Univ(hα(y))∩{ex; x ∈ w−{0r}} =
∅. Then τ(hα(y)) ≤ ||rng(r)|| holds.

Proof: Let z|δ be an ∈-chain under hα(y). Let us prove that δ ≤ ||rng(r)||.
We shall write h instead of hα. Thus we have zδ ∈ zδ−1 ∈ · · · ∈ z1 ∈ h(y), where
{zα; 1 ≤ α ≤ δ} = z|δ. We deduce from the fact h(y) = h′′r[y] that there exists a
set y1 such that y1 ∈ r[y] and z1 = h(y). Suppose that r[y]∩ (w −{0r}) 6= ∅. Then
ex ∈ h(y) holds for some x ∈ w − {0r}. It follows from the formula x ∈ r[y] ∩ (w −
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{0r})⇒ h(x) = ex = h(y). We deduce from this that Univ(h(y))∩{w−{0r}} 6= ∅,
which is a contradiction. Thus we have r[y] ⊆ v ∪ {0r}. Assuming y1 = 0r, we
obtain that z1 = h(0r) = ∅. Thus δ = 1. Suppose δ > 1. Then y1 ∈ v.
Assume that 1 ≤ β ≤ δ and let {yα; 1 ≤ α ≤ β} ⊆ v be a set such that

yβryβ−1r . . . ry1ry and let h(yα) = zα for each 1 ≤ α ≤ β. We have zβ+1 ∈ h(yβ) =

h′′r[yβ ]. Thus there exists a yβ+1 ∈ r[yβ ] such that zβ+1 = h(yβ+1). Assume that
yβ+1 = 0r. Then zβ+1 = h(0r) = ∅ and, consequently, β + 1 = δ holds. Assume
β + 1 < δ. Then yβ+1 ∈ v. It follows from the fact that yβ+1 ∈ w − {0r} implies
zβ+1 ∈ {ex; x ∈ w − {0r}} ∩ Univ(h(y)) which is a contradiction.
Thus, there exists a set {yα; 1 ≤ α < δ} ⊆ v such that yδ−1ryδ−2r . . . y1ry holds.

The relation r is well-founded. We deduce from this that δ ≤ ||v||. Thus each ∈-
chain under h(y) has the length less or equal to ||v||. Consequently, τ(h(y)) ≤ ||v||
holds. �

Lemma. Each mapping hα is a one-one mapping.

Proof: We shall prove it by induction on α. If α = 0 then the assertion holds.
Assume that hα is a one-one mapping; we shall prove that hα+1 has the same
properties. Suppose that x, y ∈ uα+1 are such that hα+1(x) = hα+1(y).
a) x, y ∈ w. Then x = y follows directly from the definition of hα+1.
b) x, y ∈ v. Then hα

′′r[x] = hα+1(x) = hα+1(y) = hα
′′r[y]. We deduce from

the induction hypothesis that r[x] = r[y]. The equality x = y follows from this by
using the weak extensionality of r.
c) x ∈ v, y ∈ w. Assume, at first, that y = 0r. We have hα+1(y) = ∅, hα+1(x) =

∅. But hα+1(x) = hα
′′r[x] 6= ∅, which is a contradiction. Assume, secondly, that

y 6= 0r. We have hα+1(x) = hα+1(y) = ey. Suppose that Univ(hα+1(x))∩{ez ; z ∈
w − {0r}} 6= ∅. Then τ(hα+1(x)) > τ(ey), which is a contradiction. Suppose that
Univ(hα+1(x)) ∩ {ez; z ∈ w − {0r}} 6= ∅. We deduce from this assumption and by
using the previous lemma that τ(hα+1(x)) ≤ ||v|| < τ(ey), which is impossible. �

Let us finish the proof of our theorem. Choose δ such that uδ = v∪w (= dom(r)∪
rng(r)) and put u = uδ and h = hδ. Now, we have the following: h is a one-one
mapping such that x ∈ rng(r)⇒ h(x) = h′′r[x], x ∈ dom(r)−rng(r)−{0r} ⇒ h(x)
is infinite, h(0r) = ∅ and 〈x, y〉 ∈ r ⇒ h(x) ∈ h(y). Thus, only the following must
be proved:

x, y ∈ dom(r) ∪ rng(r)⇒ (h(x) ∈ h(y)⇒ 〈x, y〉 ∈ r).

Suppose that x, y ∈ dom(r) ∪ rng(r) and let h(x) ∈ h(y). We have y 6= 0r.
α) x, y ∈ w. Then h(y) = ey and, consequently, h(x) ∈ h(y) is false. (Indeed,

we have h(x) = ex or h(x) = 0r. But neither ex ∈ ey for some x, y ∈ w − {0r} nor
∅ ∈ ey holds.)

β) y ∈ v. We have h(x) ∈ h′′r[y] (= h(y)). Thus h(x) = h(z) holds for some
z ∈ r[y]. The mapping h is a one-one. Consequently z = x is satisfied and we have
〈x, y〉 ∈ r.

γ) x ∈ v, y ∈ w. Suppose that

(∗) Univ(h(x)) ∩ {ez; z ∈ w − {0r}} 6= ∅



664 J.Mlček

We deduce from this that τ(h(x)) > τ(h(y)). But it is a contradiction with our
assumption that h(x) ∈ h(y) = ey. Suppose that (∗) is not true. We have τ(h(x)) ≤
||v||. But the relation τ(h(x)) = θ follows from the assumption that h(x) ∈ ey. We
have θ > ||v||, which is a contradiction.

Set-prolongation.

Our aim is to present a method of a prolongation of a given class, say X , to a set,
say d, such that X ⊆ d and the set d has some properties as X . We see that this
purpose is essentially limited by the fact that d is a formally finite set. Thus, only
some properties of X can be transferred on d.
We formulate a theorem on set-prolongation below. Before we give it, let us

introduce one definition.
Let X be a class and let Γ be a class of set formulas of the language FLV with

exactly one free-variable x. We say that Γ is an f-type over X if we have for each
finite set {ϕ1. . . . , ϕk} ⊆ Γ the following

(∀u ∈ Pf (X))(∃v ∈ Pf (X))(u ⊆ v & ϕ1(v) & . . . ϕk(v)),

where ϕi(v) denotes the formula which is obtained from ϕ by replacing all of the
occurrence of the variable x by v.

Theorem (on set-prolongation). Let Γ be an f-type over a class X . Then there

exists an endomorphism F and a set d such that we have:

1) F ′′X = F ′′V ∩ d.

2) If ϕ(x, p1, p2, . . . , pl) ∈ Γ and ϕ(x, x1, x2, . . . , xn) is a formula of the lan-
guage FL, then ϕ(d,F(p1),F(p2), . . . ,F(pl)),

3) Let ϕ(x, p1, p2, . . . , pl) be a set-formula of the language FLV with exactly

one set-variable x and suppose that (∃u ∈ Pf (X))(∀v ∈ Pf (X))(u ⊆ v ⇒
ϕ(v, p1, p2, . . . , pl). Then ϕ(d,F(p1),F(p2), . . . ,F(pl)) holds.

Proof: We sketch a proof by using the notion of the coherency [V] which states
the following. Let M be an ultrafilter on the ring SdV of all set-theoretically
definable classes. Then F , M, d are coherent if {x; ϕ(x, p1, p2, . . . , pl)} ∈ M ⇔
ϕ(d,F(p1),F(p2), . . . ,F(pl)) holds for each set-formula ϕ(x0, p1, p2, . . . , pl) of FLV

with exactly one free-variable x0 and such that p1, p2, . . . , pl ∈ dom(F).
Let

M0 = {{x; ϕ(x, p1, p2, . . . , pl)}; ϕ(x0, p1, p2, . . . , pl) ∈ Γ or ϕ(x0, p1, p2, . . . , pl)
is a set-formula of FLV with exactly one free-
variable x0 such that (∃u ∈ Pf (X))(∀v ∈
Pf (X))(u ⊆ v ⇒ ϕ(v, p1, p2, . . . , pl))}.

Then M0 is a centered system of set-theoretically definable classes. Let M be an
ultrafilter on SdV such that M0 ⊆ M. There exists an endomorphism F and
a set d such that F , M, d are coherent. It follows from the first theorem of Sec-
tion 2, Chapter V in [V]. We can see that 2), 3) hold. Let us prove 1). We have
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{x; y ∈ x} ∈ M ⇔ y ∈ X and {x; y ∈ x} ∈ M ⇔ F(y) ∈ d. Thus F(y) ∈ d ⇔ y ∈
X holds. �

∈-representations.

We say that a binary relation R is without cycles if there is no sequence
{x1, x2, . . . , xn} ⊆ fld(R) such that x1R xn R xn−1 . . . R x1 holds.

Theorem. Let R be a weakly extensional relation without cycles and let 0R ∈
dom(R)− rng(R). Then we have:

1) There exist a relation S and 0S such that 〈R, 0R〉 is isomorphic to 〈S, 0S〉
and there exists a weakly extensional and well-founded set-relation r such

that S ⊆ r and 0S ∈ dom(r) − rng(r).
2) There exists a class K such that ∅ ∈ K and 〈fld(R), R, 0R〉 is isomorphic
to 〈K, E ∩ K2, ∅〉.

Proof: Let us prove, at first, that {wex(x), wf(x)} is an f -type over R. Assume
that s ⊆ R is finite. It is easy to see that s is well-founded. We must find a finite
weakly-extensional relation r such that s ⊆ r ⊆ R. Put v = rng(s) and, for each
{x, y} ∈ [v]2, let dxy ∈ △(R[x], R[y]), where △ is the symmetric difference. Put
r = s ∪ {〈dxy, x〉 ∈ R; {x, y} ∈ [v]2}. We have rng(r) = v and {x, y} ∈ [v]2 implies
dxy ∈ △(r[x], r[y]). Thus r is weakly extensional.

We can easily see that {x; (∃y, z)(x = {1}× y∪{2}× z & wex(y) & wf(y) &
z ∈ dom(y)− rng(y))} is an f -type over {1} × R ∪ {2} × {0R}.

Now, we deduce from the previous theorem that there exist an endomorphism
F , a set-relation r and a set e such that F ′′({1}×R∪ {2}×{0R}) = F ′′V ∩ ({1}×
r ∪ {2}× {e}). Put S = F ′′R. We have 〈x, y〉 ∈ R ⇔ 〈F (x), F (y)〉 ∈ S, i.e. F is an
isomorphism of R and S. Put 0S = F (0R). We have 0S ∈ dom(F ′′R)− rng(F ′′R).
Thus 〈S, 0S〉 has the required properties.

2) We know that there exists a strong ∈-representation h of 〈r, 0S〉. Let us define
a mapping H : fld(R)→ V by H(x) = h(F (x)) and put K = H ′′fld(R). Then H

is an isomorphism of R and E ∩ K2. We have, moreover, H(0R) = h(0S) = ∅. �

Corollary. Let 〈A, R〉 be a model of ZF with absolute equality and let 0R ∈ A be

such that 〈A, R〉 |= ”0R is the empty set”. Then there exists a class M such that

the structures 〈A, R, 0R〉 and 〈M, E ∩ M2, ∅〉 are isomorphic.

Proof: It is clear that R is an extensional relation and, consequently, weakly
extensional one. R is without cycles, too. We have dom(R) − rng(R) = {0R}. We
deduce from the previous theorem that there exists a class M with the required
properties. �

Note: The just presented assertion can be strengthened. We can find the class M

in question such that, in addition, some gödelian operations are absolute for the
model 〈M, E ∩ M2, ∅〉. Naturally, the transitivity of M cannot be guaranteed.

A publication of these results is in preparation.
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