Non-commutative Gelfand-Naimark theorem

Janusz Migda

Abstract. We show that if Y is the Hausdorffization of the primitive spectrum of a C^* -algebra A then A is *-isomorphic to the C^* -algebra of sections vanishing at infinity of the canonical C^* -bundle over Y.

Keywords: C^* -algebra, C^* -bundle, sectional representation

Classification: 46L05, 46L85

Terminology and notations.

A function $f: X \to \mathbb{R}$ of a topological space X is called vanishing at infinity if for every $\varepsilon > 0$ there is quasicompact $K \subset X$ with $|f(y)| < \varepsilon$ for every $y \notin K$. By an H-family $\varphi : A \to \xi$ of a C*-algebra A we mean a family $\varphi = \{\varphi_x\}_X$ of *-epimorphisms $\varphi_x : A \to \xi_x$ where X is a topological space, $\xi = \{\xi_x\}_X$ is a family of C*-algebras and for every $s \in A$ the function $x \mapsto ||\varphi_x(s)||$ is upper semicontinuous and vanishing at infinity (or equivalently for every $s \in A$ and $\varepsilon > 0$ the set $\{x \in X \mid ||\varphi_x(s)|| \ge \varepsilon\}$ is quasicompact and closed in X). If $\varphi : A \to \xi$ is an H-family and $\xi = \{\xi_x\}_X$ we denote by $b(\varphi)$ the triple $(p, \coprod \xi, X)$ where $p : \coprod \xi \to X$ is the canonical projection of disjoint sum, and $\coprod \xi$ is equipped with the topology generated by all tubes $T(V, s, \varepsilon) = \coprod_{x \in V} B(\varphi_x(s), \varepsilon)$ (disjoint sum of open balls), V open in X, $s \in A, \varepsilon > 0$. By the same argument as in [1], [5], $b(\varphi)$ is a C*-bundle, by which we mean an (H) C*-bundle defined as in [3]. It is easy to see that for any C*-bundle η the set $\Gamma_0(\eta)$ of sections vanishing at infinity is a C*-algebra. For every H-family $\varphi : A \to \xi$ the formula $\tilde{\varphi}(s)(x) = \varphi_x(s)$ gives a *-homomorphism $\tilde{\varphi} : A \to \Gamma_0(b(\varphi))$.

Example 1. Let $c : \check{A} \to X$ be a continuous map of the primitive spectrum \check{A} of a C^* -algebra A onto a Hausdorff space X. Let $\overline{c}_x : A \to A/\bigcap c^{-1}(x)$ be the quotient map for every $x \in X$. If W is a closed subset of \check{A} and $s \in A$ then there is $w_0 \in W$ such that $||s + \bigcap W|| = \sup\{||s + w|| \mid w \in W\} = ||s + w_0||$. Indeed the first equality is well known (cf. e.g. [4, 1.9]) and the existence of w_0 is an easy consequence of [2, 3.3.6]. Using this we see that for every $s \in A$ and $\varepsilon > 0$ we have $c(\{w \in \check{A} \mid ||s + w|| \ge \varepsilon\}) = \{x \in X \mid ||\overline{c}_x(s)|| \ge \varepsilon\}$, whence we obtain an H-family \overline{c} .

Example 2. For every C^* -bundle η the family of evaluations is an *H*-family of the C^* -algebra $\Gamma_0(\eta)$.

Theorem 1 (Stone-Weierstrass theorem for *H*-families). Let $\varphi : A \to \xi$ be an *H*-family, and *B* a C^* -subalgebra of *A*. Assume that $B + (\ker \varphi_x \cap \ker \varphi_y) = A$ for all $x, y \in X$. Then $B + \bigcap_X \ker \varphi_x = A$.

PROOF: Taking the quotient $A / \bigcap_X \ker \varphi_x$ and factorizations of all of φ_x we may assume that $\bigcap_X \ker \varphi_x = 0$. Let hull $(\ker \varphi_x)$ denote the set $\{w \in A \mid \ker \varphi_x \subset$ w. Then \bigcup_X hull (ker φ_x) is a dense subset of \check{A} , whence, by the openness of the canonical map $P(A) \to \dot{A}$, $\bigcup_X \operatorname{im} P(\varphi_X)$ is dense in the weak closure P(A) of the pure state space P(A), here $P(\varphi_x): P(\xi_x) \to P(A)$ is the canonical map induced by φ_x . We shall show that for any $f \in \overline{P(A)}$ there are $x \in X$ and a map $g: \xi_x \to \mathbb{C}$ with $f = g \circ \varphi_x$. Choose a net $\{f_i\}_I \subset \bigcup_X \operatorname{im} P(\varphi_x)$ such that $f_i \to f$. For every $i \in I$ there are $x_i \in X$ and $g_i \in P(\xi_{x_i})$ with $f_i = g_i \circ \varphi_{x_i}$. Let $x_i \to x$ and $a \in \ker \varphi_x$. If $|f(a)| = 2\delta > 0$ then there is $i_1 \in I$ such that $|f_i(A)| > \delta$ for every $i \geq i_1$. Then $\|\varphi_{x_i}(a)\| \geq |g_i(\varphi_{x_i}(a))| = |f_i(a)| > \delta$ for every $i \geq i_1$. Since the function $y \mapsto \|\varphi_y(a)\|$ is upper semicontinuous, the set $U = \{y \in X \mid \|\varphi_y(a)\| < \delta\}$ is a neighborhood of x. Hence, there is $i_2 \in I$ such that $x_i \in U$ for every $i \geq i_2$. Suppose now that $i \ge i_1$ and $i \ge i_2$. Then we obtain $\delta > \|\varphi_{x_i}(a)\| > \delta$ and this contradiction shows that f(a) = 0. Hence ker $\varphi_x \subset \ker f$ and this shows the existence of g. Taking a subnet if necessary, we see that if x is an accumulation point of $\{x_i\}_I$ then there is a map $g: \xi_x \to \mathbb{C}$ such that $f = g \circ \varphi_x$. Suppose that the set of accumulation points of $\{x_i\}_I$ is empty. Let $s \in A$ and $\varepsilon > 0$. Choose a quasicompact $K \subset X$ with $\|\varphi_x(s)\| < \varepsilon$ for $x \notin K$. Then for sufficiently large $i \in I$

$$|f(s)| \le |f(s) - f_i(s)| + |f_i(s)| < \varepsilon + |g_i(\varphi_{x_i}(s))| < 2\varepsilon.$$

Hence f = 0 and the existence of g (for every $x \in X$) is obvious. Now, let $f_1, f_2 \in \overline{P(A)} \cup \{0\}$ and $f_1 \neq f_2$. Take $s \in A$ such that $f_1(s) \neq f_2(s)$, choose $x_1, x_2 \in X$ and maps g_1, g_2 with $f_i = g_i \circ \varphi_{x_i}$, i = 1, 2. Since $A = B + (\ker \varphi_{x_1} \cap \ker \varphi_{x_2})$, there are $t \in B$ and $t' \in (\ker \varphi_{x_1} \cap \ker \varphi_{x_2})$ such that s = t + t'. We obtain $f_1(t) = f_1(s) \neq f_2(s) = f_2(t)$. Thus B = A by Stone-Weierstrass-Glimm theorem [2, 11.5.2].

Corollary 1. Let η be a C^* -bundle over X, B and A C^* -subalgebras of $\Gamma_0(\eta)$ and $B \subset A$. Assume that for all $x, y \in X$ and $s \in A$ there is $t \in B$ with t(x) = s(x) and t(y) = s(y). Then B = A.

PROOF: Let $e_x : \Gamma_0(\eta) \to \eta_x$, $e_x(s) = s(x)$ be the evaluation map for every $x \in X$. Let $\xi_x = e_x(A)$ and $\varphi_x : A \to \xi_x$ denote the restriction of e_x for every $x \in X$, we obtain an *H*-family $\varphi : A \to \xi$. It is obvious that by our assumption we have $B + (\ker \varphi_x \cap \ker \varphi_y) = A$ for every $x, y \in X$. Now, the result follows immediately from Theorem 1.

Corollary 2. Let $\varphi : A \to \xi$ be an *H*-family. Assume that ker $\varphi_x + \ker \varphi_y = A$ whenever $x, y \in X, x \neq y$. Then $\tilde{\varphi} : A \to \Gamma_0(b(\varphi))$ is a *-epimorphism.

PROOF: Let $x, y \in X$, $x \neq y$. If $w \in \xi_x$, $v \in \xi_y$ then by the condition ker $\varphi_x + \ker \varphi_y = A$ there is $t \in A$ such that $\varphi_x(t) = w$ and $\varphi_y(t) = v$. This implies that for every $s \in \Gamma_0(b(\varphi))$ there is $t \in A$ such that $\tilde{\varphi}(t)(x) = s(x)$ and $\tilde{\varphi}(t)(y) = s(y)$. Now,

applying Corollary 1 to C^* -algebras $\Gamma_0(b(\varphi))$ and $\tilde{\varphi}(A)$ we obtain $\tilde{\varphi}(A) = \Gamma_0(b(\varphi))$.

Corollary 3. Let $c : \check{A} \to X$ be a continuous map onto a Hausdorff space X. Then $\widetilde{\overline{c}} : A \to \Gamma_0(b(\overline{c}))$ is a *-isomorphism.

PROOF: Obviously ker $\tilde{c} = \bigcap_X \ker \bar{c}_x = \bigcap_X \bigcap c^{-1}(x) = \bigcap \check{A} = \{0\}$. If $x, y \in X$, $x \neq y$, then $c^{-1}(x)$, $c^{-1}(y)$ are closed disjoint subsets of \check{A} . Assume $p \in \check{A}$ is a primitive ideal such that $(\ker \bar{c}_x + \ker \bar{c}_y) \subset p$. Then $\bigcap c^{-1}(x) \subset p$, hence $p \in c^{-1}(x)$. Similarly $p \in c^{-1}(y)$ and this contradiction shows that the closed ideal $\ker \bar{c}_x + \ker \bar{c}_y$ is equal to A. Now the result follows from Corollary 2.

The next theorem is our main result and it is an immediate consequence of Corollary 3.

Theorem 2 (Non-commutative Gelfand-Naimark theorem). Let $h : \check{A} \to h(\check{A})$ be

the Hausdorffization map of the primitive spectrum \check{A} of a C^* -algebra A. Then \overline{h} is a *-isomorphism.

Remarks. Corollary 1 generalizes Theorem 4.1 of [4], Corollary 3 is an analogue of Theorem 3.1 in [6]. If $h(\check{A}) = \check{A}$ then Theorem 2 coincides with Non-commutative Gelfand-Naimark theorem obtained by Fell in [4] and Tomiyama in [6]. If A is a C^* -algebra with identity then Theorem 2 coincides with Non-commutative Gelfand-Naimark theorem obtained by Dauns and Hofmann in [1].

References

- Dauns J., Hofmann K.H., Representation of rings by sections, Mem. Amer. Math. Soc. 83 (1968).
- [2] Dixmier J., Les C*-algèbres et leurs representations, Gauthier-Villars, Paris, 1969.
- [3] Dupre M.J., Gillette M.R., Banach bundles, Banach modules and automorphisms of C^{*}algebras, Research Notes in Math. 92, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1983.
- [4] Fell J.M.G., The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280.
- [5] _____, An extension of Macley's method to Banach *-algebraic bundles, Mem. Amer. Math. Soc. 90 (1969).
- [6] Tomiyama J., Topological representations of C*-algebras, Tohôku Math. J. 14 (1962), 187– 204.

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, Poznań, Poland

(Received August 3, 1992)