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Convergence theorems for set-valued

conditional expectations

Nikolaos S. Papageorgiou

Abstract. In this paper we prove two convergence theorems for set-valued conditional ex-
pectations. The first is a set-valued generalization of Levy’s martingale convergence theo-
rem, while the second involves a nonmonotone sequence of sub σ-fields.
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1. Introduction.

Set-valued random variables (random sets) have been studied recently by many
authors. Selectively we mention the important works of Alo-deKorvin-Roberts [1],
Hiai [9], Hiai-Umegaki [10] and Luu [12]. Furthermore the works of Artstein-
Hart [2], deKorvin-Kleyle [11] and Papageorgiou [15], illustrated that set-valued
random variables can be useful in the study of problems in optimization theory,
information systems and mathematical economics.
In this paper we prove a set-valued analogue of the well-known Levy’s martingale

convergence theorem and then we go one step further and allow the sequence of
sub σ-fields to vary in a nonmonotone fashion. Theorem 3.1 in this paper extends
Theorem 2.1 of the author [18], where the Banach space was assumed to be reflexive.
Theorem 3.2 is a new general convergence result for set-valued random variables
(random sets).

2. Preliminaries.

Let (Ω,Σ, µ) be a probability space and X a separable Banach space. We shall
be using the following notation:

Pf(c)(X) = {A ⊆ X : nonempty, closed, (convex)}

and
Pwkc(X) = {A ⊆ X : nonempty, weakly compact and convex}.
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For any A ∈ 2X \ {∅}, we set |A| = sup{‖x‖ : x ∈ A} (the “norm” of A),
σ(x∗, A) = sup{(x∗, x) : x ∈ A}, x∗ ∈ X∗ (the support function of A) and, for
every z ∈ X , d(z, A) = inf{‖z − x‖ : x ∈ A} (the distance function from A).

A multifunction F : Ω → 2X \ {∅} is said to be measurable, if for all U open in
X F−(U) = {ω ∈ Ω : F (ω)∩U 6= ∅} ∈ Σ. If in addition F (·) is Pf (X)-valued, then
the above definition is equivalent to any of the following statements:

(i) for every z ∈ X , ω → d(z, F (ω)) is measurable,
(ii) there exist measurable functions fn : Ω→ X , n ≥ 1, s.t. F (ω) = cl{fn(ω)}n≥1

for all ω ∈ Ω.

The above statements imply the following:

(iii) GrF = {(ω, x) ∈ Ω × X : x ∈ F (ω)} ∈ Σ × B(X), with B(X) being the
Borel σ-field of X (graph measurability).

If Σ is µ-complete, then all the statements (i)–(iii) are equivalent.
Further details on the measurability of multifunctions can be found in the survey

paper of Wagner [23].
Given a measurable multifunction F : Ω → Pf (X), S1F will denote the set of

integrable selectors of F (·); i.e., S1F = {f ∈ L1(Ω, X) : f(ω) ∈ F (ω) µ-a.e.}.
Clearly this set is closed, maybe empty and using Aumann’s selection theorem (see
Wagner [23, Theorem 5.10]) we can easily check that S1F is nonempty if and only if

ω → inf{‖x‖ : x ∈ F (ω)} ∈ L1(Ω).
Indeed, let m(ω) = inf{‖x‖ : x ∈ F (ω)}. Because of the property (ii) above, we

have m(ω) = infn≥1 ‖fn(ω)‖, where fn : Ω → Ξ, n ≥ 1, are measurable functions

s.t. F (ω) = cl{fn(ω)}n≥1. So ω → m(ω) is measurable. If S1F 6= ∅, let g ∈ S1F .

Then m(ω) ≤ ‖g(ω)‖ µ-a.e. ⇒ m ∈ L1(Ω). Conversely, suppose that m(·) ∈ L1(Ω).
Let ε > 0 and set Hε(ω) = {x ∈ F (ω) : ‖x‖ ≤ m(ω) + ε}. Clearly for all ω ∈ Ω,
Hε(ω) 6= ∅ and GrHε = GrF ∩ {(ω, x) ∈ Ω × X : ‖x‖ − m(ω) ≤ ε}. Clearly then
(ω, x) → ‖x‖ − m(ω) is measurable. So GrHε ∈ Σ × B(X). Apply Aumann’s
selection theorem to get g : Ω → X measurable s.t. g(ω) ∈ Hε(ω) for all ω ∈ Ω.
Then g(ω) ∈ F (ω) and ‖g(ω)‖ ≤ m(ω) + ε ⇒ g ∈ S1F ⇒ S1F 6= ∅.

This is the case if ω → |F (ω)| = sup{‖x‖x ∈ F (ω)} ∈ L1(Ω). Such a multi-
function is called integrably bounded. Note that if F (·) is Pfc(X)-valued, then S1F
is convex, too. Using S1F we can define a set-valued integral for F (·) by setting∫
Ω F (ω) dµ(ω) = {

∫
Ω f(ω) dµ(ω) : f ∈ S1F }.

Let Σ0 be a sub σ-field of Σ. Let F : Ω→ Pf (X) be a measurable multifunction

s.t. S1F 6= ∅. Following Hiai-Umegaki [10], we define the set-valued conditional
expectation of F (·) with respect to Σ0 to be the Σ0-measurable multifunction
EΣ0F : Ω → Pf (X) for which we have S1

EΣ0F
(Σ0) = cl{E

Σ0f : f ∈ S1F } (the

closure taken in the L1(Ω, X)-norm). Note that by definition S1
EΣ0F

(Σ0) consists

of all Σ0-measurable selectors of EΣ0F . To simplify the already heavy notation,
we shall simply write S1

EΣ0F
instead of S1

EΣ0F
(Σ0). If F (·) is integrably bounded

(resp. convex valued), then so is EΣ0F (·). Note that in Hiai-Umegaki [10], the
definition was given for integrably bounded F (·). However, it is clear that it can
be extended to the more general class of multifunctions F (·) used here. Recall that
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A ∈ Σ is said to be a Σ0-atom if and only if for all A
′ ∈ Σ, A′ ⊆ A there exists

B ∈ Σ0 s.t. µ(A′∆(A ∩ B)) = 0 or equivalently χA′(ω) = χA∩B(ω) µ-a.e. (see
Hanen-Neveu [7]).

Finally let {An}n≥1 ⊆ 2
X \ {∅}. Following Mosco [14], we define:

s − limAn = {x ∈ X : x = s − limxn, xn ∈ An, n ≥ 1}

= {x ∈ X : lim d(x, An) = 0}

and

w − limAn = {x ∈ X : x = w − limxnk
, xnk

∈ Ank
, n1 < n2 < n3 · · · < nk < . . . }.

Here s− denotes the strong topology on X , while w− denotes the weak topology
on X . It is easy to see that we always have s− limAn ⊆ w− limAn. We say that the

An’s converge to A in the Kuratowski-Mosco sense to A, denoted by An
K−M
−−−−→ A

if s − limAn = A = w − limAn.

3. Convergence theorems.

Assume that {Σn}n≥1 is an increasing subsequence of sub σ-fields of Σ s.t.

Vn≥1Σn = Σ0. Recall that if f ∈ L1(Ω, R), then EΣnf(ω) → EΣ0f(ω) µ-a.e.
(Levy’s martingale convergence theorem). This was extended to Banach space-
valued random variables; i.e., f ∈ L1(Ω, X) (see for example Metivier [13, Theo-
rem 11.2]). The following theorem is a set-valued version of this martingale con-
vergence theorem. It improves Theorem 2.1 of [18], since we get a stronger kind
of convergence for the set-valued martingale and the reflexivity hypothesis on X is
relaxed.

Theorem 3.1. If X∗ is separable and F : Ω → Pfc(X) is integrably bounded,

then EΣnF (ω)
K−M
−−−−→ EΣ0F (ω) µ-a.e. The result is also true if X∗ is separable,

F : Ω→ Pf (X) is integrably bounded and (Ω,Σ, µ) has no Σ0-atoms.

Proof: From the lemma in Section 2 of [19], we know that for all x∗ ∈ X∗ and

all ω ∈ Ω \ N , µ(N) = 0, we have EΣ0σ(x∗, F (ω)) = σ(x∗, EΣ0F (ω)). So we have

limEΣnσ(x∗, F (ω)) = limσ(x∗, EΣnF (ω)). But from the classical Levy’s martingale

convergence theorem, we know that limEΣnσ(x∗, F (ω)) = limEΣnσ(x∗, F (ω)) =

EΣ0σ(x∗, F (ω)) for all ω ∈ Ω \ N(x∗), µ(N(x∗)) = 0. Let {x∗m}m≥1 be dense in
X∗ for the strong topology (recall that X∗ is assumed to be separable). We have

EΣnσ(x∗, F (ω)) → EΣ0σ(x∗, F (ω)) as n → ∞ for all m ≥ 1 and all ω ∈ Ω \ N ,
where N =

⋃
m≥1N(x∗m), µ(N) = 0. Let x∗ ∈ X∗ and let {x∗k}k≥1 ⊆ {x∗n}n≥1

be s.t. x∗k
s
−→ x∗ (here s denotes the strong on X∗). From Proposition 14 of

Thibault [22], we know that for all ω ∈ Ω \ N1, µ(N1) = 0, EΣ0σ(·, F (ω)) is
continuous and so EΣ0σ(x∗k , F (ω))→ EΣ0σ(x∗, F (ω)) for all ω ∈ Ω\N1, µ(N1) = 0.
Let N2 = N ∪ N1, µ(N2) = 0 and let ω ∈ Ω \ N2. Invoking Lemma 1.6 of
Attouch [3], we can find a map n → k(n), depending in general on ω ∈ Ω \ N2
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s.t. EΣnσ(x∗
k(n), F (ω)) → EΣ0σ(x∗, F (ω)) = σ(x∗, EΣ0F (ω)) as n → ∞. So for

any given ω ∈ Ω \ N2, µ(N2) = 0, we have

|EΣnσ(x∗, F (ω))− EΣ0σ(x∗, F (ω))|

≤ |EΣnσ(x∗, F (ω))− EΣnσ(x∗k(n), F (ω))|

+ |EΣnσ(x∗k(n), F (ω))− EΣ0σ(x∗, F (ω))|.

For the first summand in the right hand side of the above inequality, we have

|EΣnσ(x∗, F (ω))− EΣ0σ(x∗k(n), F (ω))| ≤ EΣn |σ(x∗, F (ω))− σ(x∗k(n), F (ω))|

≤ EΣn |F (ω)| · ‖x∗ − x∗k(n)‖ → 0 as n → ∞.

Also from the choice of the map n → k(n), we have

|EΣnσ(x∗k(n), F (ω))− EΣ0σ(x∗, F (ω))| → 0 as n → ∞.

Thus finally we deduce that for all x∗ ∈ X∗ and all ω ∈ Ω \ N2 µ(N2) = 0, we
have:

EΣnσ(x∗, F (ω))→ EΣ0σ(x∗, F (ω)) as n → ∞,

⇒ σ(x∗, EΣnF (ω))→ σ(x∗, EΣ0F (ω)) µ-a.e. as n → ∞.

Applying Proposition 4.1 of [16], we get

w − limEΣnF (ω) ⊆ convEΣ0F (ω) µ-a.e.

If F (·) is Pfc(X)-valued, then convE
Σ0F (ω) = EΣ0F (ω). If F (·) is Pf (X)-

valued and (Ω,Σ, µ) has no Σ0-atoms, from Dynkin-Evstigneev [5], we have that

EΣ0F (ω) is µ-a.e. convex. So in both cases we have:

(1) w − limEΣnF (ω) ⊆ EΣ0F (ω) µ-a.e.

Next, let f ∈ S1F . Then from Theorem 11.2 of Metivier [13], we know that

EΣnf(ω)
s
−→ EΣ0f(ω) µ-a.e. in X as n → ∞. Clearly EΣnf ∈ S1

EΣnF
and so we

have EΣ0f(ω) ∈ s − limEΣnF (ω) µ-a.e. Hence we have that

EΣ0S1F ⊆ S1
s−limEΣnF

.

Recalling that s− limEΣnF (·) is closed-valued, we have that the set S1
s−limEΣnF

is closed in L1(X). Hence we have:

EΣ0S1F ⊆ S1
s−limEΣnF

.
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But by definition (see Section 2), we have EΣ0S1F = S1
EΣ0F

. Therefore we finally

have

S1
EΣ0F

⊆ S1
s−limEΣnF

⇒ EΣ0F (ω) ⊆ s − limEΣnF (ω) µa.e.(2)

From (1) and (2) above we conclude that EΣnF (ω)
K−M
−−−−→ EΣ0F (ω) µ-a.e. �

Corollary. If dimX < ∞ and F : Ω → Pfc(X) is integrably bounded, then

EΣnF (ω)
h
−→ EΣ0F (ω) µ-a.e., where h denotes the Hausdorff metric on Pfc(X).

The same holds if dimX < ∞, F : Ω→ Pf (X) is integrably bounded and (Ω,Σ, µ)
has no Σ0-atoms.

Remark. The “convex” part of this corollary was proved by the author in [18,
Theorem 2.1]. This result is a consequence of Corollary 3A of Salinetti-Wets [21].

In the next convergence theorem, we allow the sub σ-fields to converge in a non-
monotone fashion. Recall that Σn → Σ0 in L1(Ω, X) if and only if for every

f ∈ L1(Ω, X), we have EΣnf
s
−→ EΣ0f in L1(Ω, X). From the vector valued ver-

sion of Levy’s martingale convergence theorem (see Metivier [13, Theorem 11.2]),
we know that if Σn ↑ Σ0, then Σn → Σ0 in L1(Ω, X). More generally, if X = R

and Σ = V ∞
m=1

⋂∞
n=mΣn =

⋂∞
m=1 V ∞

n=mΣn, then Σn → Σ in L1(Ω) (see Fetter [6,
Theorem 3]).
Recall that if X∗ is separable, then X∗ has the RNP and so L1(Ω, X)∗ =

L∞(Ω, X∗) (see Diestel-Uhl [4, Theorem 1, p. 98]). We shall denote the dual-
ity brackets for this pair by 〈·, ·〉; i.e., 〈f, h〉 =

∫
Ω(f(ω), h(ω)) dµ(ω) for every

f ∈ L1(Ω, X), h ∈ L∞(Ω, X∗).
We shall need the following two lemmata. In both we assume X∗ is separable.

Lemma 3.1. If Σ0 is a sub σ-field of Σ, f ∈ L1(Σ0, X) and h ∈ L∞(Σ, X∗), then

〈f, EΣ0h〉 = 〈f, h〉.

Proof: Let h = χAx∗, A ∈ Σ, x∗ ∈ X∗. Then we have:

〈f, EΣ0h〉 =

∫
Ω
(f(ω), EΣ0χA(ω)x

∗) dµ(ω)

=

∫
Ω

EΣ0χA(ω)(f(ω), x
∗) dµ(ω)

=

∫
Ω

χA(ω)(f(ω), x
∗) dµ(ω)

=

∫
Ω
(f(ω), χA(ω)x

∗) dµ(ω) = 〈f, h〉.

Clearly then the result is valid for countably-valued h ∈ L∞(Σ, X∗). But those
functions are dense in L∞(Σ, X∗) (see Diestel-Uhl [4, p. 42]). So by a simple density
argument, we conclude that the lemma holds for all h ∈ L∞(Σ, X∗). �

In a similar way, exploiting the density of simple functions in L1(Σ, X), we can
prove the following lemma, whose proof is omitted.
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Lemma 3.2. If Σ0 is a sub σ-field of Σ, f ∈ L1(Σ, X) and h ∈ L∞(Σ0, X
∗), then

〈f, h〉 = 〈EΣ0f, h〉.

The next theorem partially generalizes Theorem 3.1. Now we have a sequence
{Fn}n≥1 of random sets, instead of just a fixed one as in Theorem 3.1, and the
sequence {Σn}n≥1 of the sub σ-fields of Σ need not be monotone increasing. Because
of the nature of the convergence of the Σn’s, our convergence result is in terms of
the sets of integrable selectors of the random multifunctions. When specialized to
single-valued random variables, then we get that EΣnfn → EΣ0f in L1(Ω, X),
which improves Theorem 4 of Fette [6], where X = R. Note that the convexity of
the values of the random sets {Fn(ω)}n≥1 is important, because it allows us to use
the “multivalued dominated convergence theorem” established in [16, Theorem 4.4].
It remains an open question whether the almost everywhere convergence holds (even
if random variables are single-valued and X = R; see also Fetter [6]).

Theorem 3.2. If X∗ is separable, Fn : Ω → Pwkc(X) n ≥ 1 are measurable
multifunctions s.t. Fn(ω) ⊆ G(ω) µ-a.e. withG : Ω→ Pwkc(X) integrably bounded,

Fn(ω)
K−M
−−−−→ F (ω) µ-a.e. and Σn → Σ0 in L1(X), then S1

EΣnFn

K−M
−−−−→ S1

EΣ0F
as

n → ∞.

Proof: From Proposition 4.3 of Hess [8], we have that F : Ω → Pwkc(X) is
measurable and F (ω) ⊆ G(ω) µ-a.e. Then from Proposition 3.1 of [17], we have

S1Fn
, S1F are weakly compact convex subsets of L

1(X) and so S1
EΣnFn

= EΣnS1Fn
,

S1
EΣ0F

= EΣ0S1F n ≥ 1.

Now let h ∈ w − limS1
EΣnFn

. Then by definition we can find hk ∈ S1
E
Σ

n(k)Fn(k)

s.t. hk
w
−→ h in L1(X). Then we can findfk ∈ S1Fn(k)

s.t. EΣn(k)fk = hk. Since

{fk}k≥1 ⊆ S1G and the latter is w-compact in L1(X) (see Proposition 3.1 of [17]),

by passing to a subsequence if necessary, we may assume that fk
w
−→ f in L1(X).

Also since S1Fn

K−M
−−−−→ S1F by Theorem 4.4 of [16], we have f ∈ S1F . Now for

v ∈ L∞(Ω, X∗) = L1(Ω, X)∗ we have using Lemmata 3.1 and 3.2:

〈hk, v〉 = 〈EΣn(k)fk, v〉 = 〈EΣn(k)fk, EΣn(k)v〉 = 〈fk, EΣn(k)v〉.

Invoking Lemma 4.2 of Papageorgiou-Kandilakis [20], we get 〈fk, EΣn(k)v〉 →
〈f, EΣ0v〉 as k → ∞. Once again through Lemmata 3.1 and 3.2 above, we have
〈f, EΣ0v〉 = 〈EΣ0f, EΣ0v〉 = 〈EΣ0f, v〉. Therefore

〈hk, v〉 → 〈EΣ0f, v〉 as k → ∞.

Also 〈hk, v〉 → 〈h, v〉 ⇒ 〈h, v〉 = 〈EΣ0f, v〉 for all v ∈ L∞(X∗) ⇒ h = EΣ0f

with f ∈ S1F ⇒ h ∈ S1
EΣ0F

. So we have:

(1) w − limS1
EΣnFn

⊆ S1
EΣ0F

.
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Next let h ∈ S1
EΣ0F

. Then h = EΣ0f , f ∈ S1F . Recalling that S1Fn

K−M
−−−−→ S1F

(Theorem 4.4 of [16]), we get fn ∈ S1Fn
s.t. fn

s
−→ f in L1(X). We have:

‖EΣnfn − EΣ0f‖1 ≤ ‖EΣnfn − EΣnf‖1 + ‖EΣnf − EΣ0f‖1

≤ ‖fn − f‖1 + ‖EΣnf − EΣ0f‖1 → 0 as n → ∞,

since Σn → Σ0 in L1(X). Hence EΣnfn
s
−→ EΣ0f = h in L1(X) and EΣnfn ∈

S1
EΣnFn

n ≥ 1. Therefore h ∈ s − limS1
EΣnFn

. Thus we have:

(2) S1
EΣ0F

⊆ s − limS1
EΣnFn

.

From (1) and (2) we conclude that

S1
EΣnFn

K−M
−−−−→ S1

EΣ0F
as n → ∞.

�
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