Semirings whose additive endomorphisms are multiplicative

Tomáš Kepka

Abstract. A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.

Keywords: semiring, additive endomorphism

Classification: 16Y60

In [10], R.P. Sullivan posed the problem of classifying AE-rings (i.e. rings whose additive endomorphisms are ring endomorphisms) and, more or less recently, several papers were published on this thème (see [1], [2], [3], [4], [6] and [9]). The original problem and the cited papers are concerned with associative rings only. However, it is the purpose of this short note to show that, in fact, every AE-ring is associative. Besides, some classes of AE-semirings are characterized and, again, all these semirings turn out to be associative. It seems to be an open problem whether there exist non-associative AE-semirings (or AE-nearrings) at all.

1. Introduction

- **1.1.** By a semiring we mean an algebra $S = S(+, \cdot)$ with two binary operations such that S(+) is a commutative semigroup and the multiplication is both left and right distributive with respect to the addition.
- **1.2.** Let S be a semiring. We put $\operatorname{Ida}(S) = \{x \in S; x+x=x\}$, $\operatorname{Idm}(S) = \{x \in S; xx=x\}$ and $\operatorname{Id}(S) = \operatorname{Ida}(S) \cap \operatorname{Idm}(S)$. Further, 1x=x and nx=(n-1)x+x for all $x \in S$ and $n \geq 2$.
- **1.3.** A semiring S is said to be
 - a-idempotent if x + x = x for every $x \in S$;
 - m-idempotent if xx = x for every $x \in S$;
 - a-unipotent if x + x = y + y for all $x, y \in S$;
 - associative if $x \cdot yz = xy \cdot z$ for all $x, y, z \in S$;
 - commutative if xy = yx for all $x, y \in S$;
 - a D-semiring if $x \cdot yz = xy \cdot xz$ and $zy \cdot x = zx \cdot yx$ for all $x, y, z \in S$;
 - a ring if S(+) is a group;
 - an AE-semiring if every endomorphism of S(+) is also an endomorphism of $S(\cdot)$.
- **1.4 Example.** Let S(+) be a commutative semigroup containing a unique idempotent element 0. Define a multiplication on S by xy=0 for all $x,y\in S$. Then $S=S(+,\cdot)$ is an AE-semiring.

214 T. Kepka

1.5 Example. Let S(+) be a commutative semigroup such that 2x+y+z=x+y+z for all $x,y,z\in S$ (e.g. S(+) idempotent or S(+) nilpotent of class at most 3). Put $S(\cdot)=S(+)$. Then $S=S(+,\cdot)$ is an AE-semiring.

2. Basic properties of AE-semirings

2.1 Proposition. Let f be an additive endomorphism of an AE-semiring S. Then f is an endomorphism of S, T = f(S) is a subsemiring of S and T is again an AE-semiring.

PROOF: Let g be an additive endomorphism of T. Define a transformation h of S by h(x) = gf(x) for every $x \in S$. Then h is an additive endomorphism of S and consequently $gf(x) \cdot gf(y) = h(x)h(y) = h(xy) = gf(xy) = g(f(x)f(y))$ for all $x, y \in S$. This shows that g is an endomorphism of T.

- **2.2 Proposition.** Let S be an AE-semiring. Then:
 - (i) S is a D-semiring.
 - (ii) For every $a \in S$, $S_{a,l} = aS = \{ax; x \in S\}$ is a subsemiring of S and an AE-semiring.
 - (iii) For every $a \in S$, $S_{a,r} = Sa = \{xa; x \in S\}$ is a subsemiring of S and an AE-semiring.
 - (iv) $a \cdot bc, ab \cdot c \in \text{Idm}(S)$ for all $a, b, c \in S$.

PROOF: (i), (ii) and (iii): The translations $x \to ax$ and $x \to xa$ are additive endomorphisms of S and 2.1 applies.

(iv): This follows from (i) and [7, Theorem III 1.2 (ii)].

- **2.3 Lemma.** Let S be an AE-semiring. Then:
 - (i) $Ida(S) = Id(S) \subseteq Idm(S)$.
 - (ii) nab = 2ab for all $a, b \in S$ and even n > 2.
 - (iii) nab = 3ab for all $a, b \in S$ and odd $n \ge 3$.

PROOF: (i): If $a \in Ida(S)$, then the constant transformation $S \to \{a\}$ is an additive endomorphism of S. Consequently, $\{a\}$ is a subsemiring of S and aa = a.

(ii): The transformation $x \to 2x$ is an additive endomorphism. Hence $4ab = 2a\,2b = 2ab$.

(iii): This follows immediately from (ii).

- **2.4 Lemma.** Let S be an AE-semiring. Then:
 - (i) $2ab \in \operatorname{Id}(S)$ for all $a, b \in S$.
 - (ii) $2a \in \operatorname{Id}(S)$ for every $a \in \operatorname{Idm}(S)$.
 - (iii) Both Idm(S) and Id(S) are ideals of the multiplicative groupoid $S(\cdot)$.

PROOF: (i): By 2.3 (ii), 2ab = 4ab, and so $2ab \in Ida(S)$. But Ida(S) = Id(S) by 2.3 (i).

(ii): This follows from (i) for b = a.

- (iii): If $a \in \text{Idm}(S)$ and $x \in S$, then $ax \cdot ax = aa \cdot x = ax$ and $xa \cdot xa = x \cdot aa = xa$ by 2.2 (i). Further, if $a \in \text{Ida}(S)$, then ax + ax = (a + a)x = ax and xa + xa = x(a + a) = xa.
- **2.5 Proposition.** Let S be an AE-semiring. Put $S_{(2)} = \{2x; x \in S\}$ and $S_{(3)} = \{3x; x \in S\}$. Then:
 - (i) Both $S_{(2)}$ and $S_{(3)}$ are subsemirings of S and AE-semirings.
 - (ii) $Id(S_{(2)}) = Id(S_{(3)}) = Id(S)$.
 - (iii) $uv \in \operatorname{Id}(S_{(2)})$ for all $u, v \in S_{(2)}$.

Proof: Use 2.1.

3. Idempotent AE-semirings

- **3.2.** Let S(+) be a semilattice. Define a multiplication on S by xy = x + y for all $x, y \in S$. Then x(y + z) = x + y + z = x + y + x + z = xy + xz and $S = S(+, \cdot)$ is a semiring. Clearly, S is an associative, commutative, a-idempotent and m-idempotent AE-semiring and we shall say that S is of type (AE3).
- **3.4 Theorem.** Let S be a non-trivial a-idempotent AE-semiring. Then S if of just one of the types (AE1), (AE2), (AE3), (AE4).

PROOF: Firstly, let $u, v \in S$ be such that $u \neq v$ and u + v = u. For every ordered pair $p = (a, b) \in S^{(2)}$, $a \neq b$, choose a congruence r_p of S(+) maximal with respect to $p \notin r_p$. Then $S(+)/r_p$ is a two-element semilattice, and hence there is an additive endomorphism f_p of S such that $f_p(S) = T = \{u, v\}$ and $f_p(a) \neq f_p(b)$. The endomorphism f_p is then multiplicative and consequently T is a subsemiring

216 T. Kepka

of S. Since $\bigcap r_p = \mathrm{id}_S$, S is a subdirect product of copies of T. On the other hand, S and T are m-idempotent by 2.3(i) and we have only the following four possibilities for the multiplication on T:

In the first case, $T(\cdot)$ is a semigroup of left zeros, and hence the same is true for $S(\cdot)$, since it is a subdirect product of copies of $T(\cdot)$. The second case is dual and, in the third case, T satisfies the identity x+y=xy. Then S satisfies also this identity, which means that $S(+)=S(\cdot)$. Now, finally, let the fourth case take place. Then $S(\cdot)$ is neither a semigroup of left zeros nor that of right zeros and $S(+) \neq S(\cdot)$. If $w, z \in S$ are such that w+z=w, then wz=z (see the first part of the proof). Further, if $r, s, t \in S$ and $r+s \neq r$, then $r+s+t \neq r$ (otherwise r+s=r+s+t+s=r+s+t=r).

Suppose, for a moment, that S(+) is not a chain. Then there are $a, b \in S$ such that $a \neq c = a + b \neq b$ and we have $a \neq b$, a + c = c = b + c, a = ac = a + d, b = bc = b + d, where d = ab. Define a transformation f of S as follows: If $x \in S$ and $a+x \neq a$, then f(x) = c; if a+x = a, $b+x \neq b$, then f(x) = a; if a+x = a, b+x = b, then f(x) = d. We are going to check that f is an additive endomorphism of S(+), i.e. that f(x+y) = f(x) + f(y) for all $x, y \in S$. With respect to the commutativity of +, it is sufficient to consider only the following cases:

- (1) $a + x \neq a$. Then $a + x + y \neq a$, f(x) = f(x + y) = c and $f(y) \in \{a, c, d\}$. However, c + c = c + a = c and c + d = c + a + d = c + a + c. Thus f(x + y) = f(x) + f(y).
- (2) a + x = a = a + y, $b + x \neq b$. Then a + x + y = a + y = a, $b + x + y \neq b$, f(x) = f(x + y) = a and $f(y) \in \{a, d\}$. However, a + a = a = a + d, and hence f(x + y) = f(x) + f(y).
- (3) a + x = a = a + y, b + x = b, $b + y \neq b$. Then a + x + y = a, $b + x + y \neq b$, f(x) = f(x + y) = a, f(y) = a, f(x + y) = a = a + a = f(x) + f(y).
- (4) a + x = a = a + y, b + x = b = b + y. Then a + x + y = a, b + x + y = b and f(x) = f(y) = f(x + y) = d. Thus f(x + y) = f(x) + f(y).

We have checked that f is an additive endomorphism of S. On the other hand, $a+a=a+d=a\neq a+b,\ b+d=b,\ f(a)=a,\ f(b)=c,\ f(a)f(b)=ac=a,\ f(ab)=f(d)=d$ and $b+d=b\neq c=b+a$. Consequently, $d\neq a,\ f(ab)\neq f(a)f(b)$ and f is not multiplicative, a contradiction.

We have proved that S(+) is a chain. If $x, y \in S$, then either x + y = x and xy = y or x + y = y and xy = y. This means that $S(\cdot)$ is the dual chain.

- **3.5 Corollary.** Every a-idempotent AE-semiring is m-idempotent and associative.
- **3.6 Remark.** In the proof of 3.4 we did not use the fact that the multiplication is distributive with respect to the addition. Hence, the same result remains true for algebras $S = S(+, \cdot)$ with two binary operations such that S(+) is a semilattice and every endomorphism of S(+) is also an endomorphism of $S(\cdot)$.

- **3.7 Corollary.** Let S be an m-idempotent AE-semiring. Then $S_{(2)} = \operatorname{Id}(S)$ and at least one of the following cases takes place:
 - (i) $S_{(2)}(\cdot)$ is a semigroup of left zeros and $2ab = a \cdot 2b = 2a \cdot b = 2a$ for all $a, b \in S$.
 - (ii) $S_{(2)}(\cdot)$ is a semigroup of right zeros and $2ab = a \cdot 2b = 2a \cdot b = 2b$ for all $a, b \in S$.
 - (iii) $S_{(2)}(+) = S_{(2)}(\cdot)$ and 2ab = 2ba = 2a + 2b for all $a, b \in S$.
 - (iv) $S_{(2)}(+)$ is a chain, $S_{(2)}(\cdot)$ is the dual chain and $2ab = 2ba \in \{2a, 2b\}$ for all $a, b \in S$.

4. Some consequences

4.1 Proposition. Let S be an AE-semiring such that $uv \in Id(S)$ for all $u, v \in S$. Then S is associative.

PROOF: Let $a, b, c \in S$, $d = a \cdot bc$ and $e = ab \cdot c$. Then both $S_{d,l}$, $S_{d,r}$ are contained in Id(S) (see 2.2) and they are a-idempotent AE-semirings. By 3.2, they are also m-idempotent and associative. Now, $d = dd = d(a \cdot bc) = (da)(db \cdot dc) = (da \cdot db)(dc) = d(ab \cdot c) = de = (a \cdot bc)e = (ae)(be \cdot ce) = (ae \cdot be)(ce) = (ab \cdot c)e = ee = e$.

- **4.2 Corollary.** Let S be an AE-semiring. Then:
 - (i) $S_{(2)}$ is an associative AE-semiring.
 - (ii) $2a \cdot bc = 2ab \cdot c$ for all $a, b, c \in S$.
 - (iii) S is associative, provided that the transformation $x \to 2x$ is either injective or projective.
- **4.3 Theorem.** Let S be an AE-ring. Then S is associative.

PROOF: By 2.2 (i), S is a D-ring, and hence S is the ring direct sum of two subrings S_1 and S_2 such that S_1 is m-idempotent and S_2 is nilpotent of class at most 3 (see [8, Theorem 2.16]). Clearly, S_2 is associative and S_1 is an AE-ring by 2.1. Now, without loss of generality, we can assume that S is m-idempotent. Then, by 2.4 (ii), 2x = 0 for every $x \in S$.

Take $0 \neq w \in S$ and, for every ordered pair $p = (a, b) \in S^{(2)}$, $a \neq b$, choose a congruence r_p of S(+) maximal with respect to $p \notin r_p$. Then $S(+)/r_p$ is a subdirectly irreducible 2-elementary group, and so there is an additive endomorphism f_p of S such that $f_p(S) = T = \{0, w\}$ and $f_p(a) \neq f_p(b)$. The endomorphism is multiplicative, and hence T is a subring of S. Clearly, T is associative, $\bigcap r_p = \mathrm{id}_S$, S is a subdirect product of copies of T, and therefore S is associative. \square

5. Unipotent AE-semirings

5.1 Lemma. Let S be an a-unipotent semiring and 0 = x + x, $x \in S$. Then $Ida(S) = \{0\}$ and x0 = 0 = 0x for every $x \in S$.

PROOF:
$$x0 = x(0+0) = x0 + x0 = 0$$
 and $0x = (0+0)x = 0x + 0x = 0$.

218 T. Kepka

5.2. Let S(+) be a semigroup with zero addition (i.e. there is an element $0 \in S$ such that x + y = 0 for all $x, y \in S$). Put $S(\cdot) = S(+)$. Then $S = S(+, \cdot)$ becomes an associative and commutative a-unipotent AE-semiring and we shall say that S is of type (AE5).

5.3. Consider the following two-element algebra $S = S(+, \cdot)$:

$$\begin{array}{c|cccc} + & 0 & 1 & & & \cdot & 0 & 1 \\ \hline 0 & 0 & 0 & & & \overline{0} & 0 & 0 \\ 1 & 0 & 0 & & 1 & 0 & 1 \end{array}$$

Clearly, S is an associative, commutative, m-idempotent and a-unipotent AE-semiring and we shall say that S is of type (AE6).

5.4 Theorem. Let S be a non-trivial AE-semiring such that S(+) is a semigroup with zero addition. Then S is of just one of the types (AE5), (AE6).

PROOF: Take $0 \neq w \in S$ and, for every ordered pair $p = (a,b) \in S^{(2)}$, $a \neq b$, choose a congruence r_p of S(+) maximal with respect to $p \notin r_p$. Then $S(+)/r_p$ is a two-element semigroup with zero addition, and hence there is an additive endomorphism f_p of S such that $f_p(S) = T = \{0, w\}$ and $f_p(a) \neq f_p(b)$. The endomorphism is multiplicative and T is a subsemiring of S. Since $\bigcap r_p = \mathrm{id}_S$, S is a subdirect product of copies of T. With regard to 5.1, we have only the following two possibilities for the multiplication in T:

$$\begin{array}{c|cccc} & 0 & w & & & & 0 & w \\ \hline 0 & 0 & 0 & & & & 0 & 0 & 0 \\ w & 0 & 0 & & & w & 0 & w \end{array}$$

In the first case, $T(+) = T(\cdot)$ and consequently $S(+) = S(\cdot)$, i.e. S is of type (AE5). Now, let ww = w. Since T is commutative and m-idempotent, S is so and, moreover, S is of type (AE6), provided that S contains just two elements. Assume that this is not true and take $a, b \in S$, $a \neq 0 \neq b \neq a$. Then either $ab \neq a$ or $ab \neq b$ and we can assume that $ab \neq a$, the other case being similar. Define a transformation f of S by f(a) = 0 and f(x) = x for every $x \in S$, $x \neq a$. Since f(0) = 0, f is an endomorphism of S(+), and hence f is an endomorphism of $S(\cdot)$. Now, 0 = 0b = f(a)f(b) = f(ab) = ab. Finally, define an endomorphism g of S(+) by g(a) = g(b) = a and g(x) = 0 for every $x \in S$, $a \neq x \neq b$. Again, g is multiplicative and a = aa = g(a)g(b) = g(ab) = g(0) = 0, a contradiction. \Box

5.5 Corollary. Let S be an AE-semiring such that S(+) is a semigroup with zero addition. Then S is associative and commutative.

- **5.6 Proposition.** Let S be an a-unipotent AE-semiring. Then:
 - (i) $S_{(3)}$ is an AE-ring, and hence $S_{(3)}$ is associative.
 - (ii) $3a \cdot bc = 3ab \cdot c$ for all $a, b, c \in S$.

PROOF: We have 3x + 0 = x + 2x + 0 = x + 0 + 0 = x + 0 = x + 2x = 3x for every $x \in S$ and this shows that $S_{(3)}$ is a ring.

References

- [1] Birkenmeier G., Heatherly H., Rings whose additive endomorphisms are ring endomorphisms, Bull. Austral. Math. Soc. **42** (1990), 145–152.
- [2] Dhompongsa S., Sanwong J., Rings in which additive mappings are multiplicative, Studia Sci. Math. Hungar. 22 (1987), 357–359.
- [3] Dugas M., Hausen J., Johnson J.A., Rings whose additive mappings are multiplicative, Periodica Math. Hungar. 23 (1991), 65–73.
- [4] Feigelstock S., Rings whose additive endomorphisms are multiplicative, Periodica Math. Hungar. 19 (1988), 257–260.
- [5] ______, Additive group of rings, Vol. II, Pitman Research Notes in Math., Series 169, Longman Scient. & Techn., New York, 1988.
- [6] Hirano Y., On rings whose additive endomorphisms are multiplicative, Periodica Math. Hungar. 23 (1991), 87–89.
- [7] Ježek J., Kepka T., Němec P., Distributive groupoids, Rozpravy ČSAV 91/3 (1981).
- [8] Kepka T., On a class of non-associative rings, Comment. Math. Univ. Carolinae 18 (1977), 265–279.
- [9] Kim K.H., Roush F.W., Additive endomorphisms of rings, Periodica Math. Hungar. 12 (1981), 241–242.
- [10] Sullivan R.P., Research problem no. 23, Periodica Math. Hungar. 8 (1977), 313-314.

FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAHA 8, CZECH REPUBLIC

(Received November 30, 1992)