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Monotonic valuations of πσ-triads and evaluations of ideals

Josef Mlček

Abstract. We develop problems of monotonic valuations of triads. A theorem on monotonic
valuations of triads of the type πσ is presented. We study, using the notion of the monotonic
valuation, representations of ideals by monotone and subadditive mappings. We prove, for
example, that there exists, for each ideal J of the type π on a set A, a monotone and
subadditive set-mapping h on P (A) with values in non-negative rational numbers such
that J = h−1′′{r ∈ Q; r ≥ 0 & r

.
= 0}. Some analogical results are proved for ideals of

the types σ, σπ and πσ, too. A problem of an additive representation is also discussed.
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We develop problems of monotonic valuations of triads of the type πσ by proving
a theorem on such valuations of so called limit πσ-triads. This theorem completes
a list of theorems on monotonic valuations of triads of the type σπ and πσ. (See
[M3].) Moreover, we study, using the general theorems on valuations, represen-
tations of ideals on sets by monotone and subadditive mappings. We prove, for
example, that there exists, for each ideal J of the type π on a set A, a monotone
and subadditive set-mapping h on P (A) with values in non-negative rational num-
bers Q+ such that J = h−1′′{r ∈ Q+; r

.
= 0}. Some analogical results are proved

for ideals of the type σ, σπ and πσ, too. We discuss also the existence of such
additive representations; it means that the mapping in question is additive on A.
We work in the alternative set theory; we shall use the usual notations of this

theory. Recall, that small Latin letters range over sets and i, j, k, l,m, n range
over finite natural numbers. By a collection we mean a collection of classes which
satisfies a given formula of the language FLV . The collection of all set-theoretically
definable classes is denoted by SdV ; it is a codable system. We say that a class X
is of the type π- (σ- resp.) if there exists a set-theoretically definable relation R
such that X =

⋂
nR

′′{n} (X =
⋃

nR
′′{n} resp.). Let E be a π-equivalence on

a set-definable class A. We say that a class X ⊆ A is E-closed in A if we have the
following: (∀a ∈ A−X)(∃U ∈ SdV )(U ∩X = ∅ & E′′{a} ⊆ U).

Monotonic valuations of πσ-triads

Monotonic valuations of triads.

We recall briefly some notions about triads (see [M2]). We say that a structure
〈A,F,E〉 is an e-structure if we have the following:

(1) 〈A,F 〉 is a semigroup (i.e. F is an associative operation on A),
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(2) E ◦ E is the identity on A,
(3) we have either F (E(x), E(y)) = E(F (x, y)) for each x, y ∈ A or

F (E(x), E(y)) = E(F (y, x)) for each x, y ∈ A.

Let 〈A,F,E〉 be an e-structure. We define a canonical relation ⊳A of an e-structure
〈A,F,E〉 on A by:

x ⊳A y ⇔ (∃z ∈ A)(F (x, z) = y).

Let 〈A,F,E〉 be an e-structure. We can see that

(1) E is a one-one mapping on A and, thus, E is an automorphism or an anti-
automorphism of the semigroup 〈A,F 〉.

(2) ⊳A is a transitive relation on A.

Assume that A, Â are two e-structures. A mapping H : A → Â is said to be

a valuation of A in Â if we have:

(a) H(F (x, y)) ⊳
Â
F̂ (H(x), H(y)) holds for each x, y ∈ A,

(b) H(F (x)) = F̂ (H(x)) holds for each x ∈ A.

Let A be an e-structure. Then the triple 〈A,A↾U,A↾B〉, where B ⊆ U ⊆ A and
A↾B, A↾U are substructures of A, is said to be a triad over the e-structure A. We
denote it as

A(U,B).

A mappingH is called a valuation of the triad A(U,B) in a triad 〈Â, F̂ , Ê〉(Û , B̂),

if H is a valuation of 〈A,F,E〉 in 〈Â, F̂ , Ê〉 and we have, moreover,

(c) H−1′′ Û = U, H−1′′B̂ = B.

Let us recall the notion of monotonic valuations (see [M3]).

A valuation H of an e-structure A in Â is called a monotonic valuation if we
have

(x, y ∈ A & x ⊳A y)⇒ (H(x) ⊳
Â
H(y)).

By a monotonic valuation of a triad T in a triad T̂ we mean such a valuation
of T in T̂ which is a monotonic valuation of the relevant e-structures.
Our intention is to present a theorem on monotonic valuations of a closed (w.r.t.

⊳ ) triad 〈A,F,E〉(U,B) in some canonical one under assumption that 〈A,F,E〉
and B belong to SdV and U is a πσ-class. We refer to this situation as to a prob-
lem of monotonic valuations of πσ-triads. We shall solve a more general problem
assuming that the classes 〈A,F,E〉 and B belong to a so called saturated standard
universe (see below). Note that a similar problem of monotonic valuations of π- ,
σ- and σπ- triads is solved in [M3].
Now, let us define canonical τ -triads Tτ , where τ is the symbol σ, π, σπ or πσ.

Put, at first,

[0]+ = {r ∈ Q+; r
.
= 0}.

We define

Tσ = 〈N,+, Id〉(FN, {0}), Tπ = 〈Q+,+, Id〉([0]+, {0}).
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The triad Tσπ is defined as follows: Let ζ be fixed, ζ ∈ N − FN . We define, on
ζQ+, the mapping + by the relation: (f+g)(α) = f(α)+g(α). Then 〈ζQ+,+, Id〉 is
an e-structure and the canonical relation of this structure is the ordering ≤ defined
by f ≤ g ⇔ (∀α ∈ ζ)(f(α) ≤ g(α)). Now, 〈ζN,+, Id〉 is an e-structure, too. Put

0ζ = ζ × {0}, U(σπ) = {f ∈ ζN ; (∃n)(∀m)f(m) < n}.

We can see that U(σπ) is a σπ(SdV )-class and 〈ζN,+, Id〉(U(σπ), {0ζ}) is a triad.
We define

Tσπ = 〈ζN,+, Id〉(U(σπ), {0ζ}).

Finally, let us define a canonical πσ-triad Tπσ. Let ζ ∈ N − FN be fixed as
above. We put

U(πσ) = {f ∈ ζQ+; (∀γ ∈ ζ − FN)f(γ)
.
= 0}.

Then we define
Tπσ = 〈ζQ+,+, Id〉(U(πσ), {0ζ}).

Before we formulate a theorem on monotonic valuations, let us give some use-
ful notions. We say that an e-structure 〈A,F,E〉 is commutative, whenever F is
a commutative operation on A.
Assume U ⊆ A and let A = 〈A,F,E〉 be an e-structure. The class U is said to

be closed in A if U is closed under the canonical relation, i.e. if we have

(∀x ∈ A)(∀y ∈ U)(x ⊳A y ⇒ x ∈ U).

We say that a triad A(U,B) is closed if U and B are closed in A.
A structure 〈A,F,E,G〉 is called a u-expansion of an e-structure 〈A,F,E〉, if G

is a binary function and if we have:

(1) x ⊳A y ⇒ G(y, x) = x,
(2) G(x, y) ⊳A x.

We say that an e-structure A has a u-expansion, if there exists a u-expansion 〈A, G〉
of the e-structure A.

Example. The structure 〈P (a),∪, Id,∩〉 is a u-expansion of the e-structure
〈P (a),∪, Id〉.

It is not difficult to prove that every triad Tτ ,where τ is σ, π, σπ or πσ, is com-
mutative and closed. The commutativity is clear. Let U ∈ SdV be a relation with
dom(U) = ζ2 such that

U(α, β) = {f ∈ ζQ+; (∀γ ∈ [β, ζ))f(γ) ≤ 2−α}.

We have, for α + 1, β + 1 ∈ ζ, U(α, β + 1) ⊇ U(α, β) ⊇ U(α + 1, β). Put
Um =

⋃
n U(m,n). Then we have U(πσ) =

⋂
m Um, Um+1 ⊆ Um, Um+1+Um+1 ⊆

Um, (g ∈ U(α, β) & f ≤ g & f ∈ ζQ+) ⇒ f ∈ U(α, β). We deduce from this
that the triad Tπσ is a closed πσ(SdV )-triad.
We can show quite analogously that all remaining canonical triads are closed,

too.
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Monotonic valuation of πσ-triads.

We study our problem of valuations of triads with respect to a so called standard
universe of classes. It means that the relevant e-structures belong to this universe
and we are looking for valuations from this universe, too. Note that the system
SdV is such a special collection.

We say that a collection of classes is a universe of classes if it is closed un-
der the definitions by normal formulas of the language FLV with class-parameters
from this collection. Thus, having a universe U of classes and a normal formula
ϕ(x,X1, X2, . . . , Xk) of the language FLV such that the classes X1, X2, . . . , Xk

belong to U, we see that the class {x; ;ϕ(x,X1, X2, . . . , Xk)} belongs to U, too.
Note that every universe of classes contains all sets. More generally, every set-
theoretically definable class belongs to each universe of classes. By a standard
universe of classes we call each universe of classes which contains only such non-
empty subclasses of the class of natural numbers which have the first element. We
can see that the following proposition holds (see [M1]).

Proposition. Every standard universe of classes contains only revealed classes

and does not contain any proper semiset. It satisfies all axioms of Gödel-Bernays’s
theory of finite sets.

A standard universe U of classes is said to be a saturated standard universe of
classes if we have the following: Let {Xn}n∈FN be a sequence of classes of this
universe. Then there exists a relation R from U such that

(∀n)R′′{n} = Xn.

Example. The system SdV is a standard universe of classes which is not a standard
saturated universe of classes. Its revealment Sd∗V is a standard saturated universe
of classes.

By a π- (σ- resp.) string we mean a relation R such that dom(R) = FN and,
for each n ∈ FN , R′′{n+ 1} ⊆ R′′{n} (R′′{n} ⊆ R′′{n+ 1} resp.) holds. Assume
that S is a standard universe of classes. A class

⋂
nXn, where {Xn}n∈FN ⊆ S,

is called a π(S)-class and a class of the form
⋃

nXn, where {Xn}n∈FN ⊆ S, is
called a σ(S)-class.

Let A = 〈A,F,E〉 be an e-structure, A ∈ S. We say that a class U is a limit
πσ(S)-universe in A if there exists a non-increasing sequence {Un}n∈FN of σ(S)-
classes such that U =

⋂
m Um and F

′′U2m+1 ⊆ Um, E
′′Um+1 ⊆ Um hold. It is

a limit closed πσ(S)-universe in A if we have, moreover, ⊳ ′′Um+1 ⊆ Um. A triad
A(U,B) is said to be a limit πσ(S)-triad (a limit closed πσ(S)-triad resp.) if
A, B ∈ S and U is a limit πσ(S)-universe in A (a limit closed πσ(S)-universe in
A resp.). Thus every limit closed πσ(S)-triad is a closed triad.

It is not difficult to prove that Tπσ is a commutative limit closed πσ(SdV )-triad.

Theorem. Let S be a saturated standard universe of classes. Let A(U,B) be
a closed limit πσ(S)-triad such that A is commutative and has a u-expansion in S.
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Then there exists a monotonic valuation of the triad A(U,B) in Tπσ which belongs

to S.

Proof: Writing [F,E, ⊳ ](X,Y ) we mean that F ′′X2 ⊆ Y , E′′X ⊆ Y , ⊳ ′′X ⊆ Y
hold. We define a mapping F3 : A

3 → A by F3(x, y, z) = F (F (x, y), z). By a matrix
we mean a relationM such that dom(M) = ξ2 for some ξ ∈ N−FN . Let us use the
following notation: Hπσ(M) =

⋂
m

⋃
nM(m,n). We deduce from the proposition

in 2.1.2, [M3], that there exists a matrix T ∈ S such that (1) B ⊆ T (α, β) ⊆ A
holds for each α, β ∈ dom(T ), (2) Hπσ(T ) = U and (3) for each m ∈ FN ,
[F,E, ⊳ ](

⋃
n T (m+1, n),

⋃
n T (m,n)). We can construct as in [M3, 2.2.3] a matrix

R ∈ S such that (1), (2) hold for R instead of T and [F,E, ⊳ ](R(α+1, β), R(α, β))
is satisfied for each α+1, β ∈ ξ, where ξ = dom(R). Let 2θ ≤ ξ, θ /∈ FN . LetM ∈ S

be such a matrix that we have dom(M) = θ2, M(0, β) = B, M(θ − 1, β) = A for
each β ∈ θ andM(α, β) = P (2α, β) for each α, β ≤ θ where P (γ, β) =E ′′(R(γ, β)∩
E′′R(γ, β)). We can see similarly as in [M3, 1.1.0] that F ′′M2(α+ 1, β) ⊆M(α, β)
holds for each α + 1, β ∈ θ, E′′M(α, β) ⊆ M(α, β) holds for each α, β ⊆ θ and
E′′ M2(α + 1, β) ⊆ M(α, β). We have, moreover, R(2α, β + 1) ⊆ M(α, β + 1) ⊆
R(2α, β). We deduce from this that Hπσ(M) = Hπσ(R) = U . We have, for
γ + 1, β ∈ θ, F ′′P 2(γ + 1, β) ⊆ P (γ, β) and, consequently, for γ + 2, β ∈ θ holds
the following: F ′′

3 P
3(γ + 2, β) ⊆ F ′′(F ′′P 2(γ + 2, β))2 ⊆ F ′′P 2(γ + 1, β) ⊆ P (γ, β).

Thus F ′′
3M

3(α + 1, β) = F ′′
3 P
3(2(α + 1), β) ⊆ P (2α, β) = M(α, β) holds for each

α+ 1, β ∈ θ.

Put, for each β ∈ θ,

S(β) = {〈α, x〉; x ∈M(α, β)}.

Then each S(β) has the following properties:

(a) S(β) ∈ S,
(b) α+1 ∈ θ ⇒ [F, F3](S(β)(α+1), S(β)(α)) ([F, F3](. . . ) has a similar meaning
as in the previous proof),

(c) α ∈ θ ⇒ E′′S(β)(α) ⊆ S(β)(α),
(d) α ∈ θ ⇒E′′ (E′′S(β)(α)) ⊆ S(β)(α).

It is not difficult to see that we can assume that dom(S) = ζ2 with some ζ ∈ N−FN
and that, for each β ∈ ζ, S(β)(0) = A, S(β)(ζ − 1) = B hold. Such S(β) is called
a monotonic πS -string in A over B. We can see, similarly as in the proof of the
theorem on monotonic valuations of σM - and πM -triads in [M3, p. 383-384], that
there exists a normal formula Ψ(x, y,X, Y ) of the language FLV such that the
following holds:

Let A(B,B) ∈ S be a triad and let D ∈ S be a monotonic πS -string in A

over B. Then H = {〈x, y〉; Ψ(x, y,A, D)} is a monotonic valuation of A(B,B) in
〈Q+,+, Id〉({0}, {0}) and D(α+1) ⊆ {x ∈ A; H(x) ≤ 2−α} ⊆ D(α) holds for each
α ∈ dom(D).

Let

W = {〈β, 〈x, y〉〉; Ψ(x, y,A, S(β)) & β ∈ ζ}.
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Put Wβ =W
′′{β}. Then Wβ is a monotonic valuation of A(B,B) in

〈Q+,+, Id〉({0}, {0}) and Wβ ∈ S. We have

x ∈ U ⇔ (∀β ∈ ζ − FN)(x ∈
⋂

mM(m,β))⇔ (∀β ∈ ζ − FN)Wβ
.
= 0.

Let H : A → ζQ+ be defined by

H(x) = {〈α,Wα(x)〉; α ∈ ζ}.

We have, for each x, y ∈ A, H(F (x, y))(α) =Wα(F (x, y)) ≤Wα(x)+Wα(y). Thus
H(F (x, y)) ≤ H(x) + H(y) holds. We can see similarly that H(E(x)) = H(x)
and x ⊳Ay ⇒ H(x) ≤ H(y) hold, too. Thus H is a monotonic valuation of A in

〈ζQ+,+, Id〉. It is easy to see that H(x) = ζ × {0} iff x ∈ B. Finally, we have
x ∈ U ⇔ (∀β ∈ ζ − FN)(Wβ

.
= 0)⇔ (∀β ∈ ζ − FN)H(x)(β)

.
= 0 ⇔ H(x) ∈ Uπσ,

which completes the proof. �

Remark. Let A = 〈A,F,E〉 be an e-structure. We say that a class U ⊆ A is a limit
πσS -universe in A if there exists a matrix M ∈ S such that

(1) Hπσ(M) = U ,
(2) (∀m ∈ FN)([F,E](

⋃
nM(m+ 1, n),

⋃
nM(m,n))).

U is a limit closed πσS -universe in A if we have, moreover,

⊳ ′′ ⋃
nM(m+ 1) ⊆

⋃
nM(m,n).

A triad A(U,B) is said to be a limit πσS -triad (a limit closed πσS -triad resp.)
if A, B ∈ S and U is a limit πσS -universe in A (a limit closed πσS -universe in A

resp.). Thus every limit closed πσS -triad is a closed triad. The triad Tπσ is a limit
closed πσS -triad.
We can see that the last proof guarantees that if we assume, in the last theorem,

that S is only a standard universe and that the triad in question is a limit closed
πσS -triad, we obtain a true proposition.

Proposition. There exists a πσ(SdV )-triad A(U,B) (i.e. A ∈ SdV , B ∈ SdV and

U is a πσ-class) which is not a limit πσ(SdV )-triad.

Proof: Let (E) be an equivalence on N defined by

〈α, β〉 ∈ (E)⇔ (∃n)(α, β < n) ∨ (∀n)(α, β > n).

Let 〈N2 ∪ {∅}, F, E〉 be the e-structure defined by the following relations:

F (〈x, y〉, 〈ỹ, z〉) = 〈x, z〉 ⇔ y = ỹ

= ∅ ⇔ y 6= ỹ,

F (u, ∅) = F (∅, u) = ∅ ⇔ u ∈ A.

The function E : N2 ∪ {∅} → N2 ∪ {∅} is defined by E(〈x, y〉) = 〈y, x〉 for each
〈x, y〉 and E(∅) = ∅.
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Then 〈N2 ∪ {∅}, F, E〉((E) ∪ {∅}, Id↾N2 ∪ {∅}) is a πσ(SdV )-triad which is not
a limit πσ(SdV )-one.
Indeed, assume, contrariwise, that it is. Then there exists its valuation H ∈ Sd∗V

in Tπσ (where Sd
∗
V is a revealment of SdV ). This follows from 2.1.2 and 3.0.4 in [M3].

Put D = H↾N2. We have (E) =
⋂
{D−1′′U(m,β); m ∈ FN & β ∈ ζ − FN},

where U(α, β) are as above. Put, for α, β < ζ, W (α, β) = D−1′′U(α, β). We can
see that W (m+1, β) ◦W (m+1, β) ⊆W (m,β). Let 〈a, b〉 ∈ N2− (E), a ∈ FN, b ∈
N − FN . Then there exist m ∈ FN and β ∈ ζ − FN such that 〈a, b〉 /∈ W (m,β).
Thus W (m + 1, β)′′{a} ∩W (m + 1, β)′′{b} = ∅. Put A = W (m + 1, β)′′{a} and
B =W (m+1, β)′′{b}. We have FN = (E)′′{a} ⊆ A, N −FN = (E)′′{b} ⊆ B and,
moreover, A ∩B = ∅, A ∈ Sd∗V , B ∈ Sd∗V . The class A is a fully revealed class and
A ∩ (N − FN) = ∅, which is impossible. �

Evaluations of ideals

Evaluations of ideals of the type σπ and πσ.

Throughout this section, let A be a non-empty set and let ζ ∈ N −FN be fixed.
We say that J is an ideal on A if we have: J ⊆ P (A), A /∈ J, u ∈ J & v ∈ J ⇒

u ∪ v ∈ J and v ⊆ u ∈ J ⇒ v ∈ J .

Let H : P (A) → ζQ+ be a mapping. We say that H is monotone on P (A)
if u ⊆ v ⇒ H(u) ≤ H(v) holds for each u, v ⊆ A. The mapping H is said to be
subadditive on P (A) if we have, for each u, v ⊆ A, H(u ∪ v) ≤ H(u) +H(v). We

say that H is an evaluation on P (A) in ζQ+ if it is a monotone and subadditive
mapping on P (A) and H−1′′{0ζ} = {∅}. (Recall that 0ζ = ζ × {0}.)
The presented definitions can be naturally applied to a mapping H : P (A)→ K,

where K is N or Q+. (We identify K with the subclass {ζ ×{x}; x ∈ K} of ζQ+.)

Theorem. Let J be an ideal on a non-empty set A.

(1) Let J be a σ-class. Then there exists a set-evaluation h on P (A) in N such
that h−1′′FN = J .

(2) Let J be a π-class. Then there exists a set-evaluation h on P (A) in Q+ such
that h−1′′[0]+ = J .

(3) Let ζ be fixed. Let J be a σπ-class. Then there exists a set-evaluation h on

P (A) in ζQ+ such that h−1′′U(σπ) = J .

Proof: Let J be an ideal on A. We see that 〈P (A),∪, Id〉(J, {∅}) is a closed triad
and 〈P (A),∪, Id〉 is commutative. Moreover, 〈P (A),∪, Id,∩〉 is a u-expansion of
the e-structure in question. We can find, for τ equal to π, σ or σπ, a monotonic
set-valuation h of the triad 〈P (A),∪, Id〉(J, {∅}) in the canonical τ -triad Tτ .
The existence of the mapping h is guaranteed by the following proposition on

monotonic set-valuations of π-, σ- and σπ-triads, which follows easily from the
theorems on monotonic valuations in [M3].

Let A(U,B) be a triad such that A, B are sets and let A be commutative and

have a u-expansion which is a set. If U is a τ -class, where τ is π, σ or σπ, then
A(U,B) has a monotonic set-valuation in Tτ .
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Now, let h be a monotonic valuation of the triad 〈P (A),∪, Id〉(J, {∅}) in Tτ ,
where τ is σ, π or σπ. We see that h is an evaluation on P (A) in Kτ , where

Kσ = N, Kπ = Q+ and Kσπ =
ζQ+. The required equalities from the items (1),

(2) and (3) clearly hold. �

Now, we shall formulate a theorem on evaluations of πσ-ideals.

Theorem. Let J be an ideal on a nonempty set A and let J be a πσ-class. Then
there exists a set-evaluation h on P (A) in ζQ+ such that h−1′′U(πσ) = J iff
there exists a non-increasing sequence {Jn}n∈FN of σ-classes such that we have⋂

m Jm = J , {u ∪ v; u, v ∈ Jm+1} ⊆ Jm and v ⊆ u ∈ Jm+1 ⇒ v ∈ Jm hold for

each m.

Proof: We deduce quite analogously as in the previous proof, by using the theorem
on monotonic valuations of πσ-triads, that there exists a monotone valuation H ∈
Sd∗V of 〈P (A),∪, Id〉(J, {∅}) in Tπσ. The mapping H is necessarily a set and h = H
has the required properties.
Let us prove the implication from the left to the right. Let Um be, for each

m ∈ FN , as above. Assume that h : P (A) → ζQ+ is such that h−1′′{0ζ} = {∅}

and h−1′′U(πσ) = J . Put Jm = h−1′′Um. Then the classes Jm have the required
properties. �

Additive evaluations of π-ideals.

In this section, let A be a set which has at least two elements.
A mapping h : P (A) → Q+ is said to be additive on P (A) if we have for each

u, v ⊆ A:

u ∩ v = ∅ ⇒ h(u ∪ v) = h(u) + h(v).

Then h(∅) = 0 and, for each u ⊆ A, the equality h(u) =
∑

x∈u h({x}) holds.
Thus, h is monotone.
We shall describe a class of π-ideals on A of such a kind that, having such an

ideal J , there is no additive set-mapping h : P (A) → Q+ such that J = h−1′′[0]+.
At first, we denote by |u| the set-cardinality of the set u. It means that there exists
a one-one set-mapping between u and a natural number α.
A partition p of A is said to be relatively bounded, whenever (∀t ∈ p)(|t|/|p| ∈

BQ) holds.
By a set-selector on a partition p on A we mean a set u ⊆ A such that

(∀ t ∈ p)(|t ∩ u| = 1).

Proposition. Let A be a non-empty set. Put J = w−1′′[0]+ and let w be an
additive mapping on P (A). Let p be a relatively bounded partition on A such that
J ∩ p = ∅. Then there exists a set-selector on p which does not belong to J .

Proof: Put, for each x ∈ A, w̃(x) = w({x}). There exists a set u = {at; t ∈ p}
such that at ∈ t holds for each t ∈ p and w̃(at) = max(w̃

′′t). We have, for each
t ∈ p: 0 6

.
= w̃(t) ≤ |t| · w̃(at). Thus, there exists a number k ∈ FN such that

1/k ≤ |t| · w̃(at) holds for each t ∈ p.
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Put θ = max{|t|; t ∈ p}. We deduce from the assumption that the partition p is
relatively bounded that there exists a number m ∈ FN such that θ/|p| ≤ m. Thus
we have the following: w(u) =

∑
t∈p w̃(at) ≥ 1/k·

∑
t∈p 1/|t| ≥ 1/k·|p|/θ ≥ 1/(k·m).

We can conclude that u /∈ J . �

We say that a partition p of a set A is relatively non-zero if we have
(∀t ∈ p)(|t|/|p| 6

.
= 0).

Proposition. Let A be an infinite set and let p be an infinite relatively bounded
and relatively non-zero set-partition on A. Put

J = {u ⊆ A; (∀t ∈ p)(|t ∩ u|/|p|
.
= 0)}.

Then we have:

(1) The class J is an ideal on A of the type π and [A]1 ⊆ J .
(2) Every set-selector on p belongs to J .
(3) There is no additive set-mapping h on P (A) such that J = h−1′′[0]+.

Proof: The items (1) and (2) are easy. The item (3) follows from (2) and from
the previous proposition. �

It is clear that, on each infinite set A, there exists an infinite relatively bounded
and relatively non-zero set-partition p.

Now, let us briefly pay attention to some classes of evaluations. Let A be
a non-empty set. We put

Ev(A) = {h; h is a set-evaluation on P (A) in Q+}

and let ∼ be a relation on Ev(A) defined as follows:

f ∼ g ⇔ f−1′′[0]+ = g−1′′[0]+.

Proposition. Let A be an infinite set. Then ∼ is a non-compact equivalence on
Ev(A) of the type πσ. The systemW = {Wκ,m; κ ∈ N −FN & m ∈ FN}, where
for each α, β,

Wα,β = {〈f, g〉 ∈ (Ev(A))2;

f(u) < 2−α ⇒ g(u) < 2−β & g(u) < 2−α ⇒ f(u) < 2−β},

is a uniformity basis on Ev(A) over ∼ (that is, ∼ =
⋂
W and W has the usual

properties).

Proof: It is clear that ∼ is an equivalence on Ev(A). Let us prove that ∼ is
not compact. Let δ /∈ FN be such that there exists a set-partition {Aα; α < δ}
of A and δ ≤ |Aα| ≤ 2δ holds. Let wα : A → Q+ be a function such that
we have, for each x ∈ A, wα(x) = δ−1 and wα is equal to zero on A − Aα.
Let hα : P (A) → Q+ be a function defined by fα(u) =

∑
x∈uwα(x) whenever
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∅ 6= u ⊆ A and let fα(∅) = 0. Then {fα; α < δ} is an infinite ∼-net which
guarantees that ∼ is not compact. We prove that ∼ is a πσ-class. The explicit
definition of ∼ has the form (∀u ⊆ A)(∀k)(∃m)ϕ where ϕ is a set-formula of the
language FLV . We deduce from this that the formula in question is equivalent to
a formula (∀k)(∃n)ψ where ψ is a set-formula of the language FLV .
Let us prove that W has the required properties. We can see that

f ∼ g ⇔ (∀κ ∈ N − FN)(∀m)(∀u ⊆ A)(f(u) < 2−κ ⇒

g(u) < 2−m & g(u) < 2−κ ⇒ f(u) < 2−m)

and, consequently, ∼ =
⋂
W holds. We see also that the system W ⊆ SdV is

a system of reflexive and symmetric relations on Ev(A) such that (∀W1,W2 ∈
W)(∃W ∈ W)(W ⊆W1 ∩W2), (∀W ∈ W)(∃W0 ∈ W)(W0 ◦W0 ⊆W ). �

Let us define, finally,

Ev0(A) = {h ∈ Ev(A); h′′[A]1 ⊆ [0]+}

Ad0(A) = {h ∈ Ev0(A); h is an additive set-mapping on P (A)}.

Proposition. Let A be an infinite set. Then

Ad0(A) ( ∼ ′′Ad0(A) ( Ev0(A)

and the classes Ad0(A) and Ev0(A) are π-classes.

Proof: Let us prove the first inclusion. Assume that h ∈ Ad0(A) and let
r
.
= 0, r > 0. Put, for each u ⊆ A, u 6= ∅, hr(u) = h(u) + r and hr(∅) = 0.
Then hr ∼ h and hr /∈ Ad0(A).
Let us prove the second inclusion. Let J be an ideal from the last but one

proposition and let h be an evaluation on P (A) in Q+ such that h−1′′[0]+ = J .
Then h ∈ Ev0(A). Let w ∈ Ad0(A) and suppose that w ∼ h. We have J =
w−1′′[0]+, which is a contradiction. �
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