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e-representation and set-prolongations

JOSEF MLCEK

Abstract. By an €-representation of a relation we mean its isomorphic embedding to E =
{{z,y); * € y}. Some theorems on such a representation are presented. Especially, we
prove a version of the well-known theorem on isomorphic representation of extensional and
well-founded relations in E, which holds in Zermelo-Fraenkel set theory. This our version
is in Zermelo-Fraenkel set theory false. A general theorem on a set-prolongation is proved;
it enables us to solve the task of the representation in question.
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We prove that, in the alternative set theory, each weakly extensional and well-
founded set-relation is strongly €-representable. It means that there exists a set-
mapping which is an isomorphism of the relation in question and a subrelation of the
relation E = {(z,y); € y}. We present a general theorem on a set-prolongation.
This theorem guarantees, to a given weakly extensional and well-founded relation,
its set-superrelation with the same two properties. Thus the relation in question has
an e-representation. Consequently, each model with absolute equality of Zermelo-
Fraenkel set theory is €-representable. For countable models, this result was firstly
proved by Vopénka (unpublished).

Convention. We use the usual notation of the alternative set theory. We put,
having a relation R, fld(R) = dom(R) U rng(R). We denote the class of all finite
subsets of a class X as Py(X).

e-representations of set-relations.
Let R be a binary relation. We shall write R(z) instead of R”{z} and R[y]
instead of R~ {y}.

Convention. In this paper, let R be a binary nonempty relation and let O be an
element from dom(R) — rng(R).
We have, consequently, R[0g] = 0.
A mapping H is said to be an €-representation of (R,0g) if we have
1) H: fld(R) — V is a one-one mapping,
2) z,y € fld(R) = ({z,y) € R< H(z) € H(y) & H(0g) =0).
An e€-representation H is strong if we have, moreover,

3) y € rng(R) = H(y) = H"Rly],
4) z € dom(R) —rng(R) — {Or} = H(z) is infinite.
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We say that R is weakly extensional — formally wex(R) — if we have
z,y € rng(R) & x #y = R[z] # R[y].
R is said to be well-founded — formally wf(R) — if we have
(Vu C fld(R))(u # 0 = (Fy € u)(Rly] N u =0)).

Note that having a nonempty well-founded set-relation r, we can see that (3x €
dom(r) —rng(r))(r[z] = 0). Especially, dom(r) — rng(r) # () holds.

Theorem. Let r be a set-relation, 0, € dom(r) — rng(r).Then r is weakly exten-
sional and well-founded iff there exists a strong €-representation of (r,0,) which is
a set.

ProOF: The implication from the right to the left is easy. Suppose that r is weakly
extensional and well-founded. Put v = rng(r) and w = dom(r) — rng(r). We have
Or € w. We denote by 7(x) the type of a set z, i.e. 7(x) = min{o;z € Py} — 1,
where Py = ) and P,41 = P(P,). By an €-chain of the length ¢ we mean a set
{za; 1 < @ < 0} such that we have z5 € z5_1 € -+ € 1. We denote such a chain
as z[0. We say that z|0 is under x if we have z; € z. We have for each 6 > 1:
7(x) = ¢ implies that there is an €-chain of the length ¢ which is under z. Assume
v > 1. Suppose, moreover, that each €-chain under x has the length less than ~.
Then 7(z) < 7.
Suppose that # € N is such a number that we have

i) 6 > ||v||, where ||[v]| is the set-cardinality of the set v, i.e. |[v|]] € N and
there exists a one-one set-mapping between v and ||v||,

ii) there exists a set {ez; © € w — {0, }} such that each ey is infinite, 7(z) =
holds for each z € e, and we have, for each z,y € w—{0,}, v # y = ez # ey.

We define sets uq as follows: ug = w, uq4+1 = {x € v; r[z] C uq} Uw. We can
see that wuq C uq41 holds for each a. We have, moreover, a number v such that
azy= Uy =uy =vUw.

We define, for each «, the mapping ho : uq — V by the relations: hg(0,) =
0, ho(z) = ey for each z € w — {0y}, ha+1(y) = ha''r[y] for each y € ug1 — w (=
U1 NV), hat1(y) = ho(y) for each y € w. We can easily prove that, for each a,
ha C hg+1 holds.

Let us formulate two lemmas. We denote by Univ(z) the universe of the set x.

Lemma. Assume that y € rng(r)Nuq and let Univ(ha(y))N{eg; x € w—{0,}} =
(. Then 7(ha(y)) < ||rng(r)|| holds.

PROOF: Let z|0 be an €-chain under hq(y). Let us prove that 6 < |jrng(r)||.
We shall write h instead of hy. Thus we have z5 € 25_1 € --- € 21 € h(y), where
{20; 1 < a <4} = 2|5. We deduce from the fact h(y) = h”r[y] that there exists a
set y1 such that y; € r[y] and z; = h(y). Suppose that r[y] N (w — {0,}) # 0. Then
ez € h(y) holds for some x € w — {0,}. It follows from the formula z € r[y] N (w —
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{0,}) = h(x) = eg = h(y). We deduce from this that Univ(h(y)) N {w —{0,}} # 0,
which is a contradiction. Thus we have r[y] C v U {0;}. Assuming y; = 0,, we
obtain that z; = h(0,) = (). Thus § = 1. Suppose § > 1. Then y; € v.

Assume that 1 < 8 < § and let {yo; 1 < o < S} C v be a set such that
Ygryg—17 . .- ry1ry and let h(ya) = 2o for each 1 < o < 3. We have 2541 € h(yg) =
h'r[ys]. Thus there exists a ygq € r[yg| such that zg1 = h(yg41). Assume that
Yg+1 = Or. Then 25,1 = h(0,) = 0 and, consequently, 8 + 1 = ¢ holds. Assume
B +1<4. Then ygyy € v. It follows from the fact that yg, 1 € w — {0;} implies
2841 € {ex; ¥ € w— {0} } N Univ(h(y)) which is a contradiction.

Thus, there exists a set {yo; 1 < a < §} C vsuch that ys_17ys_or...y1ry holds.
The relation r is well-founded. We deduce from this that ¢ < ||v||. Thus each &-
chain under h(y) has the length less or equal to ||v||. Consequently, 7(h(y)) < ||v||
holds. O

Lemma. FEach mapping he, is a one-one mapping.

PRrROOF: We shall prove it by induction on a. If & = 0 then the assertion holds.
Assume that hq is a one-one mapping; we shall prove that hq4+1 has the same
properties. Suppose that z,y € uqy1 are such that hot1(x) = hat1(y).

a) z,y € w. Then x = y follows directly from the definition of hq41.

b) z,y € v. Then hyr[x] = hot1(z) = hat1(y) = ha''rly]. We deduce from
the induction hypothesis that r[x] = r[y]. The equality x = y follows from this by
using the weak extensionality of r.

c)x € v,y €w. Assume, at first, that y = 0,. We have hqot1(y) =0, hat1(x) =
0. But hat1(x) = ha'"r[z] # 0, which is a contradiction. Assume, secondly, that
y # 0. We have hay1(x) = hat1(y) = ey. Suppose that Univ(ha41(x))N{ez; 2 €
w—{0}} # 0. Then 7(hq41(x)) > 7(ey), which is a contradiction. Suppose that
Univ(hgt1(z)) N{ez; z € w—{0,}} # 0. We deduce from this assumption and by
using the previous lemma that 7(hq+1(z)) < [|v]| < 7(ey), which is impossible. [

Let us finish the proof of our theorem. Choose § such that ug = vUw (= dom(r)U
rng(r)) and put u = us and h = hs. Now, we have the following: h is a one-one
mapping such that x € rng(r) = h(z) = h''r[z], x € dom(r)—rng(r)—{0,} = h(z)
is infinite, h(0,) = 0 and (x,y) € 7 = h(z) € h(y). Thus, only the following must
be proved:

x,y € dom(r)Urng(r) = (h(z) € h(y) = (x,y) € r).

Suppose that z,y € dom(r) Urng(r) and let h(z) € h(y). We have y # 0O,.

a) z,y € w. Then h(y) = ey and, consequently, h(x) € h(y) is false. (Indeed,
we have h(z) = ez or h(x) = 0,. But neither e; € ey for some z,y € w — {0;} nor
0 € ey holds.)

B) y € v. We have h(z) € h'r[y] (= h(y)). Thus h(x) = h(z) holds for some
z € rly]. The mapping h is a one-one. Consequently z = x is satisfied and we have
(z,y)y €.

v) & € v, y € w. Suppose that

(%) Univ(h(z)) N{ez; z € w—{0,}} #0
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We deduce from this that 7(h(z)) > 7(h(y)). But it is a contradiction with our
assumption that h(x) € h(y) = ey. Suppose that (*) is not true. We have 7(h(x)) <
[lv]|. But the relation 7(h(z)) = 6 follows from the assumption that h(z) € e,. We
have 6 > ||[v||, which is a contradiction.

Set-prolongation.

Our aim is to present a method of a prolongation of a given class, say X, to a set,
say d, such that X C d and the set d has some properties as X. We see that this
purpose is essentially limited by the fact that d is a formally finite set. Thus, only
some properties of X can be transferred on d.

We formulate a theorem on set-prolongation below. Before we give it, let us
introduce one definition.

Let X be a class and let I' be a class of set formulas of the language F Ly, with
exactly one free-variable x. We say that I' is an f-type over X if we have for each
finite set {p1....,¢r} CT the following

(Vu € Pf(X))(Elv e Pf(X))(u Cov & p1(v) & ...¢(V)),

where ¢;(v) denotes the formula which is obtained from ¢ by replacing all of the
occurrence of the variable x by v.

Theorem (on set-prolongation). Let I' be an f-type over a class X. Then there
exists an endomorphism F and a set d such that we have:
1) F'X =F"'"Vnd.
2) If p(x,p1,p2,---,0) € T and p(x,x1,22,...,2y,) is a formula of the lan-
guage FL’ then w(dv f(pl)af(pQ)a s 5F(pl)))
3) Let o(x,p1,p2,-..,p;) be a set-formula of the language F Ly, with exactly
one set-variable x and suppose that (Ju € Pr(X))(Vv € Py(X))(u Cv =
©(v,p1,p2,---,p1). Then (d, F(p1), F(p2), - - -, F(p1)) holds.

PRrROOF: We sketch a proof by using the notion of the coherency [V] which states
the following. Let 91 be an ultrafilter on the ring Sdy of all set-theoretically
definable classes. Then F,9M,d are coherent if {z; ¢(z,p1,p2,...,p)} € M &
o(d, F(p1), F(p2),-..,F(p;)) holds for each set-formula ¢(xq, p1,p2, .- .,p;) of FLy
with exactly one free-variable xg and such that p1,po,...,p; € dom(F).

Let

Mo = {{=z; ¢(z,p1,p2,. ... ) }; p(0,P1, P2, 1) €T or (0, p1,P2, .-, P1)
is a set-formula of F Ly with exactly one free-

variable xg such that (Ju € Pp(X))(Vo €
Pr(X))(u S v = @(v,p1,p2,---,p1))}-

Then 9Mg is a centered system of set-theoretically definable classes. Let 2T be an
ultrafilter on Sdy such that Mg C 9. There exists an endomorphism F and
a set d such that F,9, d are coherent. It follows from the first theorem of Sec-
tion 2, Chapter V in [V]. We can see that 2), 3) hold. Let us prove 1). We have
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{r;yeateMeyeXand {z;ycxt e M F(y) €d. Thus Fly) ed ey €
X holds. O

€-representations.

We say that a binary relation R is without cycles if there is no sequence
{x1,22,...,2n} C fld(R) such that z1 Rxy Rxp_1 ... Rx1 holds.

Theorem. Let R be a weakly extensional relation without cycles and let Op €
dom(R) — rng(R). Then we have:

1) There exist a relation S and Og such that (R,0g) is isomorphic to (S,0g)
and there exists a weakly extensional and well-founded set-relation r such
that S C r and 0g € dom(r) — rng(r).

2) There exists a class K such that ) € K and (fld(R), R,0g) is isomorphic
to (K,ENK2,0).

PROOF: Let us prove, at first, that {wex(x), wf(x)} is an f-type over R. Assume
that s C R is finite. It is easy to see that s is well-founded. We must find a finite
weakly-extensional relation r such that s Cr C R. Put v = rng(s) and, for each
{z,y} € [v]?, let dyy € A(R[z], R[y]), where A is the symmetric difference. Put
r=sU{{dgy,7) € R; {z,y} € [v]2}. We have rng(r) = v and {z,y} € [v]? implies
dey € A(r[z],7[y]). Thus r is weakly extensional.

We can easily see that {z; (Jy, z)(x = {1} xyU{2} x z & wex(y) & wf(y) &
z € dom(y) —rng(y))} is an f-type over {1} x RU {2} x {Og}.

Now, we deduce from the previous theorem that there exist an endomorphism
F, a set-relation 7 and a set e such that F”({1} x RU{2} x {0g}) = F"V n ({1} x
rU{2} x {e}). Put S = F’R. We have (z,y) € R < (F(z),F(y)) € S, i.e. F is an
isomorphism of R and S. Put 0g = F(0g). We have 0g € dom(F"R) — rng(F"R).
Thus (S, 0g) has the required properties.

2) We know that there exists a strong €-representation h of (r,0g). Let us define
a mapping H : fld(R) — V by H(z) = h(F(z)) and put K = H” fld(R). Then H
is an isomorphism of R and E N K2. We have, moreover, H(0g) = h(0g) = 0. O

Corollary. Let (A, R) be a model of ZF with absolute equality and let Op € A be
such that (A, R) = ”"0g is the empty set”. Then there exists a class M such that
the structures (A, R,0p) and (M,E N M?,() are isomorphic.

Proor: It is clear that R is an extensional relation and, consequently, weakly
extensional one. R is without cycles, too. We have dom(R) — rng(R) = {Og}. We
deduce from the previous theorem that there exists a class M with the required
properties. O

Note: The just presented assertion can be strengthened. We can find the class M
in question such that, in addition, some gddelian operations are absolute for the
model (M,E N M?2,(). Naturally, the transitivity of M cannot be guaranteed.

A publication of these results is in preparation.
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