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Convergence theorems for set-valued
conditional expectations

NIKOLAOS S. PAPAGEORGIOU

Abstract. In this paper we prove two convergence theorems for set-valued conditional ex-
pectations. The first is a set-valued generalization of Levy’s martingale convergence theo-
rem, while the second involves a nonmonotone sequence of sub o-fields.
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1. Introduction.

Set-valued random variables (random sets) have been studied recently by many
authors. Selectively we mention the important works of Alo-deKorvin-Roberts [1],
Hiai [9], Hiai-Umegaki [10] and Luu [12]. Furthermore the works of Artstein-
Hart [2], deKorvin-Kleyle [11] and Papageorgiou [15], illustrated that set-valued
random variables can be useful in the study of problems in optimization theory,
information systems and mathematical economics.

In this paper we prove a set-valued analogue of the well-known Levy’s martingale
convergence theorem and then we go one step further and allow the sequence of
sub o-fields to vary in a nonmonotone fashion. Theorem 3.1 in this paper extends
Theorem 2.1 of the author [18], where the Banach space was assumed to be reflexive.
Theorem 3.2 is a new general convergence result for set-valued random variables
(random sets).

2. Preliminaries.

Let (2, X%, 1) be a probability space and X a separable Banach space. We shall
be using the following notation:

Py (X)={AC X : nonempty, closed, (convex)}

and
Purpe(X)={AC X : nonempty, weakly compact and convex}.
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For any A € 2%\ {0}, we set |[A| = sup{||z| : © € A} (the “norm” of A),
o(z*, A) = sup{(z*,z) : © € A}, 2* € X* (the support function of A) and, for
every z € X, d(z, A) = inf{||z — z| : # € A} (the distance function from A).

A multifunction F : Q — 2%\ {0} is said to be measurable, if for all U open in
XF(U)={weQ: Flw)NU # 0} € ¥. If in addition F'(-) is Pr(X)-valued, then
the above definition is equivalent to any of the following statements:

(i) for every z € X, w — d(z, F(w)) is measurable,

(ii) there exist measurable functions f, : Q@ — X, n > 1,s.t. F(w) = cl{fn(w)}n>1

for all w € Q. -

The above statements imply the following:
(i) GrF = {(w,z) € A x X : z € F(w)} € ¥ x B(X), with B(X) being the
Borel o-field of X (graph measurability).

If ¥ is p-complete, then all the statements (i)—(iii) are equivalent.

Further details on the measurability of multifunctions can be found in the survey
paper of Wagner [23].

Given a measurable multifunction F' : Q — Py(X), 511; will denote the set of
integrable selectors of F(:); ie., S} = {f € LY X) : f(w) € F(w) p-ae.}.
Clearly this set is closed, maybe empty and using Aumann’s selection theorem (see
Wagner [23, Theorem 5.10]) we can easily check that Sll; is nonempty if and only if
w — inf{||z]| : 2 € F(w)} € LY(Q).

Indeed, let m(w) = inf{||z|| : * € F(w)}. Because of the property (ii) above, we
have m(w) = inf,,;>1 || fn(w)||, where f, : @ — E, n > 1, are measurable functions
st. F(w) = cl{fn(w)}n>1. So w — m(w) is measurable. If Sk # 0, let g € St..
Then m(w) < [|g(w)|| p-a.e. = m € LY(R2). Conversely, suppose that m(-) € L1(Q).
Let ¢ > 0 and set H.(w) = {z € F(w) : ||z]]| < m(w) + ¢}. Clearly for all w € Q,
He(w) # 0 and GrH: = GrF N{(w,z) € A x X : ||lz|| — m(w) < e}. Clearly then
(w,z) — |lz|| = m(w) is measurable. So GrH; € ¥ x B(X). Apply Aumann’s
selection theorem to get g : & — X measurable s.t. g(w) € H.(w) for all w € Q.
Then g(w) € F(w) and [|g(w)|| < m(w) +e = g € St = S} # 0.

This is the case if w — |F(w)| = sup{||z|z € F(w)} € LY(R). Such a multi-
function is called integrably bounded. Note that if F'(-) is Pf.(X)-valued, then St
is convex, too. Using S}, we can define a set-valued integral for F(-) by setting
Jo P() du(w) = {Jo /(@) du(w) : f € S,

Let ¥o be a sub o-field of X. Let I : @ — P;(X) be a measurable multifunction
s.t. S}; # (). Following Hiai-Umegaki [10], we define the set-valued conditional
expectation of F(-) with respect to Xg to be the Yp-measurable multifunction
E*0F : Q — Py(X) for which we have Sty (So) = cl{Ef : f € Sp} (the
closure taken in the L'(Q, X)-norm). Note that by definition S}JEOF(EO) consists
of all ¥p-measurable selectors of E*0F. To simplify the already heavy notation,
we shall simply write S}EEOF instead of S}FOF(EO)' If F(-) is integrably bounded
(resp. convex valued), then so is E¥°F(-). Note that in Hiai-Umegaki [10], the
definition was given for integrably bounded F'(-). However, it is clear that it can
be extended to the more general class of multifunctions F(-) used here. Recall that
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A € X is said to be a Yp-atom if and only if for all A’ € X, A’ C A there exists
B € ¥y st. u(A’A(AN B)) = 0 or equivalently x4/(w) = xanp(w) p-a.e. (see
Hanen-Neveu [7]).

Finally let {A,},>1 C 2% \ {0}. Following Mosco [14], we define:

s—limA, ={z e X:x=s—limzy,, xn € Ap, n>1}
={x € X :limd(z, A,) = 0}

and

w—mAn:{:ceX:x:w—limznk, Tny, € Any, N1 <ng<ng---<np<...}

Here s— denotes the strong topology on X', while w— denotes the weak topology
on X. It is easy to see that we always have s —limA,, C w—1limA,,. We say that the
Ay’s converge to A in the Kuratowski-Mosco sense to A, denoted by Ay, KM,y

if s —limA, = A = w — limA,,
3. Convergence theorems.

Assume that {¥,},>1 is an increasing subsequence of sub o-fields of X s.t.
Vp>12n = Yo. Recall that if f € L1(Q,R), then E>"f(w) — E0f(w) p-a.e.
(Le_vy’s martingale convergence theorem). This was extended to Banach space-
valued random variables; i.e., f € L1(Q, X) (see for example Metivier [13, Theo-
rem 11.2]). The following theorem is a set-valued version of this martingale con-
vergence theorem. It improves Theorem 2.1 of [18], since we get a stronger kind
of convergence for the set-valued martingale and the reflexivity hypothesis on X is
relaxed.

Theorem 3.1. If X* is separable and F : Q — Py.(X) is integrably bounded,

then E*"F(w) KoM E*0F(w) p-a.e. The result is also true if X* is separable,

F :Q — Py(X) is integrably bounded and (£2, %, ;1) has no ¥p-atoms.

PROOF: From the lemma in Section 2 of [19], we know that for all z* € X* and
allw € Q\ N, u(N) =0, we have EX00(2*, F(w)) = o(z*, E¥0F(w)). So we have
ImE>no(z*, F(w)) = limo(z*, E>* F(w)). But from the classical Levy’s martingale
convergence theorem, we know that imE>"o(z*, F(w)) = lim E>no(z*, F(w)) =
E¥0q(z*, F(w)) for all w € Q\ N(z*), u(N(z*)) = 0. Let {z%,},n>1 be dense in
X* for the strong topology (recall that X* is assumed to be separa_ble). We have
E¥ng(z*, F(w)) — EX0g(z*, F(w)) asn — oo for all m > 1 and all w € Q\ N,
where N = J,,>1 N(z},), p(N) = 0. Let * € X* and let {z}}r>1 C {2} }n>1
be s.t. x} = 2* (here s denotes the strong on X*). From Proposition 14 of
Thibault [22], we know that for all w € Q\ N1, u(N1) = 0, EX00(-, F(w)) is
continuous and so Ezoo(x;;, F(w)) — E¥0g(z*, F(w)) for allw € Q\ Ny, u(N1) = 0.
Let No = N U Ny, u(N2) = 0 and let w € Q\ Ny. Invoking Lemma 1.6 of
Attouch [3], we can find a map n — k(n), depending in general on w € Q\ N
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s.t. Ezna(a:z(n),F(w)) — E¥0g(z*, F(w)) = o(z*, E¥0F(w)) as n — oo. So for

any given w € '\ No, u(Na) = 0, we have
|E¥no(a*, F(w)) — EX00(a*, F(w))]
< |EE"U($*, F(w)) — Ez”o(xz(n),F(w)ﬂ
+ |E2na(x;;(n),F(w)) — E¥0g(z*, F(w))].

For the first summand in the right hand side of the above inequality, we have

%02, F(w)) — B0 (2}, F@))| < E¥[o(2”, F(w)) — 0}y, F (@)

< B |F()| - [la* - xZ(n)H — 0 as n — oo.
Also from the choice of the map n — k(n), we have

|E2”cr(:1:z( F(w)) — EX¥g(z*, F(w))]| — 0 as n — occ.

n)’

Thus finally we deduce that for all 2* € X* and all w € Q\ Ny pu(Na) = 0, we
have:

E*no(z*, F(w)) — E¥00(z*, F(w)) as n — oo,
= o(z*, E¥"F(w)) — o(z*, E™ F(w)) p-a.e. as n — oco.
Applying Proposition 4.1 of [16], we get
w — ImE>" F(w) C convE™ F(w) p-a.e.

If F(-) is Pf.(X)-valued, then GonvE*F(w) = EXF(w). If F(-) is Pp(X)-
valued and (€, %, ) has no Yg-atoms, from Dynkin-Evstigneev [5], we have that
E*¥0F(w) is p-a.e. convex. So in both cases we have:

(1) w — ImE>" F(w) C EXF(w) p-a.e.

Next, let f € Sll;. Then from Theorem 11.2 of Metivier [13], we know that
E¥n f(w) 5 E> f(w) p-ae. in X as n — oo. Clearly E¥nf e S}Ean and so we
have F>0 f(w) € s — imE>" F(w) p-a.e. Hence we have that

o ol 1
E=0SE C S limEsnp

Recalling that s —limE>" F(-) is closed-valued, we have that the set ST . o
s—=limE*n F
is closed in L'(X). Hence we have:

o g1 1
E=05E C 5 limpsn
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But by definition (see Section 2), we have E>0 S, EogL = g1 Therefore we finally

E¥oF"
have
1 1
S E*oF = Ss limE>n F
(2) = E¥F(w) C s — imE>" F(w) pa.e.

From (1) and (2) above we conclude that E>" F(w) KM E¥F(w) p-ae. O
Corollary. If dimX < oo and F : Q — Py.(X) is integrably bounded, then

E*n F(w) h, E*0 F(w) p-a.e., where h denotes the Hausdorff metric on Py (X).
The same holds if dim X < oo, F': Q — Py(X) is integrably bounded and (2, %, j1)
has no ¥g-atoms.

Remark. The “convex” part of this corollary was proved by the author in [18,
Theorem 2.1]. This result is a consequence of Corollary 3A of Salinetti-Wets [21].

In the next convergence theorem, we allow the sub o-fields to converge in a non-
monotone fashion. Recall that ¥, — Yo in LY(Q,X) if and only if for every
f e LY(Q,X), we have E>» f 5 E¥0f in L1(Q, X). From the vector valued ver-
sion of Levy’s martingale convergence theorem (see Metivier [13, Theorem 11.2]),
we know that if X, T Xg, then X, — X in Ll(Q,X). More generally, if X = R
and X = V2o (%, =0, V2, 5y, then By, — ¥ in L1(Q) (see Fetter [6,
Theorem 3])

Recall that if X* is separable, then X* has the RNP and so L'(Q,X)* =
L*°(Q, X*) (see Diestel-Uhl [4, Theorem 1 p 93)) We shall denote the dual-
ity brackets for this pair by (-,-); i.e., = fQ w)) dp(w) for every
fe LY X), he L®(Q, X*).

We shall need the following two lemmata. In both we assume X* is separable.
Lemma 3.1. If X is a sub o-field of ¥, f € L'(29, X) and h € L>°(X%, X*), then
(f. B¥0h) = (f,h).

PROOF: Let h = xq2*, A € 3, * € X*. Then we have:

(f, E%on) = /Q (F(w), 0y a(w)e") du(w)
- /Q EZ0y () (f(w), 2*) da(w)
- / YA@)(F(w), 7*) dpu(w)
Q
- /Q (F(@), xA@)e*) du(w) = (f.h).

Clearly then the result is valid for countably-valued h € L (X, X*). But those
functions are dense in L°° (X, X*) (see Diestel-Uhl [4, p. 42]). So by a simple density
argument, we conclude that the lemma holds for all h € L*°(32, X*). O

In a similar way, exploiting the density of simple functions in Ll(E, X), we can
prove the following lemma, whose proof is omitted.
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Lemma 3.2. If X is a sub o-field of ¥, f € LY(%,X) and h € L>®(Zg, X*), then
(f,h) = (E™ f,h).

The next theorem partially generalizes Theorem 3.1. Now we have a sequence
{Fn}n>1 of random sets, instead of just a fixed one as in Theorem 3.1, and the
sequence {Zn}n>1 of the sub o-fields of ¥ need not be monotone increasing. Because
of the nature of the convergence of the ¥,’s, our convergence result is in terms of
the sets of integrable selectors of the random multifunctions. When specialized to
single-valued random variables, then we get that E¥»f, — E>0f in Ll(Q,X),
which improves Theorem 4 of Fette [6], where X = R. Note that the convexity of
the values of the random sets { Fj,(w)},,>1 is important, because it allows us to use
the “multivalued dominated convergence theorem” established in [16, Theorem 4.4].
It remains an open question whether the almost everywhere convergence holds (even
if random variables are single-valued and X = R; see also Fetter [6]).

Theorem 3.2. If X* is separable, F,, : Q@ — Pyr.(X) n > 1 are measurable

multifunctions s.t. Fp(w) C G(w) p-a.e. with G : @ — Pyi.(X) integrably bounded,
Fr(w) K=M, F(w) p-a.e. and %, — g in LY(X), then SEEHF £, S};EOF as
n — oo.

PRrROOF: From Proposition 4.3 of Hess [8], we have that F' : Q — Pyp.(X) is
measurable and F(w) C G(w) p-a.e. Then from Proposition 3.1 of [17], we have

Sllfnv S}; are weakly compact convex subsets of L!(X) and so S}EEnF = EE”S}%,
Slegp = EX0Spn>1.
Now let h € w — ES};%F . Then by definition we can find hj, € S*

E™n0) By
st. hy — hin LY(X). Then we can findf) € S};n(k) s.t. Ezn(k)fk = hg. Since
{fete>1 C S%; and the latter is w-compact in L'(X) (see Proposition 3.1 of [17]),
by passing to a subsequence if necessary, we may assume that f. X fin Ll(X ).
Also since S};n K-, St by Theorem 4.4 of [16], we have f € Sk. Now for
v € L®(Q, X*) = LY, X)* we have using Lemmata 3.1 and 3.2:

(i) = (E™08) fi ) = (B fi, EPn00) = (fi, Bniow),

Invoking Lemma 4.2 of Papageorgiou-Kandilakis [20], we get ( fk,EE"(k)v) —
(f, E¥ov) as k — co. Once again through Lemmata 3.1 and 3.2 above, we have
(f, E¥ov) = (E¥0 f F>0y) = (E>0 f,v). Therefore

(hi,v) — (B0 f 0) as k — oo.

Also (hy,v) — (h,v) = (h,v) = (E>0f,0) for all v € L®(X*) = h = E>0f
with f € Sll; =he S}EEOF' So we have:

(1) w—lmSps, g, C Spsop-
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Next let h € Sky, .. Then h = E™f, f € Sh. Recalling that S}, —~— S}

(Theorem 4.4 of [16]), we get fn € S},ns.t. fn = fin LY(X). We have:

|EZn frp — EX0f|ly < |E®n fr, — EPn flly + | EXn f — EX0f|
<|\fn=flL+ |EZf —E¥0f||; =0 as n — oo,

since ¥, — Yo in L1(X). Hence E>nf, = E*0f = h in L1(X) and E>f, €

S;;zn P 1. Therefore h € s — li_mS}EEnFn. Thus we have:
1 : 1
(2) SEEOF g S_h_mSEEnFn'

From (1) and (2) we conclude that

1 K-M 1
Spsap, — Spsgp a8 N — 00
O
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