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Monotonic valuations of mo-triads and evaluations of ideals

JOSEF MLCEK

Abstract. We develop problems of monotonic valuations of triads. A theorem on monotonic
valuations of triads of the type o is presented. We study, using the notion of the monotonic
valuation, representations of ideals by monotone and subadditive mappings. We prove, for
example, that there exists, for each ideal J of the type m on a set A, a monotone and
subadditive set-mapping h on P(A) with values in non-negative rational numbers such
that J = h~ Y {r € Q;r >0 & r = 0}. Some analogical results are proved for ideals of
the types o, om and 7o, too. A problem of an additive representation is also discussed.
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We develop problems of monotonic valuations of triads of the type mo by proving
a theorem on such valuations of so called limit wo-triads. This theorem completes
a list of theorems on monotonic valuations of triads of the type om and wo. (See
[M3].) Moreover, we study, using the general theorems on valuations, represen-
tations of ideals on sets by monotone and subadditive mappings. We prove, for
example, that there exists, for each ideal J of the type m on a set A, a monotone
and subadditive set-mapping h on P(A) with values in non-negative rational num-
bers QT such that J = h_l”{r € QT; 7 =0}. Some analogical results are proved
for ideals of the type o, om and mo, too. We discuss also the existence of such
additive representations; it means that the mapping in question is additive on A.

We work in the alternative set theory; we shall use the usual notations of this
theory. Recall, that small Latin letters range over sets and ¢, k,[,m,n range
over finite natural numbers. By a collection we mean a collection of classes which
satisfies a given formula of the language F'Ly,. The collection of all set-theoretically
definable classes is denoted by Sdy; it is a codable system. We say that a class X
is of the type m- (o- resp.) if there exists a set-theoretically definable relation R
such that X = ), R"{n} (X = ,, R"{n} resp.). Let E be a m-equivalence on
a set-definable class A. We say that a class X C A is E-closed in A if we have the
following: (Va € A— X)(3U € Sdy)(UNX =0 & E"{a} CU).

MONOTONIC VALUATIONS OF wo-TRIADS

Monotonic valuations of triads.

We recall briefly some notions about triads (see [M2]). We say that a structure
(A, F, E) is an e-structure if we have the following:

(1) (A, F) is a semigroup (i.e. F is an associative operation on A),

23



24

J. Mlcek

(2) E o E is the identity on A,
(3) we have either F(F(z), E(y)) = E(F(z,y)) for each z, y € A or
F(E(z),E(y)) = E(F(y,z)) for each z, y € A.
Let (A, F, E) be an e-structure. We define a canonical relation <14 of an e-structure
(A, F,E) on A by:
x<Duy < (3z€ A)(F(z,2) =y).

Let (A, F, E) be an e-structure. We can see that

(1) E is a one-one mapping on A and, thus, F is an automorphism or an anti-
automorphism of the semigroup (A, F).
(2) <4 is a transitive relation on A.

Assume that A, A are two e-structures. A mapping H : A — A is said to be
a valuation of A in A if we have:

(a) H(F(z,y)) <4 F(H(x), H(y)) holds for each ,y € A,

(b) H(F(x)) = F(H(x)) holds for each z € A.

Let A be an e-structure. Then the triple (A, A[U, A[B), where B C U C A and
A[B, AU are substructures of A, is said to be a triad over the e-structure A. We

denote it as
A(U, B).
A mapping H is called a Va]uationAofAthti' triad A(U, B) in a triad (fl, F, E}(U, B),
if H is a valuation of (A, F, E) in (A, F', E) and we have, moreover,
(c) HY'U=U, H V' B = B.
Let us recall the notion of monotonic valuations (see [M3]).
A valuation H of an e-structure A in A is called a monotonic valuation if we

have
(x,ye A & x<y) = (H(z) <1AH(y)).

By a monotonic valuation of a triad 7 in a triad 7 we mean such a valuation
of T in 7 which is a monotonic valuation of the relevant e-structures.

Our intention is to present a theorem on monotonic valuations of a closed (w.r.t.
<) triad (A, F, E)(U, B) in some canonical one under assumption that (4, F, E)
and B belong to Sdy and U is a mo-class. We refer to this situation as to a prob-
lem of monotonic valuations of wo-triads. We shall solve a more general problem
assuming that the classes (A, F, E) and B belong to a so called saturated standard
universe (see below). Note that a similar problem of monotonic valuations of 7- ,
o- and on- triads is solved in [M3].

Now, let us define canonical T-triads 7, where 7 is the symbol o, w, o7 or wo.
Put, at first,

0" ={reQ™; r=0}.

We define

1, = <N=+7Id>(FN7 {0})7 Tr = <Q+7+7Id>([0]+7{0})'
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The triad 755 is defined as follows: Let ¢ be fixed, ( € N — FFN. We define, on
CQT, the mapping + by the relation: (f+g¢)(a) = f(a)+g(). Then (¢Qt,+,Id) is
an e-structure and the canonical relation of this structure is the ordering < defined
by f < g4 (Va e )(f(a) < gla)). Now, (CN,+,Id) is an e-structure, too. Put

0¢c = ¢ x {0}, U(om)={f€N; 3En)(Ym)f(m) < n}.

We can see that U(o7) is a om(Sdy )-class and (SN, +, Id) (U (or), {0¢}) is a triad.
We define
Tor = (N, +,1d)(U (o7), {0¢}).
Finally, let us define a canonical wo-triad Tr,. Let ( € N — FN be fixed as
above. We put

U(no) = {f €°QT; (V7 € (= FN)f(y) = 0}.

Then we define
Tro = QT+, Id)(U(n0), {0c}).

Before we formulate a theorem on monotonic valuations, let us give some use-
ful notions. We say that an e-structure (A, F, E) is commutative, whenever F is
a commutative operation on A.

Assume U C A and let A = (A, F, E) be an e-structure. The class U is said to
be closed in A if U is closed under the canonical relation, i.e. if we have

Vxe A)Vy eU)(x <qy =z €U).

We say that a triad A(U, B) is closed if U and B are closed in A.

A structure (A, F, E,G) is called a u-expansion of an e-structure (A, F, E), if G
is a binary function and if we have:

(1) 2 <ay =Gy, ) =z,

(2) G(l‘,y) <4 .
We say that an e-structure A has a u-expansion, if there exists a u-expansion (A, G)
of the e-structure A.

Example. The structure (P(a),U, Id,N) is a u-expansion of the e-structure
(P(a),u,1d).
It is not difficult to prove that every triad 7-,where 7 is 0,7, om or mo, is com-

mutative and closed. The commutativity is clear. Let U € Sdy be a relation with
dom(U) = ¢? such that

Ue, B) = {f € °Q%; (Wy € [8.Q))f(v) <277,
We have, for a + 1,8+ 1 € (, U, +1) D U(e,3) 2 U(ax + 1,5). Put

Um =U,,U(m,n). Then we have U(wo) =,;, Un, Un+1 € Un, Unt1+Ung1 C
Un, (geU(a,B) & f<g & feQt)= feU(a,B). We deduce from this
that the triad 774 is a closed wo(Sdy )-triad.

We can show quite analogously that all remaining canonical triads are closed,

too.
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Monotonic valuation of wo-triads.

We study our problem of valuations of triads with respect to a so called standard
universe of classes. It means that the relevant e-structures belong to this universe
and we are looking for valuations from this universe, too. Note that the system
Sdy is such a special collection.

We say that a collection of classes is a universe of classes if it is closed un-
der the definitions by normal formulas of the language F'Ly, with class-parameters
from this collection. Thus, having a universe il of classes and a normal formula
o(z, X1, Xo,...,X}) of the language F Ly such that the classes X1, Xo,..., X
belong to i, we see that the class {z;;p(x, X1, X2,..., X))} belongs to i, too.
Note that every universe of classes contains all sets. More generally, every set-
theoretically definable class belongs to each universe of classes. By a standard
universe of classes we call each universe of classes which contains only such non-
empty subclasses of the class of natural numbers which have the first element. We
can see that the following proposition holds (see [M1]).

Proposition. Every standard universe of classes contains only revealed classes
and does not contain any proper semiset. It satisfies all axioms of Godel-Bernays’s
theory of finite sets.

A standard universe Y of classes is said to be a saturated standard universe of
classes if we have the following: Let {X,},crn be a sequence of classes of this
universe. Then there exists a relation R from 1 such that

(Vn)R"{n} = X,,.

Example. The system Sdy is a standard universe of classes which is not a standard
saturated universe of classes. Its revealment S d*v is a standard saturated universe
of classes.

By a m- (o- resp.) string we mean a relation R such that dom(R) = FN and,
for each n € FN, R"{n+ 1} C R"{n} (R"{n} C R"{n+ 1} resp.) holds. Assume
that & is a standard universe of classes. A class [, X, where {Xy}p,epn C 6,
is called a m(&)-class and a class of the form |J,, Xy, where {Xp},epny C 6, is
called a o(&)-class.

Let A = (A, F, E) be an e-structure, A € &. We say that a class U is a limit
7o (6)-universe in A if there exists a non-increasing sequence {Up }pepn of 0(6)-
classes such that U = (0, Un and F”USH_1 C Un, E'"Ups1 C Up, hold. Tt is
a limit closed o (&)-universe in A if we have, moreover, <1"U,1+1 C Up,. A triad
A(U, B) is said to be a limit mo(&)-triad (a limit closed wo(&)-triad resp.) if
A,B € & and U is a limit 7o(&)-universe in A (a limit closed 7o (&)-universe in
A resp.). Thus every limit closed 7o (&)-triad is a closed triad.

It is not difficult to prove that 77 is a commutative limit closed wo(Sdy )-triad.

Theorem. Let & be a saturated standard universe of classes. Let A(U,B) be
a closed limit wo (&)-triad such that A is commutative and has a u-expansion in &.
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Then there exists a monotonic valuation of the triad A(U, B) in T, which belongs
to G.

PrROOF: Writing [F, E, <](X,Y) wemean that F/X2CY,E'X CY, «"XCY
hold. We define a mapping F3 : A3 — A by F3(z,y,2) = F(F(z,y),2). By a matrix
we mean a relation M such that dom (M) = €2 for some € € N — FN. Let us use the
following notation: Hrs (M) =, U,, M(m,n). We deduce from the proposition
in 2.1.2, [M3], that there exists a matrix T' € & such that (1) B C T'(«,0) C A
holds for each a, 8 € dom(T), (2) Hre(T) = U and (3) for each m € FN,
[F.E, <|(U,T(m+1,n),U,, T(m,n)). We can construct as in [M3, 2.2.3] a matrix
R € G such that (1), (2) hold for R instead of T'and [F, E, < |(R(a+1, ), R(a, 3))
is satisfied for each a+1, 8 € &, where £ = dom(R). Let 20 < £, 0 ¢ FN. Let M € &
be such a matrix that we have dom(M) = 2, M(0,08) = B, M(6 — 1,3) = A for
each 8 € 0 and M (o, 8) = P(2a, 8) for each «, 3 < 6 where P(v, 3) =<"(R(v, 3)N
E"R(v,[)). We can see similarly as in [M3, 1.1.0] that F”’M?(a+ 1,8) C M(a, 3)
holds for each a + 1,3 € 6, E"M(a,3) € M(a,3) holds for each o, 3 C 6 and
<" M?(a+1,8) € M(a, ). We have, moreover, R(2a, 3+ 1) € M(a,3+ 1) C
R(2a, 8). We deduce from this that Hze (M) = Hnxe(R) = U. We have, for
v+4+1,8 €60, F"P2(y +1,8) C P(v,) and, consequently, for v + 2,3 € # holds
the following: F P3(y+2,8) C F"(F"P%(v+2,3))? C F"P?(y+1,8) C P(v, ).
Thus FYM3(a +1,8) = F{/P3(2(a + 1), 8) C P(2a,3) = M(e, 8) holds for each
a+1,8€0.
Put, for each § € 0,

S(B) = {(a,z); x € M(e, B)}-

Then each S() has the following properties:

(a) S(B) € &,

(b) a+1€8=[F, F3](S(B)(a+1),S5(8)()) ([F, F3](...) has a similar meaning
as in the previous proof),

(c) e €= E"S(B)(e) € S(B)(),

(d) a€b=2" (E"S(B)(a)) € S(B)(a).

It is not difficult to see that we can assume that dom(S) = ¢? with some ¢ € N—FN
and that, for each § € ¢, S(6)(0) = A, S(8)(¢ — 1) = B hold. Such S(5) is called
a monotonic 7°-string in A over B. We can see, similarly as in the proof of the
theorem on monotonic valuations of ¢™- and 7™ -triads in [M3, p. 383-384], that
there exists a normal formula ¥(x,y, X,Y) of the language F Ly such that the
following holds:

Let A(B,B) € G be a triad and let D € & be a monotonic 7°-string in A
over B. Then H = {{z,y); ¥(x,y,A, D)} is a monotonic valuation of A(B, B) in
(QT,+,1d)({0},{0}) and D(a+1) C {z € A; H(z) <27} C D(«) holds for each
a € dom(D).

Let

W ={(8,(x,y)); ¥(z,y,A, S(0)) & B e}
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Put Wg = W”{$}. Then W is a monotonic valuation of A(B, B) in
(Q@F,+,1d)({0},{0}) and W3 € &. We have

zeU« (VBe(—FN)(z e, Mm,pB) e (V8 € —FN)Wg=0.
Let H: A — Q% be defined by
H(z) = {{a, Wa(z)); o € (}.

We have, for each z,y € A, H(F(x,y))(a) = Wo(F(z,y)) < Wa(x) + Wy (y). Thus
H(F(z,y)) < H(xz) + H(y) holds. We can see similarly that H(FE(z)) = H(x)
and z <4y = H(x) < H(y) hold, too. Thus H is a monotonic valuation of A in
(CQ*t,+,Id). Tt is easy to see that H(x) = ¢ x {0} iff 2 € B. Finally, we have
relUs (Ve (—-FN)(Wg=0)& (V8e(—-FN)H(x)(3) =0+ H(r) € Ury,
which completes the proof. O

Remark. Let A = (A, F, E) be an e-structure. We say that a class U C A is a limit

mo® -universe in A if there exists a matrix M € & such that

(1) HT(O'(M) = U7
(2) (¥m e FN)([E, E)(U, M (m + 1,n),U, M(m,n))).

U is a limit closed wo®-universe in A if we have, moreover,
9" Uy M(m+1) €U, M(m,n).

A triad A(U, B) is said to be a limit mo®-triad (a limit closed wo®-triad resp.)
if A,B € & and U is a limit 7o®-universe in A (a limit closed mo®-universe in A
resp.). Thus every limit closed 7o®-triad is a closed triad. The triad 7 is a limit
closed 7o ®-triad.

We can see that the last proof guarantees that if we assume, in the last theorem,
that G is only a standard universe and that the triad in question is a limit closed
mo®-triad, we obtain a true proposition.

Proposition. There exists a mo(Sdy )-triad A(U, B) (i.e. A € Sdy, B € Sdy and
U is a wo-class) which is not a limit wo(Sdy )-triad.

PRrROOF: Let (£) be an equivalence on N defined by
(o, ) € (€) & (An)(e, B <) V (Vn)(e, B > n).
Let (N2 U {0}, F, E) be the e-structure defined by the following relations:

F((.’L‘,y>, <§7 Z>) = <.’L‘,Z> Sy=y

F(u,0) = F(0,u) =

The function E : N2 U {#} — N2 U {0} is defined by E((x,y)) = (y, x) for each
(x,y) and E(0) = 0.
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Then (N2 U {0}, F, E)((£) U {0}, Id[N? U {0}) is a mo(Sdy )-triad which is not
a limit wo(Sdy )-one.

Indeed, assume, contrariwise, that it is. Then there exists its valuation H € Sdj,
in 7o (where Sdj, is a revealment of Sdy-). This follows from 2.1.2 and 3.0.4 in [M3].
Put D = H[N%. We have (§) = ({D~Y'U(m,3); m € FN & (€ (- FN},
where U(a, §) are as above. Put, for a, 8 < ¢, W(a, ) = D~VU(a, 3). We can
see that W(m +1,8) oW (m+1,8) C W(m, 3). Let (a,b) € N2~ (E),a € FN, b e
N — FN. Then there exist m € FN and 8 € ( — FN such that {(a,b) ¢ W(m, ).
Thus W(m + 1,8)"{a} "N W(m + 1,3)"{b} = 0. Put A = W(m + 1,0)"{a} and
B=W((m+1,3)"{b}. We have FN = (£)"{a} C A, N—FN = (£)"{b} C B and,
moreover, AN B = (), A € Sdj,, B € Sdj;. The class A is a fully revealed class and
AN (N — FN) = 0, which is impossible. O

EVALUATIONS OF IDEALS

Evaluations of ideals of the type om and 7o.

Throughout this section, let A be a non-empty set and let { € N — F'N be fixed.

We say that J is an ideal on A if we have: J C P(A), A¢ J, ueJ & veJ=
udveJandvCueJ=veld.

Let H : P(A) — Q7T be a mapping. We say that H is monotone on P(A)
if w Cv= H(u) < H(v) holds for each u,v C A. The mapping H is said to be
subadditive on P(A) if we have, for each u,v C A, H(uUwv) < H(u) + H(v). We
say that H is an evaluation on P(A) in Q7 if it is a monotone and subadditive
mapping on P(A) and H~1"{0:} = {0}. (Recall that 0 = ¢ x {0}.)

The presented definitions can be naturally applied to a mapping H : P(4) — K,
where K is N or Q1. (We identify K with the subclass {¢ x {z}; =z € K} of $QT.)

Theorem. Let J be an ideal on a non-empty set A.

(1) Let J be a o-class. Then there exists a set-evaluation h on P(A) in N such
that K"V FN = J.

(2) Let J be a m-class. Then there exists a set-evaluation h on P(A) in Q% such
that h=1[0]T = J.

(3) Let ¢ be fixed. Let J be a om-class. Then there exists a set-evaluation h on
P(A) in Q7 such that h~"'U(or) = J.

PROOF: Let J be an ideal on A. We see that (P(A),U, Id)(J,{0}) is a closed triad
and (P(A),U, Id) is commutative. Moreover, (P(A),U, Id,N) is a u-expansion of
the e-structure in question. We can find, for 7 equal to 7,0 or om, a monotonic
set-valuation h of the triad (P(A),U, Id)(J,{0}) in the canonical T-triad 7;.

The existence of the mapping h is guaranteed by the following proposition on
monotonic set-valuations of 7-, o- and ow-triads, which follows easily from the
theorems on monotonic valuations in [M3].

Let A(U, B) be a triad such that A, B are sets and let A be commutative and
have a u-expansion which is a set. If U is a T-class, where T is 7w, o or om, then
A(U, B) has a monotonic set-valuation in 7.
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Now, let h be a monotonic valuation of the triad (P(A),U,Id)(J,{0}) in 7,
where 7 is o, m or owr. We see that h is an evaluation on P(A) in K, where
Ky =N, Kr = Q% and Ky = Q7. The required equalities from the items (1),
(2) and (3) clearly hold. O

Now, we shall formulate a theorem on evaluations of wo-ideals.

Theorem. Let J be an ideal on a nonempty set A and let J be a wo-class. Then
there exists a set-evaluation h on P(A) in Q% such that h~YU(no) = J iff
there exists a non-increasing sequence {J,}ncpn of o-classes such that we have
N Im = J, {uUv; u,v € Jpg1} € Jm and v C u € Jyq1 = v € Jpy, hold for
each m.

PrOOF: We deduce quite analogously as in the previous proof, by using the theorem
on monotonic valuations of mo-triads, that there exists a monotone valuation H €
Sdy; of (P(A),U, Id)(J,{0}) in Try. The mapping H is necessarily a set and h = H
has the required properties.

Let us prove the implication from the left to the right. Let U,, be, for each
m € FN, as above. Assume that h: P(A) — ¢Q7 is such that h=1"{0.} = {0}
and h~"U(ro) = J. Put Jp, = h~'U,,. Then the classes .J,,, have the required
properties. 0

Additive evaluations of m-ideals.

In this section, let A be a set which has at least two elements.
A mapping h : P(A) — Q7 is said to be additive on P(A) if we have for each
u, v C A:
uNv=0= h(uUv) = h(u) + h(v).

Then h(0) = 0 and, for each u C A, the equality h(u) = > ., h({x}) holds.
Thus, h is monotone.

We shall describe a class of m-ideals on A of such a kind that, having such an
ideal .J, there is no additive set-mapping h : P(A4) — Q% such that J = h=17[0]*.
At first, we denote by |u| the set-cardinality of the set u. It means that there exists
a one-one set-mapping between u and a natural number «.

A partition p of A is said to be relatively bounded, whenever (Vt € p)(|t|/|p| €
BQ) holds.

By a set-selector on a partition p on A we mean a set u C A such that
Mtep)(tnul=1).

Proposition. Let A be a non-empty set. Put J = w_l"[O]"" and let w be an
additive mapping on P(A). Let p be a relatively bounded partition on A such that
JNp=0. Then there exists a set-selector on p which does not belong to J.

PROOF: Put, for each = € A, w(x) = w({z}). There exists a set u = {a¢; t € p}
such that a; € t holds for each ¢t € p and w(at) = max(w”t). We have, for each
t € p:0# wit) <t wlar). Thus, there exists a number k¥ € FN such that
1/k <|t| - w(at) holds for each ¢ € p.



Monotonic valuations of wo-triads and evaluations of ideals

Put 0 = max{|t|; t € p}. We deduce from the assumption that the partition p is
relatively bounded that there exists a number m € F'N such that 6/|p| < m. Thus
we have the following: w(u) = >y, w(at) > 1/k-3>2,c, 1/[t] > 1/k-|p|/0 > 1/(k-m).
We can conclude that v ¢ J. O

We say that a partition p of a set A is relatively non-zero if we have

(vt € p)([t]/Ipl # 0).

Proposition. Let A be an infinite set and let p be an infinite relatively bounded
and relatively non-zero set-partition on A. Put

J={uC A; (Vtep)([tnul/lp| =0)}.

Then we have:

(1) The class .J is an ideal on A of the type w and [A]' C J.
(2) Every set-selector on p belongs to J.
(3) There is no additive set-mapping h on P(A) such that J = h~[0]T.

PRrOOF: The items (1) and (2) are easy. The item (3) follows from (2) and from
the previous proposition. O

It is clear that, on each infinite set A, there exists an infinite relatively bounded
and relatively non-zero set-partition p.

Now, let us briefly pay attention to some classes of evaluations. Let A be
a non-empty set. We put

Ev(A) = {h; his a set-evaluation on P(A) in Q*}
and let ~ be a relation on Ev(A) defined as follows:
fr~ge 701 = g0

Proposition. Let A be an infinite set. Then ~ is a non-compact equivalence on
Ev(A) of the type mo. The system W = {Wym; £ € N—FN & m € FN}, where
for each a, (3,

Wa,p = {(f,9) € (Bv(A)%;
fluw)<27%=gu) <27 & g(u) <27 = f(u) < 277},

is a uniformity basis on Ev(A) over ~ (that is, ~ = (YW and W has the usual
properties).

PROOF: It is clear that ~ is an equivalence on Ev(A). Let us prove that ~ is
not compact. Let 6 ¢ FN be such that there exists a set-partition {Aq; o < ¢}
of A and § < |Aq| < 26 holds. Let ws : A — QT be a function such that
we have, for each z € A, wq(x) = 61 and wq is equal to zero on A — A,.
Let ho : P(A) — QT be a function defined by fo(u) = > c, wa(z) whenever
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0 #u C A and let fo (D) = 0. Then {fo; o < ¢} is an infinite ~-net which
guarantees that ~ is not compact. We prove that ~ is a mo-class. The explicit
definition of ~ has the form (Vu C A)(Vk)(Im)ep where ¢ is a set-formula of the
language F'Ly. We deduce from this that the formula in question is equivalent to
a formula (Vk)(3n)y where ¢ is a set-formula of the language F Ly, .

Let us prove that W has the required properties. We can see that

f~ge (Ve N—-FN)¥Ym)Vu C A)(f(u) <277 =
g(u) <27 & g(u) <27 = f(u) <27™)

and, consequently, ~ = [|W holds. We see also that the system W C Sdy is
a system of reflexive and symmetric relations on Ev(A) such that (YW1, Wa €
W)EW e W)(W C Wi NWa), YW € W)(@Wy € W)(Wy o Wy C W). O

Let us define, finally,

Evg(A) = {h € Bv(A); h"[A]' C [0]*}
Ady(A) = {h € Evg(A); h is an additive set-mapping on P(A)}.

Proposition. Let A be an infinite set. Then
Ado(A) € ~ " Adg(A) € Euo(A)

and the classes Ady(A) and Evg(A) are w-classes.

PROOF: Let us prove the first inclusion. Assume that h € Adg(A) and let
r=0,r > 0. Put, for each u C A, u # 0, hy(u) = h(u) + r and h.(0) = 0.
Then hy ~ h and hy, ¢ Adg(A).

Let us prove the second inclusion. Let J be an ideal from the last but one
proposition and let k be an evaluation on P(A) in QT such that h=1/[0]t = J.
Then h € FEvp(A). Let w € Adp(A) and suppose that w ~ h. We have J =
w™1”[0]F, which is a contradiction. a
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