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Bernoulli sequences and Borel measurability in (0,1)

PETR VESELY

Abstract. The necessary and sufficient condition for a function f : (0,1) — [0, 1] to be Borel
measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2)
the existence of a Borel measurable map H : {0,1}Y — {0,1}" such that £(H(X?)) =
L(X1/2) holds for each p € (0,1), where X? = (X, X2, ...) denotes Bernoulli sequence
of random variables with P[X? = 1] = p.

Keywords: Borel measurable function, Bernoulli sequence of random variables, Strong law
of large numbers

Classification: 60A10, 28A20

1. The main result and notation.

Consider a sequence X,, n € N, of mutually independent random variables
assuming the values 1 and 0 with probabilities p and 1 —p, where p € (0,1). Denote
the distribution of the random variable

o
Y=Y 27X,
n=1

by Ap. Identifying Borel spaces (0, 1) and {0, 1}N by the irrational dyadic expansion
map we can also define these measures by

n
Ap ({I e{0, 1}V |21 =a,..., 2, = an}) =[[p"(1-p)'"", neN, ac{0,1}"

i=1

or equivalently by

o0

Ap = Q)1 = p)eo + pe1
1

where ¢, denotes the atomic measure supported by {z}.
Our main result is

I am very grateful to Professor J. Stépéan for his assistance. The Corollaries 1, 2 and 3 belong
to him (see [2])
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Theorem. For each function f: (0,1) — [0,1], the following assertions are equiv-
alent:

(a) f is a Borel measurable;
(b) there exists a Borel set B C (0, 1) such that f(p) = \y(B) for all p € (0,1).

Corollaries to this result related to Bernoulli sequences of random variables are
stated and proved in the part 3 of the present paper.

The following terminology and notation will be used in the sequel: Let =z €
(0,1). By the dyadic expansion of z we mean the sequence (z1,z2,...) € {0,1}Y
with infinitely many ;’s zeros such that = Y 72 z;27". In this case we write
x = (z1,z9,...). Put

I(n,a) ={x € (0,1) |21 =a1,...,2n = an} for n €N, a = (ay,...,a,) € {0,1}"

and denote by K the algebra generated by the sets Z(n, a). Note that the algebra K
consists exactly of finite (possibly empty) unions of the sets Z(n,a) and generates
Borel o-algebra B(0,1). Putting

n—oo

AB)={z€(0,1)| lim %ixieB}, B C(0,1),
=1

it follows easily by Strong law of large numbers that

(1) A(B) € B(0,1) and A\p(A(B)) = Ig(p) for each B € B(0,1) and p € (0,1).
Finally, let us agree that if 77, 75 are two decompositions of a set S and if for all
Ty € T, Ty € T either Ty NTy = 0 or Ty C Ty, then we shall write 77 < 75.

2. Proof of Theorem.

Lemma 1. Let p € (0,1) and K € K. Then { \p(D); K 2 D € K} is a dense set
in the interval [0, A, (K)].

The assertion follows easily by the inequality
/\p(I(mv CL)) < max{pm, (1 - p)m} ’ me Nv a € {07 1}m7

using the fact that for almost all m € N there exists a set A, C {0,1}™ such that
{Z(m,a); a € Ay } forms a decomposition of K.

Lemma 2. Consider K € K, a Borel set V' C [a,b] C (0,1) and a continuous
function «y: [0,1] — [0, 1] such that v(p) < Ap(K) for allp € V. Then to each e > 0
there is a finite Borel measurable decomposition {A1,..., At} of V and the sets
K D F; € K such that

0<1(p) = Ap(Fy) < =

holds for each p € A; and 1 <1i <t.
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PROOF: Since p — Ap(K) is a continuous function defined on (0,1) we get that
v(p) < Ap(K) holds for allp € V. Fixap € V. Lemma 1 providesaset K 2 D), € K
such that

1
0 <v(p) — Ap(Dp) < 3¢
Let V), be an open neighbourhood of p such that

0<7(q) —Ag(Dp) <e forall geV,.

Now, let Vp,,...,Vp, be a covering of the compact set V. It is easy to see that
the sets
A=V NV, Aa=Vp, NATNV, ..., A=V, NATN---NAF_ 1NV,
Fy =Dy, ..., Ft =Dy,
provide the desired construction. 0

Lemma 3. Let [a,b] C (0,1) and let f: [a,b] — [0,1] be a Borel measurable
function. Then there exists a Borel set B C (0,1) such that f(p) = \p(B) for all
p € [a,b].

PRrOOF: Consider a nondecreasing sequence of simple functions 0 < f;, < 1 such
that fp, — f uniformly on [a, b]. Denote by {Uy 1,..., Unm(n)} a Borel measurable
decomposition of [a, b] such that

7(n)
fn(p) = Z Cn,j IUnyj (p)7 pe [au b] )
j=1

where ¢, ; € [0,1]. By induction, we shall construct sequences
Wi, = {Wn,lu ceey Wn,a(n)} - B(O, 1) , Hp = {Hn,la s Hn,a(n) } cK,

such that for all n > 0:

(i) Wy, is a Borel measurable decomposition of the interval [a, b];
(i) Wi < W1 < - < Wo;
(iii) if Woio € Wo, W14, € Wi, ooy, Wy, € Wy and Wy ;0 2 Wy 2 -0 2
Wi i,,, then the sets Hy ;,, H1 i, ..., Hy, are pairwise disjoint;

(iv) the inequality 0 < fn(p) — fn(p) < n~! holds for all p € [a, b], where

n a(n)
Fa®) =D No(Hi) Tw, , () -
k=0 i=1
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Put fo =0, fo = 0, Wy = {[a,b]} and Hg = {0}. Assume that Wi, Hy, ...,
Wm—1, Hm—1 have been already constructed such that (i), (ii), (iii), (iv) hold for
some m € Nand n =0,1,...,m — 1. Choose a finite Borel measurable decompo-
sition Vi = {Vin,1, -+ Vi s(m) } of [a,] such that Vin < {Up,15- -, Uy, p(m) } and
Vi < Wmn—1. Fix a Vi g € Vpp and let U, 5 € {Upy 1, - -, Umﬁ,(m)} be the unique
set for which Vp, g C Uy, ; holds. By (ii), there exists an uniquely determined se-
quence of positive integers ig, 41, ... , iy,—1 such that [a,b] = Wy ;0 2 Wy ; D --- D
Win—1,im_1 2 Vin,g- It follows easily from (iii) and (iv) that

0 <fm-1(p) — fm—l(p) < fm(p) — fm 1(p) = =Cm,j — Z Ap(H, Jik)

m
=mj— M Hiip) S1, pEViny.

Since ¢, ; — ZZ:Ol Ap(H}, ;) is a polynomial (because Hy;, € K), there exists
a continuous function ~y: [0,1] — [0, 1] such that

YP) = fn(®) = fn—1(0) < Mp(Kg), P E Vinyg,

where
Ky =(0,1) U Hy;, -

Thus, for each 1 < g < s(m) there exists by Lemma 2 a finite Borel measurable

decomposition {AT’Q, .. .,A:’Zﬁ} of Vin,g and the sets Flm’g, ceey Ft@)g € K such
that Flm’g CKgy, ..., FZ{;’)Q C K4 and

) 0< fmlp) = fmo1(p) = Mp(F™) <m™, pe AT 1<i<t(g).
Putting
Wm:{A:n’g|g:1,,s(m),z:l,,t(g)},
Hm:{FZm’g|g:1,,s(m),z:l,,t(g)},

it is easy to verify (i), (ii), (iii), (iv) for Wy, Hi, ... Wm, Hm using (2).
For each n € N put

a(k)
U HkZﬂA sz)) .

||C:

By (i), (i), (iii) and by (1) we have A\y(Cy) = fn(p) for all p € [a,b] and, conse-
quently, Ap(Cy) — f(p) uniformly on [a, b] by (iv). Since Cy, C Cpy1 for all n € N,
we may put

B = Cn

PCo -
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to get that f(p) = A\p(B) for all p € [a,b]. O

Now, to prove our Theorem it is sufficient to verify the implication (a)=-(b): Let
f:(0,1) — [0, 1] be a Borel measurable function. By Lemma 3, there exists a Borel
set By C (0,1) such that f(p) = A\p(By) for all p € [— %] and all n > 3. Thus,
it is sufficient to put

o]
U (Bn NA(Jn))

where
J3=[3.3, Jm=lG e VRS 5], n2d.
As the contrary implication is standard, the proof is completed.
3. Corollaries.

In the sequel, F ov denotes the image measure of a measure v w.r.t. a measurable
map F, i.e. (Fov)(A) = v(F~1(A)) for all measurable sets A. Also, if necessary, we
identify for each p € (0, 1) the probability space ((0, 1), B(0,1), \p) with the product
(10, 13N, B({0,1}Y), 11 = ®5°(1—p)eo+pe1). The identification is obviously “good
enough” for all our purposes, as the measure y,, is the image of A, w.r.t. the dyadic
expansion map x — (1,22, ...) which has the measurable inverse defined almost
surely w.r.t. jip.

Corollary 1. For each Borel measurable function f: (0,1) — (0,1) there exists
a Borel measurable function Hy: (0,1) — (0,1) such that Hf o Ay = Ay(y,) for all
€ (0,1).

ProOOF: By Theorem there exists a Borel set B C {0, 1} such that f(p) = Ap(By)
for all p € (0,1). Let {4, x}7>; € N, n € N, are increasing sequences such that i,,
are distinct integers for all (n, k) € N2. Define a mapping p,: {0, 11 — {0,1}" for
each n € N by

pn(@) = (i 12 Tipgs---)s € {0, 1},
and put By = p;, (Bf). The indicator functions IB}? IBJ%? ... are i.i.d. random

variables w.r.t. each probability measure A, such that )\p[IB}z =1] = /\p(B;}) =
Ap(By) = f(p) holds. Thus, the function Hy defined by

Hy@) = Uy (@), Ipa(a),. ), w011,
has the desired property. O
Corollary 2. For each « € (0,1) there exists a Borel measurable function
H,: (0,1) — (0,1)
such that Hy o A\p = Ao holds for all p € (0,1).
Recall that a probability measure v on ((0,1),5(0,1)) is called symmetric, if

v(A)=v ({:v €(0,1) | (Tr(1)s- -+ Tr(n)s Tnt1, Tnt2, -+ ) € A})
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holds for each A € B(0, 1), for each n € N and for each permutation 7: {1,...,n} —
{1,...,n}. Equivalently, a measure v on ((0,1),8(0,1)) is symmetric iff v is the
distribution of a random variable

o
Y =) 27"X,,
n=1

where {X;,}0° ; is a sequence of exchangeable 0-1 random variables. For example,
each measure Ay, p € (0,1), is symmetric.

Corollary 3. For each Borel probability measure p on R there exists a Borel
measurable function Hy: (0,1) — R such that Hy, o v = p holds for all symmetric
probability measures v defined on ((0,1), B(0,1)).

PROOF: It is easy to see that it suffices to treat the case p = Ay /5. A well-known

de Finetti’s result says that for each symmetric probability measure v on ((0,1),
B(0,1)) there exists a probability measure @ on ((0,1),8(0,1)) such that

1
v(4) = / Ap(4) Q(dp)
0

holds for all A € B(0,1) (see e.g. [1, p. 225]). Now, the assertion follows easily
applying Corollary 2 with o = % O
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