Comment.Math.Univ.Carolin. 34,2 (1993)229-237

On the numerical range of operators
on locally and on H-locally convex spaces

EDvVARD KRAMAR

Abstract. The spatial numerical range for a class of operators on locally convex space was
studied by Giles, Joseph, Koehler and Sims in [3]. The purpose of this paper is to consider
some additional properties of the numerical range on locally convex and especially on
H-locally convex spaces.
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1. Introduction.

Let X be a locally convex Hausdorff space over the real or complex field K. Each
system of seminorms P = {pn,a €A} inducing its topology will be called a cali-
bration. Such a space is said to be H-locally convex with respect to a calibration
P if P consists of Hilbertian seminorms, i.e. for each p, € P there is a semi-inner
product (,)q (it is only nonnegative definite) such that p2(z) = (2,2)a, = € X.
Such spaces have been studied e.g. in [6], [7] and [8].

For a given calibration P we denote by @ p(X) the algebra of quotient bounded
operators on X, i.e. the set of all linear operators 7" on X for which

pa(Tz) < Copalzr), z€X, a€l
and by Bp(X) the algebra of universally bounded operators on X, i.e. the set of

all T € Qp(X) for which C' = Cy, is independent of @ €A ([3]). The family Qp(X)
is a unital L. m.c. algebra with respect to seminorms P = {qq, @ €A} where

4a(T) = sup{pa(Tx) : pa(z) <1, z€ X}, a€pn, TeQp(X)
and Bp(X) is a unital normed algebra with respect to the norm
1T p = sup{ga(T) : @ €1}

For each a €A let J, denote the null space of p, and X, the quotient space X/ J,.
This is a normed space with the norm ||z4la := pa(), Ta = = + Ja, and Xq is the
completion of X. For a given T € Q p(X) we define T, on Xy by Thxg := (Tx)q,
and denote by T, its continuous linear extension on X4 ([3]).

Let (X, P) be an H-locally convex space. Then an operator 7' € @p(X) has an
adjoint operator TV if and only if (T, ) = (z,T%)q for each o €A and z,y € X.
In this case (T0) = (Tn)* for all a €A ([5]) where (Ty)* is the adjoint operator of
Tva in the Hilbert space )N(a.
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2. The spatial numerical range.

The spatial numerical range for a given operator T € Q p(X) in a locally convex
space (X, P) is defined by

VX, P,T) = JV{(Xa: |l -l Ta) s 0 €0}

where on the right hand side there are numerical ranges on normed spaces )N(a. The
above numerical range has the usual properties ([3])

V(X,PAT +puI) =AV(X,P,T)4+u, TeQpX), MNpeK
and
VIX,P,T+S)CV(X,PT)+V(X,P,S), T,Se@QpX).
We shall consider some additional properties of the numerical range in locally convex
and especially in H-locally convex spaces. B N
Let (X, P) be an H-locally convex space. Then X, are Hilbert spaces and V (X4,

Il - I, To) are convex sets. Unfortunately, their union i.e. V(X, P,T) is in general
not convex. In [3] there was defined the algebra numerical range of an element a

for a unital L.m.c. algebra (A, P) as

V(A P.a) = {V(4a || las aa), o €}

where A, are quotient algebras with respect to the null spaces Ng, of go € P and
aq = a + Ng, |aalla = ¢a(a). In particular, for the l.m.c. algebra Qp(X) the
following relation holds

(2.1) V(Qp(X = J{IVB(Xa). |l llas Ta), a €n}

where on the right hand side there are algebra numerical ranges on Banach algebras
B(Xa) ([3])-

For a locally convex space (X, P) the following inclusions were proved in [3]:
V(X,P,T) Cc V(Qp(X),P,T) C oV (X,P,T) where co M denotes closed convex
hull of a set M. For an H-locally convex space we have
Theorem 2.1. Let (X, P) be an H-locally convex space and T € Qp(X). Then

() V(X,P,T) C V(Qp(X),P,T) C V(X,P,T),

(i) V(Qp(X),P,T) =V (X,PT).

PRrROOF: We have to prove the second inclusion in (i). Let us take into account the
connection between the spatial and the algebra numerical range in Hilbert spaces X

(2.2) V(Qp(X = J{IV(BXa) |l lla: Ta), a €a} =

= U{V(XO“ ” : ”Olvfa)v @ EA} - U{V(XO“ ” : ”OHTVOé)v « EA} = V(X7 P, T)

Thus (i) holds and taking the closure implies (ii). O
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Remark. The relation (ii) can also be found in [3] for the special case when X is
a product of Hilbert spaces.

When P is a directed family, V(Qp(X), P,T) is a convex set ([3]) and we have

Corollary 2.2. Let (X, P) be an H-locally convex space and P a calibration such
that P is directed. Then for T € Qp(X) the set V(X, P,T) is convex.

3. The numerical range and the spectrum.

Let T € Qp(X). Then the number A € K is in the resolvent set (A € o(Q,T))
if and only if there exists (T — AI)™! € Qp(X). The spectrum of T is the set
a(Q,T) = 0(Q,T)¢ ([6]). Let 0o (Tw) denote the spectrum of Ty, in X. Then ([3])

Proposition 3.1. If (X, P) is a complete locally convex space and T € Qp(X),
then

o(Q.T) = J{oa(Ta), acn}.

As in a Banach space we can define the following four main subsets of the spec-
trum: 0,(Q,T), 0c(Q,T), 0+(Q,T) and 04(Q,T) — the point, the continuous, the
residual and the approximate spectrum respectively.

Definition 3.2. For T € Qp(X) and A € K in a locally convex space (X, P) we
have
(i) A € 0p(Q,T) if and only if ker(T — AI) # {0},
(ii) A € 0.(Q,T) if and only if there exists (T — AI)~! on the set im (7' — AI)
which is dense in X and (T — AI)~! ¢ Qp(X),
(iii) X € 0,-(Q,T) if and only if (T — A\I)~! exists on the set im (7' — AI) which
is not dense in X,
(iv) A ¢ 04(Q,T) if and only if for each o €A there exists C, > 0 such that
pa((T — AD)z) > Copalz), z € X.

Let us write down the following connection.

Proposition 3.3. For T € Qp(X) in a locally convex space (X, P) the following
holds

UU«(Q) T) U UT(QvT) = U(QvT)

PROOF: Let A € 04(Q,T)°Nor(Q,T)¢ and y € X. Since im (T" — AI) is dense,
there exists a net {xs5} such that y5 := Tas — Axy — y. Since A\ ¢ 04(Q,T)
by the above definition there exists on im (7" — AI) the inverse operator which is
continuous in the sense po (T — M) 712) < Dapa(2), a €A, z € im (T — AI). Hence
the sequence z5 = (T — M)~ lys is also convergent, 5 — z and by continuity
of T — AI it follows (T' — Al)xz = y. Thus, im (T — AI) = X and by the above
inequality (T'— AI)~! € Qp(X), which means A € o(Q,T)¢. The reverse inclusion
0a(Q,T)Uor(Q,T) C 0(Q,T) is obvious. O

Some connections between parts of the spectrum on X and on the quotient spaces
X are
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Proposition 3.4. For T € Qp(X) on a separated locally convex space (X, P) the
following two relations hold:

(i) UP(QvT) C U{Up(jja)va EA}v
(ii) 04(Q,T) = U{0a(Ta),x €A}.

PRrROOF: (i) We may choose A =0 € 0,,(Q,T"). Then there is some = # 0 such that
Tz = 0. Since X is separated there exists some €A such that pg(z) # 0, hence
rg is a nonzero vector in ker(fg). Thus, 0 € ap(fﬁ) C U{Up(fa), a €A}

(ii) Again we may choose A = 0 ¢ 04(Q,T). Then for each o €A there ex-
ists Co > 0 such that pa(Tz) > Capa(z), z € X and consequently |[Tazalla =
Ca HwaHm Zao € Xqo. The same estimate then holds on the space Xa This means
0 ¢ 04(Ty) for all & €A. Conversely, suppose 0 ¢ 04(T) for all a €A, then for each

o €A there is some Cy > 0 such that |Taza| > Caollzal, za € Xa, in particular
we have the same estimate for T, and it follows

pa(Tz) > Coapa(x), € X, a €A,

which means 0 ¢ 04(Q,T). O

Corollary 3.5. For T € Qp(X) in a separated locally convex space (X, P), A €
04(Q,T) if and only if there exists an o €A and a sequence {zn} C X, {zn} C J§
such that po((T — M)xy) — 0.

We can prove also a result concerning the boundary points of the spectrum.
There it must be supposed an additional assumption since the spectrum in general
is not closed.

Theorem 3.6. Let (X, P) be a complete separated locally convex space and T €

Qp(X). Then
o(Q,T)NAc(Q,T) C 0a(Q,T).

PRrROOF: Let A € 0(Q,T) N Jo(Q,T). Then there exists an o €A such that A €

o(Ty). If A were an inner point of o(T4), there would exist an open neighborhood S
with the property A € S C 0(T,). Then S would be contained also in o(Q,T) and
A would not be a boundary point of the spectrum. Thus, A € do(T,). By such

a theorem for normed spaces ([1]), A € 04(T4) and by Proposition 3.4 we have
A€ 0q(Q,T). O

In the following we shall consider the connections between the spectrum and the

numerical range of an operator. The following result is basic to this subject ([3]).

Theorem 3.7. Let (X, P) be a complete separated locally convex space and T €

QP(X) Then
o(Q,T) C V(X,P,T).

Let us take A € 0,(Q,T), then there is some a €A such that A € ap(fa) C
V(Xa, | - llas Ta), consequently the following holds
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Proposition 3.8. Given a locally convex space (X, P) and T € Qp(X), then

op(Q,T) C V(X,P,T).

Let, now, (X, P) be an H-locally convex space.

Proposition 3.9. Let (X, P) be an H-locally convex space, let T € Bp(X) and
A € V(X, P, T) with the property |\| = ||T||p. Then X € 04(Q,T).

PROOF: Let A € V(X, P,T). Then A is in some V(Xq, || ||a, Ta) and by assumption
Al < |1 Tall < IT||p = ||, hence |A| = || T, ||. By a similar theorem for Hilbert spaces
([4]), and by Proposition 3.4 it follows A\ € 04(T) C 04(Q,T). O

In the Hilbert space the convex hull of the spectrum of a normal operator is equal
to closedness of the numerical range. A generalization of this result is

Theorem 3.10. Let (X, P) be a complete H-locally convex space, let T € Qp(X)

be an operator for which T? exists and let T be normal operator. Then
@wa(Q,T) =V (X,P,T).
PRroOOF: First, by Theorem 3.7, c00(Q,T") C 0V (X, P,T). Conversely, since T is

normal, 707 = TT9, all operators Ta are normal, too. Thus, in Hilbert spaces Xa
we have

c00(Ta) = V(Xa, |- las Ta) = V(B(Xa), | - llas Ta), o €.

Let us take the union for all a €A, then (2.1) implies

V(Qp(X U{V | Nlos Ta), @ €0} = U{coa Ta),a €0} C
C co U{a(fa), a €A} =coo(Q,T).

By Theorem 2.1

V(X,P,T)=V(Qp(X),P,T) C @o(Q,T).
O

Corollary 3.11. Let (X, P) be a complete H-locally convex space and T € Q p(X)
an operator such that TO exists and let T' be normal. When P is a calibration such
that P is directed then

coo(Q,T)=V(X,P,T).

Let us denote by d(A, M) the distance between A and the set M in the complex
plane. Then
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Theorem 3.12. Let (X, P) be a complete H-locally convex space, let T € Q p(X)
and A\ ¢ V(X,P,T). Then (T — X\I)~! € Bp(X) and

(3.1) (T =AD" p < (O VX PT)) ™

PROOF: One may suppose A = 0. Let 0 ¢ V(X,P,T), then by Theorem 3.7,
0 € p(Q,T) and by Proposition 3.1, 0 € p(Ty) for each v €A. Thus

Hi;lxaHa < Hi;lHa”xa”aa o € Xa

for each a €A and then it is easy to see that pa (T 'z) < |75 !apalz), for all
z € X and o €A. Hence

(32) 4T <|T5 oy aen.

For each @ €A the inclusion in (2.2) implies 0 ¢ V(Xa, || - |la, Ta). By an analogous
inequality as is (3.1) for Hilbert space ([4]) and again by the inclusion in (2.2) we
obtain

175 Moo < (00, V (X |- las To))) ™ < (d(0, | {V(Xas || lla Tar), @ €83) 7

d(O,U{V()A(:a, H ’ ”aafa)va EA}))_l = (d(oa V(Xv Pv T)))_l

By (3.2) we obtain ¢ (T~1) < (d(0,V (X, P,T)))~! for each o €aA. Thus, T~1
Bp(X) and [T~ p < (d(0,V(X, P,T)))"". O

In a separated complex locally convex space (X, P), an operator T € Qp(X) is
hermitian if V(X, P,T) C R ([3]). This definition is consistent with the notion of
a hermitian operator in an H-locally convex space ([6]), namely

Proposition 3.13. In a complex H-locally convex space for an operator T €
Qp(X) the following two relations are equivalent:

(i) V(X,P,T)CR,

(ii) (Tz,y)a = (2, TY)a, @ €A, x,y € X.

Proor: If V(X, P,T) C R, then V(Xas |l llas Ta) C R for all a €A, consequently
Ty = Tp. Thus, (Tz,y)a = (z, Ty)a, o €A, z,y € X. Conversely, when the last
equalities are valid, they hold for all Ty, too, hence V(Xa, || - |la, Ta) C R for all
a €A, thus, V(X, PT)C'R O
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Definition 3.14. Let (X, P) be a locally convex space and T € Qp(X).

(i) When o(Q,T) is a bounded set, we define the spectral radius of T by the
relation

r(Q,T) =sup{|A| : A € 0(Q,T)}.

(i) When V (X, P,T) is bounded, we define the numerical radius of T by the
relation

v(Q,T) =sup{|A\ : A e V(X,P,T)}.

By r(T) and v(Ty) we denote the spectral radius and the numerical radius of
T, in X, respectively. By the above definition the following equality follows

(3.3) v(Q, T) = sup{v(Tn),a €A}

It was proved in [3] that for T € Q p(X) the numerical range is bounded if and only
if T € Bp(X).

Proposition 3.15. For T € Bp(X) in a locally convex space (X, P) the following
holds:

PROOF: The first inequality follows by Theorem 3.7. Let us prove the second
one. Clearly, v(To) < |[Talla = ¢a(T) < ||T||p for each a €A, hence taking the
supremum we obtain v(Q,T) < ||T||p- O

In [3] it was also proved that when a hermitian operator T € Qp(X) has
a bounded spectrum, then T' € Bp(X). For an H-locally convex space one can
somewhat generalize this result.

Theorem 3.16. Let (X, P) be a complete H-locally convex space and T € Qp(X)
an operator for which T? exists, let T be normal and let 7(Q,T) < oc. Then the
following two assertions hold:

(1) Te BP(X)a

(ii) r(@Q,T) =v(Q,T) = [T p.

PROOF: Using the equality (T )* = (ﬁ)a ([5]), normality of T" implies the normal-
ity of all T,,, a €A. Consequently

9a(T) = |Talla = ||Tva||a = T(Ta) <r(@Q,T), aen.

Thus, sup ¢o(7T) < oo, which implies T € Bp(X) and the inequality ||T|p <
r(Q,T). The reverse inequality follows by Proposition 3.15. O
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Corollary 3.17. Let (X, P) be as above and let S,T € Bp(X) be such that their
adjoint exist and they are normal, then the following inequality holds

v(Q,5T) < v(Q, S)v(Q,T).

The numerical radius in locally convex spaces has the same properties as the one
in normed spaces.

Proposition 3.18. Let (X, P) be a locally convex space. Then the numerical
radius is a norm on Bp(X), equivalent to ||-|| p. Precisely, the following inequalities
hold:

e Tlp <@ T) < |Tlp. T € Bp(X).

ProOF: Clearly, by the definition v(Q,T) > 0 and v(Q,\T) = |A\|v(Q,T). If
v(Q,T) =0, by (3.3), v(Ta) = 0 and hence T, = 0, for all &« €A, so T = 0. For
S, T € Qp(X) and all a €A the following inequality holds:

0(Se + To) < 0(Sa) + v(Tw).

Then by (3.3) also v(Q,S +T) < v(Q,S) + v(Q,T). For any o« €A we have the
inequality e - || Tl < v(Tw) ([1]). Then such an inequality holds also for the
supremum, thus, the left inequality in the above proposition is proved. O

For the case of an H-locally convex space we can generalize more inequalities
from the Hilbert space.

Proposition 3.19. Let (X, P) be an H-locally convex space and S,T € Bp(X).
Then the following inequalities hold:

(i) 3ITIp <v(@,T) < |T|p.
(ii) v(Q,ST) < 4v(Q, S)v(Q,T),
(iii) v(Q,T™) <v(Q,T)", n € N.

PROOF: (i) Since X, are Hilbert spaces, we have |Tylla < 20(T,), for all a €A.
Taking the supremum we obtain |T||p < 20(Q,T'). The second inequality is known
by the previous proposition. The estimate (ii) follows by (i). For each o €A the
Berger inequality v(T7) < v(Ta)™ n € N, holds and taking the supremum we
obtain (iii). O

Finally, we give a result concerning Q-equivalent calibrations. Two calibrations
P and P’ on a locally convex space X are Q-equivalent (denoted by P ~ P’) if each
seminorm p € P is equivalent to some p’ € P’ and vice versa (see [5]). It is easy to
see that P ~ P’ implies Qp(X) = Qp/(X).

Theorem 3.20. Let (X, P) be a complex complete locally convex space and T €
Qp(X) such that o(Q,T) is bounded. Then

@o(Q,T) = eV (X,P,T): P~ P}.
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PROOF: Since o(Q,T) is independent of calibrations, by Theorem 3.7, coo(Q,T) C
coV(X,P',T), for all P’ ~ P, hence coo(Q,T) C N{ecoV (X, P',T): P' ~ P}. Let
us prove the opposite inclusion. Since coc(Q,T) is compact and convex it is an
intersection of the open circular discs containing o(Q,T). Take any such an open
disc S = {\:|X—=Xg| <r'}. Clearly 7(Q,T — X\oI) < r’. Let us choose a number
e such that 0 < & < v/ —r(Q,T — M\oI). Then by [3] there exists a calibration
P’ ={pl,,a €A} on X which has the same indexing as P such that for each a €A the
corresponding norm || - ||, on X is equivalent to || - || o, such that T —XgI € Bpr(X)
and such that

[

r(Q,T = XoI) < ||T = NIl pr <7(Q,T — XoI) + .

It is obvious that P’ and P are Q-equivalent. Suppose that A € V(X, P/, T) then
A— X € V(X,P',T — X\gI) and by Proposition 3.15 we have

A=l < IT = Xol|lpr <7,

which means that S contains V (X, P/, T) and then also ¢o V (X, P/, T). Thus, the
set N{coV (X, P',T) : P’ ~ P} is contained in every circular disc that contains
o(Q,T) and the opposite inclusion is proved. O
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