Comment.Math.Univ.Carolin. 33,4 (1992)625-630

Multivalued pseudo-contractive mappings
defined on unbounded sets in Banach spaces

Craubpio H. MORALES

Abstract. Let X be a real Banach space. A multivalued operator T from K into 2% is
said to be pseudo-contractive if for every z,y in K, u € T(x), v € T(y) and all » > 0,
le—y|| < ||(147r)(x—y)—r(u—v)|. Denote by G(z,w) the set {u € K : |[u—w]| < [lu—z]}.
Suppose every bounded closed and convex subset of X has the fixed point property with
respect to nonexpansive selfmappings. Now if T" is a Lipschitzian and pseudo-contractive
mapping from K into the family of closed and bounded subsets of K so that the set G(z, w)
is bounded for some z € K and some w € T(z), then T has a fixed point in K.
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Let X be a Banach space, K a nonempty subset of X, and for M = K or X let
K (M) denote the family of all nonempty compact subsets of M which is equipped
with the Hausdorff metric. Let B(M) denote the family of all nonempty closed and
bounded subsets of M. A mapping T : K — K(M) is said to be Lipschitzian if
there exists L > 0 such that for each xz,y € K

H(T'(x),T(y)) < Lllx — yl|

For L < 1 (L = 1) such mappings are said to be contractive (respectively, nonex-
pansive). A point x € K is called a fixed point of T' if x € T'(x).

An operator T : K — 2% is said to be k-pseudo-contractive (k > 0) (see [7])
if for each z,y € K, u € T(z), v € T'(y) and A > k

1) A =HF)llz —yll <Mz —y) = (u =)

For k =1 (k < 1) such mappings are said to be pseudo-contractive (respectively,
strongly pseudo-contractive). By letting r = 1/(A— 1) and k = 1 in (1), we
derive the original definition of pseudo-contractive mappings, due to Browder [1],
as follows:

2) le =yl < [I(A+r)(@ —y) = r(u—v)]

holds for all z and y in K, v € T(x), v € T(y) and all » > 0. However, by taking
a semi-inner approach (see also Kato [5]) we may describe (2) by

(u—v,j) < ||lz —y|?
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for some j € J(x — ). The mapping J : X — 2X" is called the normalized duality
mapping which is defined by

J(@) = {j € X*: (2, ) = ||z 5]l = ll=[1}.

Here (-,-) denotes the generalized duality pairing. As we mentioned in [8], this
latter family of mappings is intimately related to the so-called accretive operators,
which play an important role in the theory of evolution equations.

The main purpose of this paper is to examine the behavior of multivalued map-
pings in the case the domain K is unbounded. Certainly, under this constraint we
fail to obtain fixed points even in the single-valued case (see [11]). Nevertheless, we
are able to show that a mild boundedness condition on T (the condition (4) below)
is sufficient to guarantee the existence of a fixed point. In this context we prove
that Lipschitzian and pseudo-contractive multivalued mappings satisfying an “in-
wardness” condition have fixed points. We should mention that this result extends,
in various directions, one of the main results of Canetti et al. [2]. We also include an
application where the mild boundedness condition (4) holds for the so-called acute
cones.

Throughout the paper we will assume that the domain K of the operator T is
closed and convex and also the notion that 7" satisfies the weakly inward condition
may be described by

(3) Jim. h~Ydist (1 — h)z + hy, K) =0

for each x € K and y € T(z). In addition, we observe that the boundedness
condition (introduced in [4]), which has been mentioned earlier, asserts that for z
and w in X

(4) G(zw) ={ue K:flu—w| < flu— =z}

is a bounded subset of K.

While we may observe that there is a firm connection between the fixed point
theory for pseudo-contractive and nonexpansive mappings in the single-valued case,
this is not so for multivalued operators. However, additional conditions on the map-
ping T will allow us to derive some relationships between the single and multivalued
cases. We begin studying some results for single-valued operators. Our first theo-
rem is a slight extension of Theorem 5 of [9], whose proof is included for the sake
of completeness.

Theorem 1. Let X be a Banach space whose bounded closed and convex subsets
have the fixed point property with respect to nonexpansive selfmappings. Let K
be a close convex subset of X (with 0 € K) and let T : K — X be a continuous
pseudo-contractive mapping. Suppose T holds the weakly inward condition for each
x € K. If the set

(5) E={re K:T(z) =Xz for some A> 1}
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is bounded, then T has a fixed point in K.

ProoOF: Let fr = (1 + )] — T for » > 0. Then, as in the proof of Theorem 5
of [9], the mapping g : K — K defined by g = f,~ 1 is nonexpansive. Also the set
F ={y € K : g(y) = py for some p > 1} is bounded. To complete the proof,
we select a sequence {yn} in F such that g(yn) = pnyn with gy — 1. Then if
limp, oo sup ||yn|| = L, a standard argument shows that the set

C={ye K: lim supllyn, —y| <L}
n—oo
is closed bounded convex and invariant under g. Therefore, by assumption, g has

a fixed point in K, which is also a fixed point for T'. O

Corollary 1. Let X be as in Theorem 1 and let K be a closed and convex subset
of X (with 0 € K). Suppose T is a continuous pseudo-contractive mapping from K
to K. Also, suppose the set E defined by (5) is bounded. Then T has a fixed point
in K.

Now, as a consequence of Theorem 1, we improve Theorem 1 of Ray [12]. We
should mention that his proof relies on the intrinsic properties of uniformly convex
spaces, contrary to our approach that appears to be less involved.

Theorem 2 (cf. Theorem 6 of [9]). Let X be as in Theorem 1 and let K be a closed
and convex subset of X. Let T : K — X be a continuous pseudo-contractive
mapping. Suppose there exists z € K for which T'(z) € K and the set

(6) G(zT(2) ={uve K:[u=T)| < |u—z[}

is bounded. Suppose also that T' holds the weakly inward condition for each x € K.
Then T has a fixed point in K.

PROOF: We may assume without loss of generality that z = 0. We shall show that
the set E, defined by (5), is bounded. To see that, let T'(z) = Az for z € K and
A > 1. Since T is pseudo-contractive we have

(7) el < (L +7 = rA)z + rT(0)]].

By choosing r = 1/(A — 1) and A > Ao for some Ay € (1,2), we conclude that
Izl < IT0)|I/(Ao — 1). Select now r =1 (in (7)) and A < Ag. Then we have

@2 =Nzl < llzl < [I(2 = Nz +T(0)],

yielding (2 — X\)xz € G(=T(0),0). Since G(0,7(0)) is bounded, so is G(—71(0),0).
Therefore E is bounded and Theorem 1 completes the proof. O

As a result of Theorem 2 we may derive some known corollaries (see [6], [12], [9]).
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Corollary 2. Let X and K be as in Theorem 2. Let T : K — K be a continuous
pseudo-contractive mapping. Suppose for some z € K the set G(z,T(z)) is bounded.
Then T has a fixed point in K.

In view of the fact that every nonexpansive mapping is continuous and pseudo-
contractive, we easily derive Theorem 1.3 of [6] as a consequence of Corollary 2.

Corollary 3. Let X and K be as in Theorem 2. Let T : K — K be a nonexpansive
mapping. Suppose there exists z € K for which the set G(z,T(z)) is bounded. Then
T has a fixed point in K.

Next we prove our main theorem for multivalued mappings. This result repre-
sents a significant extension of Theorem 9 of [2].

Theorem 3. Let X be a Banach space whose bounded closed convex subsets have
the fixed point property with respect to single-valued nonexpansive selfmappings.
Let K be closed convex subset of X and let T : K — B(K) be a Lipschitzian pseudo-
contractive mapping. Suppose that for some z € K the set G(z,w) is bounded for
some w € T'(z). Then T has a fixed point in K.

PROOF: We may assume without loss of generality that z = 0. Let L be a Lipschitz
constant of 7" and choose 0 < o < min{1,1/L}. For each y € K, the mapping
Ty : K — B(K) defined by Ty(z) = (1 — o)y + o7 '(x) is a multivalued contraction.
Since K is complete and Ty (x) C K, Theorem 5 of Nadler [10] implies that T3 has
a fixed point Fy,(y) in K. This means

Fo(y) € (1 — a)y + aT'(Fu(y)).

Thus, if z,y € K there exist u € T(Fy(z)) and v € T(Fu(y)) such that F,(x) =
(1 —-a)r+ au and Fyo(y) = (1 — @)y + aw. Since T is pseudo-contractive, there
exists j € J(Fuo(z) — Fa(y)) so that

(Fa(z) = Fa(y),j) = (1 — a){z —y,j) + au — v, ).
This implies that
IFa() = Fa()|” < (1 = @)z = y[|[| Fa(z) = Fa()ll + allFa(z) = Fa(y)]?,

and thus
| Fa(x) = Fa(y)ll < [lz —yll.

Therefore Fy, is a single-valued nonexpansive mapping of K into K. Since T and
F,, have the same fixed points, it is sufficient to show that F, has a fixed point.
However, in view of Corollary 1 we just need to show that the set

E={x€ K : Fy(z) =Ax for some A > 1}

is bounded. To see that, let F(z) = Az for x € K and A > 1. Then Az €
(1 — a)z + aT(\z), which implies that [a~'(\ — 1) + 1]z € T(\z). Since T is
pseudo-contractive, it follows that

(®) Azl < 11 +7)Ae = r[(@” (A = 1) + D)o — w]|
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for some w € T'(0). First of all, we select \g € (1,2) so that a™1 < 1+ Xg(Ag—1)7!
and then we consider two cases. For A > \g we choose r = a\/(1 —a)(A—1) in (8),
and this yields

2]l < aflwll/(1 = a)(ho = 1).

Now, suppose A < Ag. Then choose r =1 (in (8)) and we obtain
IAz]l < [l[(a™" = 1)(1 = A) + Nz + w].

By writing = (a1 —1)(1 = \) + \, we may choose g > 0 so that 0 < g < g < A
for all A € (1,X9). This means pyzr € K and thus pux € G(—w,0). Since, by
assumption, G(w,0) is bounded, so is G(—w,0). Therefore the set E is bounded.
This completes the proof. O

In Theorem 3, the condition on T of mapping K into itself can be relaxed by
imposing a compactness assumption on T'(x).

Theorem 4. Let X be as in Theorem 3 and let K be a closed convex subset of X.
Let T : K — K(X) be a Lipschitzian pseudo-contractive mapping. Suppose for
some z € K for which T'(z) € K the set G(z,w) is bounded for some w € T(z),
suppose also that (3) holds for each x € K. Then T has a fixed point in K.

PROOF: As in the proof of Theorem 3, the mapping Ty : K — K(X) defined by
Ty(x) = (1 — o)y + oT'(x) is a multivalued contraction. Since Ty, also satisfies the
weakly inward condition on K (see for example Lemma 1 of [9]), Corollary 2 of [3]
implies that Ty has a fixed point F,(y) in K. These conclusions will then enable
us to complete the proof following the argument of Theorem 3. 0

We will discuss now an application of Theorem 4 to mappings defined on cones.
Following [6] we define the notion of a sufficiently “sharp” cone.

Let X be a normed linear space. A cone K in X with vertex 0 is said to be
acute if, for each x in K, the set G(z,0) is bounded. For some specific classes of
spaces, this notion can be formulated in more tangible terms. For instance, if X is
either [P-space or the LP-space (with 1 < p < 00), then acute cones are described
as those for which

Sup{D,(—z):z€ K and |z]|=1}<0

for each nonzero x in K, where D, is the derivative of the norm of X at z. However,
in Hilbert spaces this becomes

inf{(z,y) :y € K, [lyl =1} >0

for each nonzero = in K. This latter characterization corresponds to the well known
description of acute cones in Euclidean geometry.
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Theorem 5. Let X be a uniformly convex Banach space and let K be an acute
cone of X. Let T : K — K(X) be a Lipschitzian pseudo-contractive mapping that
satisfies (3) for each x € K. If T has an eigenvalue in [0,1), then T has a fixed
point in K.

PROOF: Suppose tz € T(z) for some ¢t € [0,1). Since K is an acute cone, the
set G(z,0) is bounded, and thus by Lemma 3.3 of [6] the set G(z,tz) is bounded.
Therefore Theorem 4 completes the proof. 0
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