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Complexity of the axioms of the alternative set theory

A. Sochor

Abstract. If T is a complete theory stronger than ZFFin such that axiom of extensionality
for classes + T + (∃X)Φi is consistent for 1≤ i ≤ k (each alone), where Φi are normal
formulae then we showAST + (∃X)Φ1+· · ·+(∃X)Φk + scheme of choice is consistent. As
a consequence we get: there is no proper ∆1-formula inAST + scheme of choice. Moreover
the complexity of the axioms of AST is studied, e.g. we show axiom of extensionality is
Π1-formula, but not Σ1-formula and furthermore prolongation axiom, axioms of choice and
cardinalities are Π2-formulae, but not Π1-formulae in AST without the axiom in question.
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According to the philosophical point of view understanding the alternative set
theory as a description of “the human approach to the real world” (see [V1979]),
we grasp this theory as open to the addition of new principles — the formal theory
AST (cf. [S1979]) repeated below summarizes only the basic ideas of the alter-
native set theory. There are two viewpoints which we should respect if we add
new axioms — from the formal standpoint the most important requirement is the
consistency of the obtained system and from the philosophical point of view the
choice of supplementary axioms has to be in harmony with the philosophical inter-
pretation of the alternative set theory. In fact, the philosophical motivation makes
it sometimes possible to decide whether we should prefer to add a formula or its
negation as a new axiom even in the case that the formula in question is inde-
pendent w.r.t. the system of axioms accepted so far. Two types of objects in the
alternative set theory are philosophically distinguished so that sets are considered
as formal counterparts of collections in the “real world” and classes are held as
descriptions of our idealizations and generalizations. Accepting this standpoint we
have to treat the system of sets as given and we are able to select only the system
of classes — we can decide how large a system of ideas we take into account. If
it is not excluded from particular reasons, it is evidently convenient to start with
the largest system of classes (“human ideas”) as possible, because a smaller system
of classes can be investigated in the framework of a larger one. According to this
approach, we have to accept axioms which guarantee the rise of the largest system
of classes as possible (under the assumption of the consistency of the theory arising
in this way, of course). The principle “to investigate a system of classes as rich as
possible” forces us to prefer formulae of the form (∃X)Φ(X) where Φ is a normal
formula (i.e. a formula in which only set-variables are quantified), because axioms
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of this type enrich the system of classes without doubt. However, it is more difficult
to solve the problem which formulae with more changes of quantifiers for classes
should be preferred — both such a formula and its negation postulate existence
of some classes. Up to now, a general philosophically justifiable principle for such
a choice of formulae has not been formulated, but for formulae with one change
of quantifiers the principle “to add as many classes as possible” gives us at least
a partial guideline (formulated by P. Vopěnka).

Let Φ be a normal formula with two free variables and let us imagine a game
in which the first player wants to put the formula (∃X)(∀Y )Φ(X, Y ) across and
the second one does the same with the formula (∀Z)(∃Q)¬Φ(Z, Q), i.e. an infinite
game in which at odd steps the first player chooses a class X with (∀Y )Φ(X, Y )
and at even steps the second player completes the system of classes so that for
every class Z (in particular even for the class X chosen by the first player at the
previous step) there exists Q such that ¬Φ(Z, Q). Under the assumption that at
every step such a choice is possible, the second player wins the game because he is
able to invalidate all witnesses of the formula (∃X)(∀Y )Φ(X, Y ) suggested by the
first player in the previous step. Thus it is more acceptable to add as additional
axioms the formulae of the form (∀Z)(∃Q)Φ(Z, Q), where Φ is a normal formula.
The suggested instruction for the choice of new axioms does not determine quite
precisely our choice, since the ordering in which formulae are taken into account
can have an influence on the preference of formulae, in fact, we shall see that there
are formulae which can be written simultaneously in the form (∃X)(∀Y )Φ(X, Y )
and in the form (∀Z)(∃Q)Ψ(Z, Q), where both formulae Φ and Ψ are normal (and
hence if we use only the principle for the choice of new axioms described above, the
decision whether we choose the formula in question or its negation depends only
on the fact which of these formulae is taken into account as the first; by “can be
written” we mean, of course, the formulae in question are equivalent in the theory
AST or in its investigated strengthening).

As usual we consider normal formulae both as Σ0-formulae and as Π0-formulae.
If Σk-formulae and Πk-formulae are specified, then we define as Πk+1-formulae
(as Σk+1-formulae respectively) all formulae of the form (∀X)Φ, where Φ is a Σk-
formula (of the form (∃X)Φ, where Φ is a Πk-formula respectively). The above
described principle can be expressed in this terminology as the preference of Π2-
formulae over Σ2-formulae.

The acceptance of the principle in question puts before us a series of questions
and we are going to give answers to some of them in this paper. In particular, we
show that all axioms of the theoryAST are in harmony with the described principle
except the axiom of extensionality — more precisely we shall see that the axioms
A5, A6 and A7 are (equivalent to) Π2-formulae and the axiom A4 is even a Σ1-
formula, however the axiom of extensionality is a Π1-formula (the axioms A3 and
A8 are set-formulae — i.e. formulae in which only set-variables occur — as for A2,
the complexity of a given formula determines the complexity of the instance of the
scheme of existence of classes corresponding to this formula, nevertheless, neglecting
the increase of the complexity produced by the complexity of the original formula,
one can consider also instances of the scheme of existence of classes as formulae
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of the preferred form). We show, moreover, the axioms A5–A7 bring further ideas
because they can be equivalently formulated as Σ2-formulae (and they cannot be
described as Π1-formulae; furthermore, we are going to show the axioms A5 and A7
cannot be formulated neither as Σ1-formulae). In other words the axioms A5–A7
carry out the above formulated principle for the choice of axioms, however, their
reception is not forced by it.
Another problem is to describe which Σ1-formulae are excluded as additional

axioms by the acceptance of the axioms of AST — as an example of such formula
can serve the negation of the axiom of extensionality which can be consistently
joined to every (consistent) strengthening of ZFFin (i.e. of Zermelo-Fraenkel set
theory in which the axiom of infinity is replaced by its negation) obtained by the
addition of set-formulae (and the acceptance of the axiom of extensionality auto-
matically excludes the consistent extension by its negation). On the other side, we
shall see that the axiom of extensionality is the sole axiom of AST which is able to
prevent the reception of some Σ1-formula as a supplementary axiom — moreover,
any enrichment of the theory AST by a Σ1-formula does not exclude the possibility
to add to the enriched theory any Σ1-formula as an additional axiom except the
case that such a possibility is excluded by a set-formula together with the axiom of
extensionality.
We have claimed that the axiom of extensionality is the sole axiom among ax-

ioms of AST which is no set-formula and which can make it impossible to join
Σ1-formulae. Let us realize that this axiom is an assumption restricting our possi-
bility even in a much deeper sense because it expresses the restriction of considered
properties to properties expressible in the language of set theory (if objects are not
distinguishable by their elements, they are identified) and one accepts the axiom of
extensionality since it formalizes this restriction.
In the end of the paper we show that set-formulae are the only formulae which

are in AST equivalent both to a Σ1-formula and to a Π1-formula.
In the article we deal only with one principle determining the choice of formulae as

supplementary axioms to AST; a different philosophical view justifies the addition
of the scheme of choice (see below) and the scheme of dependent choices both
discussed in [S1983] and accepted as principles of the alternative set theory in
[V1989] (the second principle is called there “the second axiom of the way to the
horizon”) and also the supplementation of the principle of reflection (see [S-V1981])
toAST. It is necessary to emphasize that there is no conflict among these principles
and the principle investigated in this paper.

The theory AST has one sort of variables X, Y, . . . for classes, predicates = and
∈; sets are defined in the same way as in the classical theories — as elements i.e.
Set(X) ≡ (∃Y ) X ∈ Y and we use variables x, y . . . for sets. Since we want to
investigate the complexity of the axioms, we repeat — for the reader’s convenience
— eight axioms (the second one is actually a scheme of axioms) constituting the
axiomatic system AST and simultaneously we count the complexity of formulae
in question; we use the usual set-theoretical notation, e.g. V denotes the universal
class, the predicate Fnc expresses the property “to be a function” etc.; let us recall
the usual definition of the universal class is done by a set-formula and further
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predicates Fnc, “to be a linear ordering” and “to be an equivalence” can be written
as normal formulae.

A1 axiom of extensionality is the Π1-formula

(∀X, Y )[(∀z)(z ∈ X ≡ z ∈ Y ) ≡ X = Y ].

A2 scheme of existence of classes. For every formula Φ(Z0, . . . , Zk) we accept
the axiom

(∀X1, . . . , Xk)(∃Y )(∀y)(y ∈ Y ≡ Φ(y, X1, . . . , Xk)).

A3 axiom of existence of sets is the set-formula

(∃x)(∀y)(y /∈ x) & (∀x, y)(∃z)(∀q)(q ∈ z ≡ [q ∈ x ∨ q = y]).

We denote the theory with the axioms A1–A3 by TC (the theory of classes); in
TC the set-constant 0 can be defined by a set-formula. We put FN = {x; (∀Z)([0 ∈
Z & (∀y)(y ∈ Z → y ∪ {y} ∈ Z)] → x ∈ Z)}; as usual the symbol N denotes the
class of natural numbers. According to the definition, the class FN is the smallest
class containing 0 and closed under the successor operation. Let us recall elements
of the class N are separated by a set-formula, however, the formula marking off
the elements of the class FN is a Π1-formula (and there is no Σ1-formula selecting
the elements of the class FN even in the whole AST because if ∗ is a shifting
of the horizon (see [S-V1983]) then every set is a ∗-set and therefore for every
normal formula Φ with two free variables one has (∀α ∈ N)([(∃X)Φ(α, X)]∗ →
(∃X)Φ(α, X)), however, we have FN ⊂ FN∗).
To simplify the notation let us introduce the predicate “the pair Z1, Z2 codes

a system of classes which is closed under Bernays-Gödel’s operations” putting

GB(Z1, Z2) ≡ (∀x, y ∈ Z1)(∃z1, . . . , z6 ∈ Z1)(E = Z ′′
2 {z1} &

& dom(Z ′′
2 {x}) = Z ′′

2 {z2} & (Z
′′
2 {x})

−1 = Z ′′
2 {z3} &

& {〈u, v, w〉; 〈v, w, u〉 ∈ Z ′′
2 {x}} = Z ′′

2 {z4} & Z ′′
2 {x} − Z ′′

2 {y} = Z ′′
2 {z5} &

& Z ′′
2 {x} × Z ′′

2 {y} = Z ′′
2 {z6});

(see [B] or [G]). Note that the formula defining the predicate GB is a normal one.

A4 axiom of induction is the Σ1-formula

(∃K, S)[GB(K, S) & (∀u)(∃z ∈ K)(u = S′′{z}) &

(∀x ∈ K)([0 ∈ S′′{x} & (∀w, v)(w ∈ S′′{x} → w ∪ {v} ∈ S′′{x})]→ S′′{x} = V )].

Let us note that the previous axiom expresses existence of a pair of classes
coding the system of classes which contains all sets, is closed under Bernays-
Gödel’s operations and in which the universal class is the unique class W satisfying
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[0 ∈ W & (∀w, v)(w ∈ W → w∪ {v} ∈ W )] (and that if we replace the last formula
by the formula [0 ∈ W & (∀w, v ∈ W ) w ∪ {v} ∈ W ] then we get the formula
equivalent to A4 together with A8). In the theory TC it is possible to define the
satisfaction relation for all formal set-formulae (the codes of) which are elements of
the class FN and the axiom A4 is equivalent to the induction (i.e. to the formula
V |= ([ϕ(0) & (∀x, y)(ϕ(x) → ϕ(x∪{y}))]→ (∀x)ϕ(x))) for all formal set-formulae
which are elements of the class FN .
The predicate We(X, R) is defined by the Π1-formula

(∀Y )[“R is a linear ordering of the class X” &

& [(∃y)(y ∈ Y )→ (∃y ∈ Y )(∀z ∈ Y )〈y, z〉 ∈ R]]

and guarantees that every nonempty subclass of X has the first element.
The possibility to contract variables is a consequence of the scheme of existence of

classes and thus this scheme essentially simplifies the calculation of the complexity
of formulae, e.g. the conjunction of two Σ1-formulae is (in TC equivalent to) a Σ1-
formula. Furthermore, in the theory TC, the formulae (∃Y ) X ∈ Y and (∃y) X ∈ y
are equivalent and thence the predicate Set can be considered as normal. The
formula

(∀Y ⊆ X)(Set(Y ) & (∀Z)[((∀z ∈ Z)(z ⊆ Y ) & (∃z)(z ∈ Z))→

→ (∃z ∈ Z)(∀y)(z ⊂ y → y /∈ Z)])

defining the predicate Fin(X) is then a Π1-formula and therefore ¬Fin(X) is a Σ1-
formula. Let us remark that the predicate Fin(X) is defined in [V1979] by the
Π1-formula (∀Y ⊆ X)Set(Y ) only and that in A1–A4 the last-named formula is
equivalent to our definition (which formalizes finiteness even in the case that the
theory in question admits infinite sets). Furthermore, let us note that the equality
FN = {x ∈ N ;Fin(x)} is trivial in A1–A4 and thus the predicate Fin cannot be
equivalently written as a Σ1-formula even in the whole AST; on the other hand in
[Sg1986] it is proved that Fin(X) is equivalent to a normal formula in the theory
A1–A4 + We(V, R), where R is a new constant.
The predicate Count(X) i.e. the formula

¬Fin(X) & (∃R)(“R is a linear ordering of the class X” & (∀q) Fin(R′′{q}))

is — according to the previous considerations— (inTC equivalent to) a Σ2-formula.
On the other hand using the countability of the class FN we are able to write the
formula “X is at most countable” by

(∀Y )([0 ∈ Y & (∀y ∈ Y ) y ∪ {y} ∈ Y ]→ (∃G)[Fnc(G) & X ⊆ G′′Y ])

i.e. the predicate Count(X) is in TC equivalent both to a Π2-formula and to a Σ2-
formula.

A5 prolongation axiom is the Π2-formula

(∀F )([Fnc(F ) & Count(F )]→ (∃f)[Fnc(f) & F ⊆ f ]).
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It is useful to realize that the acceptance of the prolongation axiom still reduces
the complexity of the predicate “to be at most countable” since it becomes equiva-
lent (in A1–A5) to the Π1-formula

(∀Y )([0 ∈ Y & (∀y ∈ Y ) y ∪ {y} ∈ Y ]→ (∃g)[Fnc(g) & X ⊆ g′′Y ]).

A6 axiom of choice is the Σ2-formula

(∃R)We(V, R).

A7 axiom of cardinalities is the Π2-formula

(∀X)[Fin(X) ∨ Count(X) ∨

∨ (∃F )(Fnc(F ) & Fnc(F−1) & dom(F ) = X & rng(F ) = V )].

A8 axiom of regularity can be written (in A1–A4, see [S1982]) as the set-formula

(∀x)[(∃y)(y ∈ x)→ (∃y ∈ x) y∩x = 0] & (∀x)(∃y)[x ∈ y & (∀z ∈ y)(∀q ∈ z) q ∈ y].

We denote by the symbol AST−i the theory AST without the axiom Ai.
The axiom of extensionality was formulated as a Π1-formula, furthermore, let us

realize this axiom cannot be in AST−1 simultaneously expressed as a Σ1-formula
(under the assumption of the consistency of AST, of course), because such a re-
formulation is excluded by the possibility “to add a new copy” of a proper class
(having the same elements as the original one but different from it) — such an
extension does not change the validity of Σ1-formulae.
The prolongation axiom is (in TC) equivalent also to the Σ2-formula

(∃Y )(∀F, G)([0 ∈ Y & (∀y ∈ Y ) y ∪ {y} ∈ Y ] & [(Fnc(F )

& Fnc(G) & F ⊆ G′′Y )→ (∃f)(Fnc(f) & F ⊆ f)]),

because the equivalence

(∀Y )([0 ∈ Y & (∀y ∈ Y ) y ∪ {y} ∈ Y ]→ ((∃G)[Fnc(G) & F ⊆ G′′Y ] ≡

≡ (∃G)[Fnc(G) & F ⊆ G′′FN ]))

is provable in TC with the constant FN .
The axiom of choice is a Σ2-formula and in [V1979] it is proved that it is equiv-

alent to the axiom of extensional coding i.e. to the Π2-formula

(∀R)(“R is an equivalence”→ (∃X)[(∀x ∈ dom(R))(∃y ∈ X)(〈x, y〉 ∈ R) &

& (∀x, y ∈ X)(x 6= y → 〈x, y〉 /∈ R)]).



Complexity of the axioms of the alternative set theory 39

One can unfortunately show this equivalence (at the present, at least) only using
the axiom of cardinalities (i.e. in the theory A1–A5, A7); luckily, the axiom of
extensional coding together with the Π2-formula

(∀Y )(∃R)(“R is a linear ordering of the universal class” &

& [(0 ∈ Y & (∀y ∈ Y ) y ∪ {y} ∈ Y )→

→ (∀f)(Y ⊆ dom(f)→ (∃z ∈ Y ) 〈f(z ∪ {z}), f(z)〉 /∈ R)])

is equivalent to the axiom of choice already in the theory A1–A5: let R be a linear
ordering of the universal class with the property (∀f)(FN ⊆ dom(f) → (∃n ∈
FN)〈f(n+ 1), f(n)〉 /∈ R) and let us define the equivalence S as the class
{〈〈x, q〉, 〈y, q〉〉; 〈x, q〉 ∈ R & 〈y, q〉 ∈ R & x 6= q 6= y}, every selector of S chooses
from each nonempty {x; 〈x, q〉 ∈ R & x 6= q} one element and thus assuming 0 6= X
has no first element in the ordering R we can construct a function F on FN with
(∀n ∈ FN)〈F (n+ 1), F (n)〉 ∈ R and by the prolongation axiom there is a function
f with (∀n ∈ FN)〈f(n+1), f(n)〉 ∈ R which contradicts the stated property of the
ordering R.
The axiom of cardinalities is in the theory A1–A6 equivalent to the formula

(∃R)(We(V, R) & (∀x)[Fin(R′′{x}) ∨ Count(R′′{x})])

which can be considered as a Σ2-formula, because we have seen the formula Fin(X)∨
Count(X) is equivalent to a Π1-formula in the mentioned theory.
The order of the axioms A1–A7 is not quite random — the first three axioms

express the principles accepted in all set theories with classes (in spite of the fact that
in different theories a different strength of the second principle is required) and the
axioms A4 and A5 can be considered as the most important axioms distinguishing
AST from classical set theories — the first of these axioms guarantees that all
sets are formally finite and the second one represents the human approach to the
horizon as to a crossable (mentally, at least) boundary; on the other hand, the main
objections appeared against the acceptance of the axiom A7, because it restricts
infinite cardinalities to two types only (nevertheless from a different point of view A7
is no restriction since it guarantees many one-one mappings and we have seen that
from the standpoint discussed in this paper both A7 and ¬A7 give the same chance
for the rise of a rich system of classes; furthermore, there are important theorems of
the alternative set theory the proofs of which essentially use A7). The above stated
results seem to confirm the correctness of the chosen order of axioms — e.g. we
found a Π2-formula equivalent to the axiom of choice using the prolongation axiom
and for the proof of the equivalence of the axiom of cardinalities and the Σ2-formula
in question we used both axioms A5 and A6. However, the question whether even
a different order of axioms has similar properties has not been seriously studied up
to now, e.g. it is not known if the axiom A7 can be rewritten as a Σ2-formula in
the theory A1–A4.
Let us note that the scheme of choice i.e. the assumption

(∀x)(∃Y )Φ(x, Y )→ (∃Z)(∀x)Φ(x, Z ′′{x})
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required for every formula Φ simplifies the calculation of the complexity of for-
mulae because it guarantees for each Σk-formula Φ(Z0, . . . , Zn) that the formula
(∀z)Φ(z, Z1, . . . , Zn) is (equivalent to) a Σk-formula, too.
We have shown that the choice of the axioms of the theory AST fulfils the

principle “to investigate a system of classes as rich as possible”; in the following
we show that the axioms of AST — except the axiom of extensionality — do not
exclude a consistent addition of any Σ1-formula (which is consistent with ZFFin,
of course) as a supplementary axiom; in the following considerations we assume
metamathematics is sufficiently strong (e.g. Zermelo-Fraenkel set theory, but the
fourth order arithmetic is sufficient, too).
If T is a theory containing as axioms only set-formulae then we denote by the

symbol A1 + T the theory with classes in which sets are defined as elements and
the axioms of which are the axiom A1 and axioms of the theory T. If A is a model
of a theory with the language containing classes and sets then the symbol A denotes
its restriction to sets only — we define

A = ({x;A |= Set(x)}, {〈x, y〉;A |= [x ∈ y & Set(x) &

& Set(y)]}, {〈x, y〉;A |= [x = y & Set(x) & Set(y)]}).

Metatheorem. LetT be a complete theory (containing set-formulae only) stronger
(or equal) than ZFFin and let Φ1(Z), . . . ,Φk(Z) be normal formulae with one free
variable. If theories A1 + T + (∃Z)Φi(Z) are consistent for 1 ≤ i ≤ k, then the
theory AST + T + (∃Z)Φ1(Z)+ · · ·+(∃Z)Φk(Z) + scheme of choice is consistent,
too.

Demonstration: Without loss of generality we can suppose the generalized con-
tinuum hypothesis; the theory T is assumed to be consistent and thus there is

a countable model T of it. Let S = (S, Ẽ, Id) be the ultraproduct (with abso-

lute equality, say) of the model T over a nontrivial ultrafilter on ω and let A be
the expansion of S by “all” subsets of its field (more precisely we put q = {x ⊆
S;¬(∃y ∈ S) x = {z;S |= z ∈ y}} and assuming S and q are disjoint we define

A = (S ∪ q, Ẽ ∪ E|q, Id)). Then A is a model of AST + scheme of choice (cf.
[S1982]); the prolongation axiom is satisfied in A because S is saturated and the
axiom of cardinalities and the scheme of choice in A are consequences of the con-
tinuum hypothesis. By Loš’ theorem A |= T, moreover the class FN in the sense
of A is isomorphic to ω (in the following we neglect this isomorphism) and there is
t with [A |= Set(t)] & T = {Ψ;A |= Ψ ∈ FN ∩ t}. Therefore for 1 ≤ i ≤ k we get
A |= “there is no proof of inconsistency of the theory A1 + T + (∃Z)Φi(Z) (the
code of) which is an element of FN”, because for these i the theories A1 + T +
(∃Z)Φi(Z) are assumed to be consistent. Let us fix i so that 1 ≤ i ≤ k; the following
considerations (cf. [P-S1984]) are done in the model A. Since we suppose that there
is no proof of inconsistency of the theory A1 + T + (∃Z)Φi(Z) (the code of) which
is an element of FN , there is a model B |= A1 + T + (∃Z)Φi(Z) (with the abso-
lute equality, say) and we are able to choose a revealment C of B (see [S-V1980]);
according to the definition of revealment, the structure C = (C, E, Id) is a model of
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the same theory. Therefore the structure C is a model of the theory T and hence it
is elementarily equivalent to the structure (V, E, Id), thus there is an isomorphism
F of these structures (see [S1982]; both structures are fully revealed). The isomor-
phism F determines the system M of the images of classes of the model C by F
(in more detail: M = {F ′′Z; (∃X ∈ C) Z = {y;C |= y ∈ X}}) and let ∗ denote
the interpretation determined by this system (i.e. we define Cls∗(X) ≡ X ∈ M

and ∈ and = are left absolute). Then [(∃Z)Φi(Z)]
∗, because using C |= A1 one

is able to show, by induction w.r.t. the complexity of a formula Ψ, the equiva-
lence [C |= Ψ(X1, . . . , Xm)] ≡ Ψ

∗(F ′′{q;C |= q ∈ X1}, . . . , F
′′{q;C |= q ∈ Xm})

for each X1, . . . , Xm ∈ C (for F (y) = F ′′{q;C |= q ∈ y} is satisfied by an arbi-
trary y with C |= Set(y)). According to the normality of the formula Φi we get
(∀X ∈ M)(Φ∗

i
(X) ≡ Φi(X)), and hence there must be a class X satisfying Φi(X).

Summarizing we have proved A |= AST + T + (∃Z)Φ1(Z) + · · · + (∃Z)Φk(Z) +
scheme of choice. �

As an evident consequence of the previous metatheorem we get the impossibility
to express any of the axioms A5–A7 as a Π1-formula in the theory arising fromAST
+ the scheme of choice by the omission of the axiom in question. In fact, if for some
i = 5, 6, 7 there would be a normal formula Φ(Z) with one free variable so that
AST−i + the scheme of choice ⊢ Ai ≡ (∀Z)Φ(Z), then A1 + ZFFin + (∃Z)¬Φ(Z)

would be consistent (the theory ASTi + ¬Ai is consistent by [S1983] and [Ve1984])
and thus it would be possible to construct a complete theory T stronger than
ZFFin such that the theory A1 + T + (∃Z)¬Φ(Z) would be consistent and using
the previous metatheorem we would obtain also the consistency of the theory AST
+ ¬Ai + the scheme of choice, which is absurd.

It is not difficult to show the axioms A5 and A7 are not expressible by Σ1-
formulae — moreover there are no closed Σ1-formulae Θ1,Θ2 which could be con-
sistently added to AST and such that Θ1 would imply the axiom A5 in AST−5

+ the scheme of choice or Θ2 would imply A7 in AST−7 + the scheme of choice.
Investigating the complexity of the prolongation axiom it is sufficient to choose (in
ZF + CH, say) a countable model A |=AST + Θ1 and define the structure B as
the structure arising by expansion of “all” subsets of the model A as classes. It is
evident that B |= AST−5 + the scheme of choice and moreover B |= ¬A5 because
B |= (∃F )“F is a one-one mapping of FN onto V ”. Our assumption that Θ1 is
a Σ1-formula and A |= Θ1 imply B |= Θ1, which contradicts B |= ¬A5 and the as-
sumption AST−5 + the scheme of choice |= Θ1 → A5. Dealing with the axiom A7
we fix ℵ1-saturated model A |= AST + Θ2 such that card({x;A |= Set(x)}) = ℵ2
(one can construct such a model using the compactness theorem to the construction
of a model C |= AST + Θ2 for which card({x;C |= Set(x)}) = ℵ2 and define the
model A as the ultraproduct of C over a nontrivial ultrafilter over ω). The structure
B arising by addition of “all” parts of the model A is a model of AST−7 +¬A7 +
the scheme of choice and we can finish the proof as in the previous case.

The complexity of the axiom of choice was not seriously investigated up to now;
it remains as an open problem whether there is a normal formula Φ(Z) with one free
variable such that AST−6 + the scheme of choice ⊢ A6 ≡ (∃Z)Φ(Z). In particular
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it is not known if there is a model A |= AST and its supermodelB which is a model
of the theory AST−6 + ¬ A6 + the scheme of choice and such that A = B. Let us
note that models fulfilling these conditions must satisfy FNB ⊂ FNA, because the
axiom A6 is implied by the Σ1-formula

(∃R)[“R is a linear ordering of the universal class” &

& (∀f)(FN ⊆ dom(f)→ (∃n ∈ FN)〈f(n+ 1), f(n)〉 /∈ R)]

in the theory obtained fromAST−6 by the extension of the language by the constant
FN and by the extension of the axiomatic system by the formula defining the
constant FN .
We have mentioned that there are formulae which are simultaneously equiva-

lent in AST to a Π2-formula and a Σ2-formula. As an example of such formula
can serve the formula expressing elementary equivalence of models (FN, E, Id) and
(N, E, Id); this property is considered as a possible candidate for an axiom of the
alternative set theory (the theory AST with this axiom is more similar to Robin-
son’s nonstandard methods than AST itself), however the theory AST with the
negation of the axiom of elementary equivalence is also very interesting — imagine
e.g. the theory AST with “there is a proof of inconsistency of the formalization of
ZFFin” (which is consistent relatively to AST, but AST ⊢ “there is no proof of in-
consistency of the formalization of ZFFin the code of which is an element of FN”).
The property of elementary equivalence of models (FN, E, Id) and (N, E, Id) can
be expressed (see [S1983]) by the Π2-formula

(∀K, R)[(GB(K, R) & (∀K̃, R̃)(GB(K̃, R̃)→

→ (∀z ∈ K̃)(∃q ∈ K) R̃′′{z} = R′′{q}))→

→ (∀x ∈ K)(∀y ∈ N)(R′′{x} = {y} → y ∈ FN)]

and also as a Σ2-formula

(∃K, R)[GB(K, R) & (∀x ∈ K)(∀y ∈ N)(R′′{x} = {y} → y ∈ FN)]

(let us remind the formula y ∈ FN can be considered as a Π1-formula according to
the definition of this class).
Let S be a theory stronger or equal to A1 + ZFFin and weaker or equal to

AST + the scheme of choice. The following result shows that there are no proper
∆1-formulae in S, because each ∆1-formula in S is equivalent to a set-formula in
this theory. Let us note that the result we are going to formulate can be essentially
generalized to theories quite different from AST, however, such a generalization
exceeds the problems of this paper.

Metatheorem. For every pair of normal formulae Φ1(Z) and Φ2(Z) with one free
variable such that

AST + scheme of choice ⊢ (∃Z)Φ1(Z) ≡ (∀Z)Φ2(Z)
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there is a set-formula Ψ with

A1 + ZFFin ⊢ ([(∃Z)Φ1(Z)→ Ψ] & [Ψ→ (∀Z)Φ2(Z)]).

Demonstration: Let the symbol [0] denote the negation and [1] denote the empty
symbol. We are going to demonstrate our result in two steps.

(a) At first let us assume that there are closed set-formulae Ψ1, . . . ,Ψk such that
for each k-tuple of zeros and ones f (at least) one of the theories

A1 + ZFFin + [f(1)]Ψ1 + · · ·+ [f(k)]Ψk + (∃Z)Φ1(Z)

and

A1 + ZFFin + [f(1)]Ψ1 + · · ·+ [f(k)]Ψk + ¬(∀Z)Φ2(Z)

is inconsistent. Let Ψ denote the disjunction of all formulae of the form [f(1)]Ψ1 &
. . . & [f(k)]Ψk where f is a k-tuple of zeros and ones such that the theory A1 +
ZFFin + [f(1)]Ψ1 + · · ·+ [f(k)]Ψk +¬(∀Z)Φ2(Z) is inconsistent. The negation of
the formula Ψ is equivalent (in the predicate calculus) to the disjunction of (some)
formulae of the form [f(1)]Ψ1 & . . .& [f(k)]Ψk where f is a k-tuple of zeros and
ones such that the theory A1 + ZFFin + [f(1)]Ψ1 + · · · + [f(k)]Ψk + (∃Z)Φ1(Z)
is inconsistent. If the theory A1 + ZFFin + [f(1)]Ψ1 + · · · + [f(k)]Ψk + Θ is
inconsistent then A1 + ZFFin ⊢ [f(1)]Ψ1 & . . .& [f(k)]Ψk → ¬Θ and therefore
using the form of formulae the disjunction of which are the formulae Ψ and ¬Ψ we
get

A1 + ZFFin ⊢ ([¬Ψ→ ¬(∃Z)Φ1(Z)] & [Ψ→ ¬¬(∀Z)Φ2(Z)]).

(b) To obtain a contradiction let us suppose that there is no k-tuple of set-
formulae with the property we dealt with in the previous step. Let us enumerate
all set-formulae and let us construct by induction a complete theory T (consisting
of set-formulae only) stronger than ZFFin and such that both theories A1 + T +
(∃Z)Φ1(Z) and A1 + T + (∃Z)¬Φ2(Z) are consistent. In more detail: we deal with
the tree of formulae of the form [f(1)]Ψ1 & . . .& [f(k)]Ψk, where Ψ1, . . . ,Ψk are
first formulae in the chosen enumeration and f is a k-tuple of zeros and ones such
that both theories A1 + ZFFin + [f(1)]Ψ1+ · · ·+[f(k)]Ψk+(∃Z)Φ1(Z) and A1 +
ZFFin + [f(1)]Ψ1+ · · ·+[f(k)]Ψk+(∃Z)¬Φ2(Z) are consistent and the ordering of
which is defined so that [f(1)]Ψ1 & . . .& [f(i)]Ψi is before [f(1)]Ψ1 & . . .& [f(k)]Ψk

for 1 ≤ i ≤ k. Each level of the tree is finite (because the set of all k-tuples of zeros
and ones is finite) and assuming the negation of the assumption mentioned in the
case (a) the investigated tree is infinite. Hence there must exist an infinite branch
of this tree and it gives us a complete theory T stronger than ZFFin such that
for each finite subtheory S of T both theories A1 + ZFFin + S + (∃Z)Φ1(Z)
and A1 + ZFFin + S + (∃Z)¬Φ2(Z) are consistent; the use of the compactness
theorem gets the consistency of both theories A1 + T + (∃Z)Φ1(Z) and A1 + T +
(∃Z)¬Φ2(Z). If T is a theory with the required properties, then the theory AST
+ T + (∃Z)Φ1(Z)+ (∃Z)¬Φ2(Z) + scheme of choice is consistent according to the
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previous metatheorem, which contradicts the assumption AST + scheme of choice
⊢ (∃Z)Φ1(Z) ≡ (∀Z)Φ2(Z). �

The metatheorems proved in the paper can be even strengthened — e.g. one can
replace “scheme of choice” by the stronger “axiom of constructibility” introduced
in [S1985]. We have indicated in some cases a theory containing the axiom A4 as
a theory sufficient for the provability of an equivalence, however, in all such cases
it is enough to use only particular set-formulae which are consequences of A4 (the
negation of the axiom of infinity, the powerset axiom and so on).

In the end let us summarize some open problems in the area we dealt with:

(a) Is the equivalence of the axioms of choice and extensional coding provable
in the theory A1–A5 and A8? (Is there a Σ2-formula equivalent to the axiom of
extensional coding in the theory A1–A5 (or even in A1–A4)?)

(b) Is there a Π2-formula equivalent to the axiom of choice in the theory A1–A4?

(c) Is there a Σ1-formula which is equivalent to the axiom of choice in the theory
AST−6?

(d) Is the axiom of cardinalities equivalent to a Σ2-formula in the theory A1–A5
(or even in A1–A4)?

(e) The axiom of constructibility was formulated as a Σ3-formula; is it possible
to express it by a formula with lower complexity?
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