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Sufficient conditions for convexity

in manifolds without focal points

M. Beltagy

Abstract. In this paper, local, global, strongly local and strongly global supportings of
subsets in a complete simply connected smooth Riemannian manifold without focal points
are defined. Sufficient conditions for convexity of subsets in the same sort of manifolds
have been derived in terms of the above mentioned types of supportings.
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1. Introduction.

Convexity of subsets in Euclidean space En has been a very interesting fruitful
area of research for a long time [4], [7], [8]. A comprehensive survey of the study of
sufficient conditions for convexity of subsets of En is given in [4]. In Section 3 of
[4], the subject of local supporting of subsets in En is considered and the following
results are established.

(i) An open connected set G ⊂ En is convex if, for each boundary point x ∈ ∂G,
there exists a local supporting hyperplane H(x) passing through x.

(ii) A closed connected set F ⊂ En possessing interior points is convex if there exists
a ̺ > 0 such that for each x ∈ ∂F , there is a hyperplane passing through x which
leaves the set F ∩ U̺(x) in a closed half-space, where U̺(x) is a ̺-neighborhood of
the point x in En.

(iii) A closed connected set F ⊂ En possessing interior points is convex if there
is a ̺ > 0, such that for each x ∈ ∂F , there exists a cylinder Z whose base is an
(n − 1)-dimensional ball with center x and radius ̺, where Int (Z) ∩ F = ∅. The
height of the cylinder may depend on x.

The result (ii) above is generalized to subsets of linear topological spaces in [4].
In [4], the authors expected a more general result which seems to be an extension

of the results (i)–(iii) above in a general Riemannian manifold M in the condition
that one could find supporting hypersurfaces in M possessing behavior similar to
that of hyperplanes in En.
The main goal of this paper is to show some realization of the above expected

viewpoint in a complete simply connected C∞ Riemannian manifold W̃ without
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focal points. In a brief word we define and study convexity of subsets of W̃ in
terms of local and global supportings of the same subsets. The most candidate

hypersurfaces to be used in defining supportings are the horospheres of W̃ as we

shall see below. Actually, horospheres in W̃ behave nicely (see Section 2 below).

2. Preliminaries.

From now on, let us take W (resp. W̃ ) to denote C∞ complete simply connected
Riemannian manifold without conjugate (resp. focal) points. M will denote a gene-
ral C∞ Riemannian manifold. For a subset A ⊂ M , A will denote the closure of A

while ∂A its boundary. For basic properties of W and W̃ we refer the reader to [3],
[5], [6].
Concerning conjugate and focal points we just quote the following principal facts

which we shall frequently use throughout the paper (see [2], [6]).

(a) A manifold with non-positive sectional curvatures is free from focal points.

(b) Every manifold without focal points has no conjugate points but the converse
is not generally true.

(c) For each pair of points p, q ∈ W , there exists a unique geodesic segment
from p to q and is denoted by [pq]. When p is deleted from the geodesic
segment we write (pq].

Let d(p, q) denote the distance between the two points p, q ∈ W . For each element
v of the unit sphere bundle SW of W and for each real number s > 0, let us define
the real-valued functions bvs : W → R by bvs(q) = s − d(γv(s), q), where γv is
the maximal geodesic of W with initial velocity γ′v(0) = v. The functions bvs are
increasing with s and absolutely bounded by d(γv(0), q). The Busemann function
of v is defined by bv = lims→∞ bvs. Each bv is C1 function defined on the whole
of W . In particular, if W is En, each bv represents the usual height function in the
direction of v. Call Hv = b−1v (0) the horosphere and Dv = b−1v [0,∞) the closed
horodisc of v [5].
From the above argument we may look at the horospheres (resp. horodiscs) in

W as geodesic spheres (resp. balls) of infinite radius.

The nice behavior —mentioned before — of horospheres in a manifold W̃ without
focal points may be understood if one takes into account that [3]:

(1) Each Busemann function in W̃ is C2 and has gradient vector field of unit
length.

(2) The level hypersurfaces (horospheres) of each Busemann function in W̃ form
an equidistant family whose orthogonal trajectories are geodesics.

(3) If u is a unit vector at p ∈ W , then u = grad bu(p). Moreover, if v =
grad bu(q) for some q ∈ W then bu and bv differ only by a constant. Hence,
the horospheres determined by bu are the same as those determined by bv.

3. On convexity.

A subset B ⊂ M is convex if for each pair of points p, q ∈ B, there is a unique
minimal geodesic segment [pq] from p to q and this segment is in B [2]. A subset
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K ⊂ M is a convex body if it is a convex subset of M with a non-empty interior.
The boundary ∂F of the convex open subset F ⊂ M is a convex hypersurface ofM .
A closed subset A ⊂ M is called strictly convex if it is convex and the boundary
∂A contains no geodesic segments.

The following results on convexity in W̃ are necessary for Section 4 below which
represents the main part of this work. For the proofs see [1].

Lemma 3.1. Let A ⊂ W̃ be an open subset. Then A is convex if and only if A is

convex.

Lemma 3.2. In W̃ , each geodesic ball B(x, λ) of center x and finite radius λ > 0
is a strictly convex body.

Lemma 3.3. In W̃ , each horodisc is a convex body.

Notice that although a horodisc in W̃ is a limit of a sequence of geodesic balls,
horodisc is convex not necessarily strictly convex. Half-space in En is a good ex-
ample for this claim. Horodiscs in hyperbolic space Hn are strictly convex subsets.

Lemma 3.4. For a closed convex subset B ⊂ W with smooth boundary hypersur-

face ∂B, each tangent geodesic γ to ∂B has the property

γ ∩ Int (B) = ∅.

Corollary 3.5. Let γ be a maximal geodesic in W̃ tangent to the horosphere Hv.

Then γ lies wholly in the closed subset W̃ − (Dv ∪ D−v).

4. Main results.

In this section we state and prove our main results. We start by giving the
definitions of types of supportings.

Definition 4.1. A subset A ⊂ W̃ is globally supported by a closed horodisc Dv

for v ∈ SW̃ if

(i) A is a proper subset of Dv;
(ii) A ∩ Hv 6= ∅.

If in addition A ∩ Hv is a single point set, then A is strongly globally supported
by Dv.

Definition 4.2. A subset A ⊂ W̃ is locally supported at the point p ∈ ∂A by the

closed horodisc Dv if p ∈ Hv and there exists a neighborhood U(p) in W̃ such that
A∩U(p) is globally supported by Dv. If A∩U(p) is strongly globally supported at
p by Dv, then A is strongly locally supported at p by Dv.

From the above definitions, it is clear that if a subset A ⊂ W̃ is globally supported

by Dv, then no point of Hv is an interior point of A. Besides, if A ⊂ W̃ is locally
supported at p ∈ ∂A byDv, then each point ofHv sufficiently close to p cannot be an
interior point of A. Moreover, each global supporting horodisc for a certain subset

A ⊂ W̃ is local supporting of the same subset but the converse is not necessarily
true.
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Theorem 4.3. Let A be an open connected subset of W̃ with smooth boundary

hypersurface ∂A. Assume that A is locally (resp. strongly locally) supported at
each boundary point. Then A is convex (resp. strictly convex).

Proof: Firstly, we show that if A is locally supported at each boundary point,
then A is convex.

Let us fix the following notation. At the boundary point x ∈ ∂A, n(x) is the
unit normal of ∂A at x in the interior direction of A.

Assume, on the contrary, that A is locally supported by Dn(x) at each boundary

point x ∈ ∂A while A is non-convex. Consequently, there exist two interior points
p, q ∈ A with a connecting geodesic segment [pq] not contained wholly in A. We
have now two possibilities to be considered separately (i) [pq] ⊂ A and (ii) [pq] 6⊂ A.

(i) [pq] ⊂ A

Let us now move from the interior point p along [pq] towards q. Let x be the first
point at which [pq] touches ∂A. It is easy to see that all the points of the geodesic
subsegment [px] joining p and x are interior points of A except x. Let us consider
the local supporting closed horodisc Dn(x) at x.

Clearly, the geodesic segment [xp] is tangential to ∂A at x. Since A is locally
supported by Dn(x) at x, then x ∈ Hn(x) and [xp] is also tangential to Hn(x) at x.

For a point r ∈ (px) sufficiently close to x, we have [rx) ⊂ Dn(x), i.e. the maximal

geodesic γ through p and x satisfies γ ∩ Dn(x) 6= ∅ contradicting Lemma 3.4 and

Corollary 3.5 (see Fig. 1).

A A x
n(x)q
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×

×
×
r
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Dn(x)

B(x, ε)

Hn(x)

W̃

Figure 1.

(ii) [pq] 6⊂ A

Since A is connected, then there exists a curve τ joining p and q such that τ ⊂ A.
Let us consider all geodesic segments joining p to all the points of τ . For points
sufficiently close to p these segments are in A. If we move from p towards q along τ ,
we find a geodesic segment [py] joining p to a point y ∈ A and this segment touches
∂A at some x such that all the points of the subsegment [px] are interior points of
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A except x ∈ ∂A (see Fig. 2).

A A x

[py]

[pq] W̃

q

p

y
τ

Figure 2.

We arrive again to a situation exactly as that of Fig. 1. Repeating the same argu-
ment of the case (i) we finally have that A is convex.
To complete the proof assume that A is strongly locally supported at each bound-

ary point. By the above argument we have that A is convex. Assume, on the con-
trary, that A is not strictly convex. Consequently, there exists a pair of points p, q ∈
∂A such that [pq] ⊂ ∂A. Let us consider y ∈ [pq] to be the middle point of [pq]. Since
A is strongly locally supported at y, then there exists a sufficiently small neighbor-

hood U(y) in W̃ about y such that A ∩ U(y) ⊂ Dn(y) and (A ∩ U(y))∩Hn(y) = {y}.

Consequently, [pq] ∩ U(y) ⊂ Dn(y) and ([pq] ∩ U(y)) ∩ Hn(y) = {y}, which means

that the maximal geodesic γ through p and q satisfies (i) γ is tangent to Hn(y) at

y, (ii) γ ∩ Dn(y) 6= ∅ contradicting Corollary 3.4 and the proof of Theorem 4.3 is

now complete (see Fig. 3). �
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Figure 3.

Notice that we have neglected completely discussing local supporting in the outer
direction −n(x) at x ∈ ∂A as the closed horodisc D

−n(x) cannot support A locally
at x.
We can easily construct examples in the hyperbolic space Hn to show that the

converse of Theorem 4.3 is not generally true.

Theorem 4.4. Let A be an open bounded subset of W̃ with smooth boundary
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hypersurface ∂A. Assume that A is globally (resp. strongly globally) supported at
each boundary point. Then A is convex (resp. strictly convex).

Proof: Firstly, we show that A is connected.

Assume, on the contrary, that A is disconnected. Also assume without loss of
generality that A is the union of two open disjoint subsets A1 and A2 with smooth
boundary hypersurfaces ∂A1 and ∂A2, respectively. Notice that A1 ∩ A2 = ∅

otherwise ∂A = ∂A1 ∪ ∂A2 will not be a hypersurface of W̃ . Since both A1 and

A2 are bounded subsets of W̃ , then A1 and A2 are compact subsets of W̃ . Let us
assume that the Hausdorff distance [7] between A1 and A2 is λ > 0 and p ∈ ∂A1
and q ∈ ∂A2 is a closest pair of points, i.e. d(p, q) = λ. Consider the maximal
geodesic γ through the points p, q parametrized by arc-length for which p = γ(0)
and q = γ(λ). Clearly γ intersects ∂A1 and ∂A2 at p and q orthogonally, respectively
(see [2, p. 216]). Moreover, there exist p′ ∈ A1 and q′ ∈ A2 such that p′, q′ ∈ γ,
p′ = γ(µ1) and q′ = γ(µ2) where µ1 < 0 and µ2 > λ (see Fig. 4).

A
A1

∂A1

γ(µ1)

p′

H
−γ′(0) Hγ′(λ)

×

p

q

γ′(0)

A2
∂A2

× q′
γ

γ′(λ)

γ(µ2)

Figure 4.

The subset A cannot be globally supported at either p or q since

b
−γ′(0)(p

′) > 0 and b
−γ′(0)(q

′) < −λ < 0,

bγ′(λ)(p
′) < −λ < 0 and bγ′(λ)(q

′) > 0,

contradicting the assumption of the theorem. Hence A is connected.

Since each global (resp. strongly global) supporting is local (resp. strongly local)
we conclude by using Theorem 4.3 that A is a convex (resp. strictly convex) subset

of W̃ and the proof of Theorem 4.4 is now complete. �

Theorem 4.4 can be proved independently of Theorem 4.3 in the following way:

(1) Prove that A is connected as mentioned above.

(2) Prove that A is the intersection of convex subsets of W̃ , namely the supporting
closed horodiscs of A. Taking into account that the intersection of convex subsets is
convex we obtain that A is itself convex and consequentlyA is convex by Lemma 3.1.

It is also noteworthy that the converse of Theorem 4.4 is not generally true.
Examples can also be constructed in Hn to show the validity of this claim.



Sufficient conditions for convexity in manifolds without focal points 449

References

[1] Beltagy M., Foot points and convexity in manifolds without conjugate points, Bull. Calcutta
Math. Soc. 82 (1990), 338–348.

[2] Bishop R.L., Crittenden R.J., Geometry of Manifolds, Academic Press, New York, 1964.
[3] Bolton J., Tight immersion into manifolds without conjugate points, Quart. J. Math. Oxford
(2) 23 (1982), 159–267.

[4] Burago Yu.D., Zalgaller V.A., Sufficient criteria of convexity, J. Soviet Math. (10) 3 (1978),
395–435.

[5] Eschenburg J.H., Horospheres and the stable part of the geodesic flow, Math. Z. 153 (1977),
237–251.

[6] Goto M.S., Manifolds without focal points, J. Diff. Geom. 13 (1978), 341–359.
[7] Kelly P.J., Weiss M.L., Geometry and convexity, John Wiley & Sons, Inc., New York, 1979.
[8] Valentine F.A., Convex Sets, McGraw-Hill, New York, 1964.

Department of Mathematics, Faculty of Science, Tanta University, Egypt

(Received July 13, 1992)


