On the topological structure of compact 5-manifolds

Alberto Cavicchioli, Fulvia Spaggiari

Abstract. We classify the genus one compact (PL) 5-manifolds and prove some results about closed 5-manifolds with free fundamental group. In particular, let M be a closed connected orientable smooth 5-manifold with free fundamental group. Then we prove that the number of distinct smooth 5-manifolds homotopy equivalent to M equals the 2-nd Betti number (mod 2) of M.

Keywords: colored graph, crystallization, genus, manifold, surgery, s-cobordism, normal invariants, homotopy type

Classification: 57N15, 57N65, 57R67

1. Preliminaries.

In this paper we work in the piecewise linear (PL) category (see for example [9]). All considered manifolds will be compact and connected. We also use edgecolored graphs to represent manifolds according to [2], [4] and [5]. Here we recall the basic definitions. An <u>edge-coloration</u> c on a multigraph G = (V(G), E(G)) is a map $c: E(G) \longrightarrow \mathcal{C}_G$ (where \mathcal{C}_G is a finite set, called the <u>color set</u> of G) such that $c(e) \neq c(f)$ for any two adjacent edges $e, f \in E(G)$. The pair (G, c) is said to be an (n+1)-colored graph if G is regular of degree n+1 and $C_G = \{0, 1, \dots, n\}$. For any $B = \{b_1, b_2, \dots, b_k\} \subset C_G$, we set $G_B = (V(G), c^{-1}(B))$ and denote by $\alpha_{b_1b_2\dots b_k}$ the number of components of G_B . An *n*-<u>pseudocomplex</u> K = K(G) can be associated with (G,c) as follows: 1) take an *n*-simplex $\sigma^n(v)$ for each vertex $v \in V(G)$ and label its vertices by \mathcal{C}_G ; 2) if v and w are joined in G by an icolored edge, then identify the (n-1)-faces of $\sigma^n(v)$ and $\sigma^n(w)$ opposite to the vertex labelled by i so that equally labelled vertices coincide. We say that (G, c)represents the polyhedron |K(G)| and every homeomorphic space. We note that each component θ of the subgraph G_B uniquely corresponds to an (n-k)-simplex σ_{θ} (card B = k) of K(G), whose vertices are labelled by $\mathcal{C}_{G} \setminus B$. The polyhedron $|K(\theta)|$ is said to be the <u>disjoint link</u> of σ_{θ} in K, written $lkd(\sigma_{\theta}, K)$. Actually |K| is a closed *n*-manifold if and only if $|K(G_{\hat{i}})|$ is an (n-1)-sphere, $\hat{i} = \mathcal{C}_G \setminus \{i\}$, $i \in \mathcal{C}_G$. A <u>crystallization</u> of a closed *n*-manifold *M* is an (n+1)-colored graph (G, c)representing M such that G_{i} is connected for each $i \in \mathcal{C}_{G}$. Any bipartite (resp. nonbipartite) (n+1)-colored graph (G, c) admits a particular 2-cell imbedding (see [15])

Work performed under the auspices of the C.N.R. of Italy and partially supported by Ministero per la Ricerca Scientifica e Tecnologica of Italy within the project *Geometria Reale e Complessa*

 $f_{\epsilon}: |G| \longrightarrow F_{\epsilon}$, where F_{ϵ} denotes the orientable closed (resp. non-orientable) surface of Euler-characteristic

$$\chi(F_{\epsilon}) = \sum_{i \in \mathbb{Z}_{n+1}} \alpha_{\epsilon_i \epsilon_{i+1}} + (1-n)p/2 \,.$$

Here p is the order of G and $\epsilon = (\epsilon_0, \epsilon_1, \ldots, \epsilon_n)$ is a cyclic permutation of the color set C_G . We set $g_{\epsilon}(G) = 1 - \chi(F_{\epsilon})/2$, i.e. $g_{\epsilon}(G)$ is the genus (resp. half of the genus) of F_{ϵ} if G is bipartite (resp. non-bipartite). Then the genus g(M) of a closed *n*-manifold M is the minimum $g_{\epsilon}(G)$ over all crystallizations G of M and cyclic permutations ϵ of C_G . It is known that the *n*-sphere \mathbb{S}^n is the only closed *n*-manifold of genus zero (see for example [5]). In [4] all closed 4-manifolds of genus one are proved to be (PL) homeomorphic to $\mathbb{S}^1 \otimes \mathbb{S}^3$. Here $\mathbb{S}^1 \otimes \mathbb{S}^3$ denotes either the topological product $\mathbb{S}^1 \times \mathbb{S}^3$ or the twisted \mathbb{S}^3 -bundle over \mathbb{S}^1 . In the present paper we classify all compact 5-manifolds of genus one. Then we obtain some results about closed orientable 5-manifolds with free fundamental group. We also conjecture that the genus characterizes the simply-connected closed 5-manifolds.

2. Main results.

From now on, let (G, c) be a crystallization of a closed 5-manifold M, K = K(G)the triangulation of M represented by G, $\{v_i \mid i \in C_G\}$ the vertex-set of K and (i, j, h, r, s, t) an arbitrary permutation of the color-set \mathcal{C}_G . We may always assume that v_i corresponds to the subgraph G_i for each color $i \in \mathcal{C}_G$. If $B \subset \mathcal{C}_G$, then K(B) denotes the subcomplex of K = K(G) generated by the vertices v_i 's, $i \in B$. Obviously the number of (k-1)-simplexes of K(B), card B = k, equals the number $\alpha_{\mathcal{C}_G \setminus B}$ of components of $G_{\mathcal{C}_G \setminus B}$. If SdK is the first barycentric subdivision of K, then H(i, j) (resp. H(i, j, h)) is the largest subcomplex of SdK, disjoint from $SdK(i, j) \cup SdK(h, r, s, t)$ (resp. $SdK(i, j, h) \cup SdK(r, s, t)$). Then the polyhedron |H(i,j)| (resp. |H(i,j,h)|) is a closed 4-manifold F = F(i,j) (resp. F(i,j,h)) which splits M into two complementary 5-manifolds V = N(i, j), V' = N(h, r, s, t)(resp. N = N(i, j, h), N' = N(r, s, t)) having F as common boundary. Further the Mayer-Vietoris exact sequences of the triples (M, V, V') and (M, N, N') give $0 \longrightarrow$ $H_5(M) \longrightarrow H_4(F) \longrightarrow 0$, hence M is orientable if and only if F is. Finally V and V' (resp. N and N') are regular neighbourhoods of |SdK(i, j)| and |SdK(h, r, s, t)|(resp. |SdK(i, j, h)| and |SdK(r, s, t)|) in M respectively.

Lemma 1. Let (G, c) be a crystallization of a closed 5-manifold M. Then we have the following relations

(1)
$$2\alpha_{rst} = \alpha_{rs} + \alpha_{st} + \alpha_{tr} - p/2$$

(2)
$$\sum_{i,j,h} \alpha_{ijh} = 2 \sum_{i,j} \alpha_{ij} - 5p$$

(3)
$$\sum_{i,j,h,r} \alpha_{ijhr} = \sum_{i,j} \alpha_{ij} - 3p + 6$$

PROOF: (1). Let T be a triangle of the 2-dimensional subcomplex K(i, j, h). Then the Euler-Poincaré characteristic χ_T of lkd(T, K) is given by

$$\chi_T = \chi(\mathbb{S}^2) = 2 = q_3(T) - q_4(T) + q_5(T),$$

where $q_k(T)$ is the number of k-simplexes of K containing T as their face. If $B \subset C_G$, let $q_k(B)$ denotes the number of k-simplexes of K containing vertices labelled by B. Then it is easy to check that

$$q_{3}(i,j,h) = q_{3}(i,j,h,r) + q_{3}(i,j,h,s) + q_{3}(i,j,h,t) = \alpha_{st} + \alpha_{rt} + \alpha_{rs},$$
$$q_{4}(i,j,h) = q_{4}(i,j,h,r,s) + q_{4}(i,j,h,r,t) + q_{4}(i,j,h,t,s) = \alpha_{t} + \alpha_{s} + \alpha_{r} = \frac{3}{2}p$$

and

$$q_5(i,j,h) = p.$$

Summation over all the triangles of K(i, j, h) gives

$$2\alpha_{rst} = 2q_2(i, j, h) = q_3(i, j, h) - q_4(i, j, h) + q_5(i, j, h) =$$

= $\alpha_{st} + \alpha_{rt} + \alpha_{rs} - (3/2)p + p = \alpha_{st} + \alpha_{rt} + \alpha_{rs} - p/2$

as requested.

(2). It is a direct consequence of (1).

(3). Now call $q_k, k \in \mathcal{C}_G$, the number of k-simplexes of K. By construction we have

$$q_0 = 6, \qquad q_1 = \sum_{i,j,h,r} \alpha_{ijhr}, \qquad q_2 = \sum_{i,j,h} \alpha_{ijh}$$
$$q_3 = \sum_{i,j} \alpha_{ij}, \qquad q_4 = 3p \text{ and} \qquad q_5 = p.$$

Then the Euler-Poincarè characteristic $\chi(M)$ of M = |K| is given by

$$\chi(M) = \sum_{k} (-1)^{k} q_{k} = 6 - \sum_{i,j,h,r} \alpha_{ijhr} + \sum_{i,j,h} \alpha_{ijh} - \sum_{i,j} \alpha_{ij} + 2p$$

= $6 - \sum_{i,j,h,r} \alpha_{ijhr} + \sum_{i,j} \alpha_{ij} - 3p = 0$ (use (2)).

The proof is completed.

Now we assume that (G, c) regularly imbeds into the closed surface of genus g = g(M) and of Euler-Poincarè characteristic

(4)
$$\alpha_{01} + \alpha_{12} + \alpha_{23} + \alpha_{34} + \alpha_{45} + \alpha_{50} - 2p = 2 - 2g.$$

Each subgraph $G_{\hat{i}}, i \in C_G$, regularly imbeds into an orientable closed surface since $G_{\hat{i}}$ represents the combinatorial 4-sphere $lkd(v_i, K)$. Then we can define the non negative integer $g_{\hat{i}}, i \in C_G$, as follows:

(5)
$$\alpha_{i+1\ i+2} + \alpha_{i+2\ i+3} + \alpha_{i+3\ i+4} + \alpha_{i+4\ i+5} + \alpha_{i+5\ i+1} = 2 - 2g_{\hat{i}} + \frac{3}{2}p$$

 $i \in \mathcal{C}_G, \quad \text{indices mod } 6.$

By substituting (5) into (4) and by using (1) we get

(6)
$$\alpha_{jh} = \alpha_{ijh} + g - g_{\hat{i}}$$
$$i \in \mathcal{C}_G, \quad j \equiv i+1 \pmod{6}, \quad h \equiv i-1 \pmod{6}$$

As a direct consequence, we have also proved that $g \ge g_i$ for each color $i \in \mathcal{C}_G$.

Lemma 2. With the above notation, we have

(7)
$$\alpha_{135} = 1 + 2g - g_{\hat{0}} - g_{\hat{2}} - g_{\hat{4}}$$

(8)
$$\alpha_{024} = 1 + 2g - g_{\hat{1}} - g_{\hat{3}} - g_{\hat{5}}$$

(9)
$$\alpha_{02} + \alpha_{13} + \alpha_{15} + \alpha_{24} + \alpha_{35} + \alpha_{04} = 4 + 8g + p - 2\sum_{i} g_{\hat{i}}$$

PROOF: We get the formula (7) (resp. (8)) of the statement by simply adding the relations obtained from (6) for i = 0, 2, 4 (resp. i = 1, 3, 5) and by using (1) and (4). Adding (7) and (8) and making use of (1) we obtain the formula (9).

Theorem 3. Let M be a closed connected 5-manifold. Then g(M) = 1 if and only if M is (PL) homeomorphic to $\mathbb{S}^1 \otimes \mathbb{S}^4$.

PROOF: If M is (PL) homeomorphic to $\mathbb{S}^1 \otimes \mathbb{S}^4$, then g(M) = 1 (see for example [5]). Now we prove the converse implication. For convenience, we work in the orientable case. If g = 1, then (7) and (8) of Lemma 2 imply that α_{135} and α_{024} belong to the set $\{1, 2, 3\}$. We apply the inequalities $g(M) \geq rk \Pi_1(M) \geq rk H_1(M)$ (see [2]). Here FH_* (resp. TH_*) denotes the free (resp. torsional) part of the homology group H_* . By symmetry we have to consider the following three cases:

- (1) $\alpha_{135} = 1$
- (2) $\alpha_{135} = 2$
- (3) $\alpha_{135} = \alpha_{024} = 3.$

Case (1). Since $\alpha_{135} = 1$, the complex K(0, 2, 4) consists of exactly one triangle. However K(0, 2, 4) might have other edges besides the ones of the named triangle. Thus the regular neighborhood N = N(0, 2, 4) of K(0, 2, 4) is (PL) homeomorphic to a boundary connected sum $\#_k \mathbb{S}^1 \times B^4$, B^4 being a closed 4-ball (if k = 0, then we set $N = B^5$). Thus we have $\partial N \simeq_{PL} \partial N' \simeq_{PL} \#_k \mathbb{S}^1 \times \mathbb{S}^3$, where N' = N(1, 3, 5). Since N' collapses onto the 2-dimensional complex K(1,3,5), the Mayer-Vietoris sequence of the triple (M, N, N') implies that

(10)
$$0 \longrightarrow H_4(M) \longrightarrow H_3(\partial N) \simeq \oplus_k \mathbb{Z} \longrightarrow 0$$

(11)
$$0 \longrightarrow H_3(M) \longrightarrow H_2(\partial N) \simeq 0$$

(12)
$$0 \longrightarrow H_2(N') \longrightarrow H_2(M) \longrightarrow H_1(\partial N) \simeq \bigoplus_k \mathbb{Z} \rightarrow$$

 $\longrightarrow H_1(N) \oplus H_1(N') \simeq \bigoplus_k \mathbb{Z} \oplus H_1(N') \longrightarrow H_1(M) \longrightarrow 0.$

By (11) we have $0 \simeq H_3(M) \simeq H^2(M) \simeq FH_2(M) \oplus TH_1(M)$, i.e. $FH_2(M) \simeq TH_1(M) \simeq 0$. Since $H_2(N')$ is free, (12) implies that $0 \longrightarrow H_2(N') \longrightarrow FH_2(M) \simeq 0$, hence $H_2(N') \simeq 0$ and $H_2(M)$ is free, i.e. $H_2(M) \simeq 0$. Thus (12) splits as $H_1(M)$ is free. This gives $H_1(M) \simeq H_1(N') \simeq \oplus_k \mathbb{Z}$. Because $g = 1 \ge rk H_1(M)$, it follows that either k = 0 or k = 1, hence either $\partial N \simeq \mathbb{S}^4$ or $\partial N \simeq \mathbb{S}^1 \times \mathbb{S}^3$ respectively. In the first case we have $H_1(M) \simeq \Pi_1(M) \simeq 0$ and $H_2(M) \simeq 0$, so M is (PL) homeomorphic to \mathbb{S}^5 by the classification theorem of simply-connected spin 5-manifolds (see [1] and [13]). This is a contradiction since the genus of \mathbb{S}^5 is zero. In the second case we have $H_1(M) \simeq \Pi_1(M) \simeq H_4(M) \simeq \mathbb{Z}$ and $H_2(M) \simeq H_3(M) \simeq 0$. Further M is obtained by attaching two disjoint copies of $\mathbb{S}^1 \times B^4$ along their boundaries (use $H_2(N') \simeq 0$ and $H_1(N') \simeq H_1(M) \simeq \mathbb{Z}$). Then M is homotopy equivalent to $\mathbb{S}^1 \times \mathbb{S}^4$, hence $M \simeq_{PL} \mathbb{S}^1 \times \mathbb{S}^4$ by the Shaneson theorem (see [10]).

Case (2). If $\alpha_{135} = 2$, then (7) implies that $g_{\hat{0}} + g_{\hat{2}} + g_{\hat{4}} = 1$, hence for example $g_{\hat{0}} = 1$. Now the relation (6), for i = 0, gives $\alpha_{15} = \alpha_{015}$. Thus K(0, 2, 3, 4) consists of as many 3-simplexes as there are triangles in K(2, 3, 4). Therefore K(0, 2, 3, 4) collapses onto the 2-dimensional complex K(2, 3, 4), i.e. the polyhedron V' = N(0, 2, 3, 4) collapses onto a 2-polyhedron. We also have $V = N(1, 5) \simeq \#_k(\mathbb{S}^1 \times B^4)$ and $\partial V \simeq \partial V' \simeq \#_k(\mathbb{S}^1 \times \mathbb{S}^3)$ since K(1, 5) consists of two vertices joined by k + 1 edges for some non-negative integer k. Now we can repeat the arguments of Case (1) by replacing the pair (N, N') with (V, V').

Case (3). If $\alpha_{135} = \alpha_{024} = 3$, then $g_i = 0$ for each color $i \in C_G$ by (7) and (8). Then the relation (6) gives $\alpha_{15} = \alpha_{015} + 1$, i.e. K(0, 2, 3, 4) has one more 3-simplex than there are triangles in K(2, 3, 4). Call σ_1 , σ_2 the two 3-simplexes of K(0, 2, 3, 4) which have a common triangle $T \in K(2, 3, 4)$ as their face. If $\partial \sigma_1 \neq \partial \sigma_2$, then K(0, 2, 3, 4) collapses to a 2-dimensional subcomplex, hence the pair (V, V'), V = N(1, 5), V' = N(0, 2, 3, 4), satisfies the conditions of Case (2). If $\partial \sigma_1 = \partial \sigma_2$, then $H_3(V') \simeq \mathbb{Z}$. We prove that this case gives a contradiction. First of all we observe that

$$\partial V' \simeq \partial V \simeq \partial N(1,5) \simeq \#_k \mathbb{S}^1 \times \mathbb{S}^3$$

for some integer $k \geq 0.$ Indeed, the Mayer-Vietoris sequence of the triple (M,V,V') yields

 $0 \longrightarrow H_5(M) \longrightarrow H_4(\partial V) \longrightarrow 0,$

hence M is orientable if and only if ∂V is. Furthermore K(1,5) is the one-dimensional subcomplex of K = K(G) which consists of all edges with vertices v_1 and v_5 . Thus the regular neighborhood V = N(1,5) of K(1,5) is PL homeomorphic to a boundary connected sum $\#_k \mathbb{S}^1 \times B^4$, hence $\partial V \simeq \#_k \mathbb{S}^1 \times \mathbb{S}^3$ as claimed.

Now, the exact sequence of the pair $(V', \partial V')$ gives

(13)
$$0 = H_2(\partial V) \longrightarrow H_2(V') \longrightarrow H_2(V', \partial V') \rightarrow$$
$$\rightarrow H_1(\partial V') \simeq \bigoplus_k \mathbb{Z} \longrightarrow H_1(V') \longrightarrow H_1(V', \partial V') \simeq 0$$

and

(14)
$$0 = H_4(V') \longrightarrow H_4(V', \partial V') \longrightarrow H_3(\partial V') \simeq \oplus_k \mathbb{Z} \rightarrow$$
$$\rightarrow H_3(V', \partial V') \longrightarrow H_2(\partial V') \simeq 0$$

since $H_1(V', \partial V') \simeq H^4(V') \simeq 0$. The isomorphism $H^4(V') \simeq 0$ follows from the fact that V' collapses onto the 3-dimensional complex K(0, 2, 3, 4). By Lefschetz duality we also have $H_2(V', \partial V') \simeq H^3(V') \simeq FH_3(V') \oplus TH_2(V') \simeq \mathbb{Z} \oplus TH_2(V')$, $H_4(V', \partial V') \simeq H^1(V') \simeq FH_1(V')$ and $H_3(V', \partial V') \simeq H^2(V') \simeq FH_2(V') \oplus TH_1(V')$. Thus (13) and (14) become

$$(13') \qquad 0 \longrightarrow H_2(V') \longrightarrow \mathbb{Z} \oplus TH_2(V') \longrightarrow \oplus_k \mathbb{Z} \longrightarrow H_1(V') \longrightarrow 0$$

and

(14')
$$0 \longrightarrow FH_1(V') \longrightarrow \oplus_k \mathbb{Z} \longrightarrow FH_2(V') \oplus TH_1(V') \longrightarrow 0$$

hence we obtain

(15)
$$\beta_2(V') - 1 + k - \beta_1(V') = 0$$

and

(16)
$$\beta_1(V') - k + \beta_2(V') = 0,$$

where $\beta_k(V')$ denotes the k-th Betti number of V'. From (15) and (16) we have that

$$2\beta_2(V') = 1\,,$$

which is a contradiction.

Corollary 4. $g(\#_k \mathbb{S}^1 \otimes \mathbb{S}^4) = k$.

PROOF: Use $g(M) \ge rk \Pi_1(M)$, Theorem 3 and the subadditivity of the genus.

The concept of genus can be extended to boundary case in a natural way (see for example [5]). By slightly modifying the proof of Theorem 3 we obtain the following result

Theorem 5. Let M be a compact 5-manifold with (possibly empty) connected boundary ∂M . Then g(M) = 1 if and only if M is (PL) homeomorphic to either $\mathbb{S}^1 \otimes \mathbb{S}^4$ or $\mathbb{S}^1 \otimes \mathbb{S}^4 \setminus (\text{open 5-ball})$ or $\mathbb{S}^1 \otimes B^4$. Here $\mathbb{S}^1 \otimes B^4$ denotes either $\mathbb{S}^1 \times B^4$ or the twisted B^4 -bundle over \mathbb{S}^1 .

3. Free fundamental groups.

In this section we consider closed orientable 5-manifolds M with free fundamental group $\Pi_1(M) \simeq *_q \mathbb{Z}, g \geq 1$. If g = 1, then J.L. Shaneson proved that the number of closed smooth 5-manifolds of the same homotopy type as M is finite and at most equals the number of elements of $H_2(M;\mathbb{Z}_2)$. Here we extend this result for q > 1 by using (PL) surgery theory in dimension five (see [6] and [14]). For convenience, we recall some definitions listed in the quoted papers. Firstly we note that it follows from $Wh(\mathbb{Z}) \simeq 0$ and $Wh(\Pi * \Pi') = Wh(\Pi) \oplus Wh(\Pi')$ (see [8]) that "s-cobordant" is equivalent to "h-cobordant" in our case. Let M^n be a closed orientable (PL) *n*-manifold with fundamental group $\Pi_1 = \Pi_1(M)$ and let ξ^k be a linear bundle over M. Then $\Omega_n^+(M,\xi)$ denotes the set of bordism classes of normal maps (X, f, b) where X is a (PL) n-manifold, $f : X \longrightarrow M$ a map of degree one, $b: \nu_X^k \longrightarrow \xi^k$ a linear bundle map covering f and ν_X^k is the stable normal bundle of $X^n \longrightarrow \mathbb{S}^{n+k}$, $k \gg n$. Let $\mathcal{N}_n(M)$ be the union of all $\Omega_n^+(M,\xi)$ over all k-plane bundle ξ^k over M modulo the additional equivalence relation that $(X_0, f_0, b_0) \in \Omega_n^+(M, \xi_1)$ is equivalent to $(X_1, f_1, b_1) \in \Omega_n^+(M, \xi_2)$ if and only if (X_0, f_0, b_0) is normally cobordant to (X_1, f_1, b_1) for some linear bundle automorphism $\xi_1 \longrightarrow \xi_0$ (see [6, p. 74]). The elements of $\mathcal{N}_n(M)$ are called the <u>normal invariants</u> of M. Let $\mathcal{S}_n(M)$ denote the set of equivalence classes of pairs (X,h), where X is a compact (PL) n-manifold, $h: X \longrightarrow M$ is an orientation preserving simple homotopy equivalence and $(X,h) \sim (X',h')$ if and only if there is an orientation preserving (PL) homeomorphism $\gamma: X \longrightarrow X'$ such that $h' \circ \gamma$ is homotopic to h. Finally, denote by $L_n(\Pi_1)$ the n-th Wall group in the orientable case, $n = \dim M$ and $\Pi_1 = \Pi_1(M)$ (see [6, p. 77] and [14]). Recall that if $h: X \longrightarrow M$ represents an element of $\mathcal{S}_n(M)$ there exists an obvious forgetful map

$$\eta_n: \mathcal{S}_n(M) \longrightarrow \mathcal{N}_n(M)$$

which associates to (X, h) the class of (X, h, h^*) in $\mathcal{N}_n(M)$, h^* being the obvious map on stable normal bundles induced by h. Further, there is a map

$$\sigma_n: \mathcal{N}_n(M) \longrightarrow L_n(\Pi_1)$$

which associates to any normal invariant (X, f, b) the surgery obstruction $\sigma_n(X, f, b)$ (see [6, p. 77]). Finally we denote by

$$\omega_n: L_{n+1}(\Pi_1) \longrightarrow \mathcal{S}_n(M)$$

the map induced by the action of $L_{n+1}(\Pi_1)$, $n+1 = \dim (M \times I)$, I = [0,1], $\Pi_1 = \Pi_1(M \times I) \simeq \Pi_1(M)$, on $\mathcal{S}_n(M)$ (see [6, p. 80]). By [6, Theorem 5.11] and [14, Theorem 10.8], there is an exact sequence

$$\mathcal{S}_{n+1}(M \times I, \partial(M \times I)) \xrightarrow{\eta_{n+1}} \mathcal{N}_{n+1}(M \times I, \partial(M \times I)) \xrightarrow{\sigma_n} \to L_{n+1}(\Pi_1) \xrightarrow{\omega_n} \mathcal{S}_n(M) \xrightarrow{\eta_n} \mathcal{N}_n(M).$$

We prove the following

Theorem 6. Let M^5 be a closed connected orientable smooth (or PL) 5-manifold with fundamental group $\Pi_1(M) = *_q \mathbb{Z}$. Then the map

$$\eta_5: \mathcal{S}_5(M) \longrightarrow \mathcal{N}_5(M)$$

is injective and Im $\eta_5 \simeq H_2(M; \mathbb{Z}_2)$, i.e. the number of distinct smooth 5-manifolds homotopy equivalent to M equals the 2-nd Betti number (mod 2) of M.

PROOF: We prove that

- (1) σ_5 and σ_6 are epimorphisms.
- (2) $\mathcal{N}_5(M) \simeq H_2(M; \mathbb{Z}_2) \oplus H_1(M)$
- (3) σ_5 is injective on the summand $H_1(M)$.
- (1) Since $L_6(\Pi_1) = L_6(*_q \mathbb{Z}) \simeq \mathbb{Z}_2$ (see [3, Theorem 1.6, p. 28]), the map

$$L_6(1) \simeq \mathbb{Z}_2 \longrightarrow L_6(*_g\mathbb{Z}) \simeq \mathbb{Z}_2$$

is an isomorphism, hence one can represent the non-trivial element of L_6 by a degree one normal map $(\mathbb{S}^3 \times \mathbb{S}^3, f, b)$ with $f : \mathbb{S}^3 \times \mathbb{S}^3 \longrightarrow \mathbb{S}^6$ (see [11], [12]). Then the action of L_6 on $\mathcal{S}_6(M \times I, M \times \partial I)$ is defined by taking an element $k : (K, \partial K) \longrightarrow$ $(M \times I, M \times \partial I)$ in $\mathcal{S}_6(M \times I, M \times \partial I)$ and forming the connected sum in the interior $k \# f : K \# \mathbb{S}^3 \times \mathbb{S}^3 \longrightarrow M \times I = M \times I \# \mathbb{S}^6$. Using the additivity of surgery obstructions and the fact $\sigma_6(k) = 0$, we have that $\sigma_6(k \# f) = \sigma_6(f)$ is the generator of $L_6(\Pi_1)$ and

$$\left(K\#\mathbb{S}^3\times\mathbb{S}^3,k\#f,(k\#f)^*\right)\in\Omega_6^+\left(M\times I,M\times\partial I,\xi\right)\subset\mathcal{N}_6\left(M\times I,M\times\partial I\right),$$

i.e. σ_6 is surjective. This implies that the sequence

$$0 \longrightarrow \mathcal{S}_5(M) \xrightarrow{\eta_5} \mathcal{N}_5(M) \xrightarrow{\sigma_5} L_5(\Pi_1)$$

is exact, i.e. η_5 is injective. Now we prove that σ_5 is surjective. Since M is orientable, any imbedded 1-sphere $\tilde{f} : \mathbb{S}^1 \longrightarrow M$ has trivial normal bundle, i.e. \tilde{f} extends to an imbedding $f : \mathbb{S}^1 \times B^4 \longrightarrow M$. Let $f_1, f_2, \ldots, f_g : \mathbb{S}^1 \times B^4 \longrightarrow M$ be disjoint imbeddings such that $\tilde{f}_i = f_i|_{\mathbb{S}^1 \times 0}$ represent a set of generators of $\Pi_1(M)$ (by general position this is always possible).

Let N_i , i = 1, 2, ..., g, be the 5-manifold obtained by deleting $f_i(\mathbb{S}^1 \times \mathring{B}^4)$ from Mand substituting $(\mathbb{S}^1 \times ||E_8||) \setminus (\mathbb{S}^1 \times \mathring{B}^4)$ by an obvious identification of their boundaries. Here $||E_8||$ represents the simply-connected Poincaré 4-complex realizing the form E_8 as constructed in [6, pp. 22–23]. Note that $\mathbb{S}^1 \times ||E_8||$ is a 5-manifold. Using an appropriate normal map

$$\mathbb{S}^1 \times ||E_8|| \longrightarrow \mathbb{S}^1 \times \mathbb{S}^4$$
,

we obtain a normal map of degree one

$$\xi_i: N_i \longrightarrow M = M \setminus f_i(\mathbb{S}^1 \times \overset{\circ}{B}{}^4) \bigcup_{\mathbb{S}^1 \times \mathbb{S}^3} (\mathbb{S}^1 \times \mathbb{S}^4 \setminus \mathbb{S}^1 \times \overset{\circ}{B}{}^4)$$

hence $(N_i, \xi_i, \xi_i^*) \in \Omega_5^+(M, \xi) \subset \mathcal{N}_5(M)$. Furthermore, the surgery obstruction $\sigma_5(N_i, \xi_i, \xi_i^*)$ is exactly the *i*-th generator of $L_5(\Pi_1) = L_5(*_g\mathbb{Z}) \cong \bigoplus_g\mathbb{Z}$ (use [3, Theorem 1.6, p. 28]), i.e. σ_5 is epi. Thus we have the exact sequence

(17)
$$0 \to \mathcal{S}_5(M) \xrightarrow{\eta_5} \mathcal{N}_5(M) \xrightarrow{\sigma_5} L_5(\Pi_1) \simeq \oplus_g \mathbb{Z} \to 0.$$

Now D. Sullivan proved that there is a bijection between $\mathcal{N}_n(M)$ and the group [M, G/TOP] of the homotopy classes of maps from M to the H-space G/TOP (see for example [6, Theorem 5.4, p. 77]). Since $\Pi_2(G/TOP) \simeq \mathbb{Z}_2$, $\Pi_3(G/TOP) \simeq \Pi_5(G/TOP) \simeq 0$ and $\Pi_4(G/TOP) \simeq \mathbb{Z}$ with vanishing k-invariant in $H^5(K(\mathbb{Z}_2, 2))$, the Postnikov resolution of G/TOP gives an H-map

$$G/TOP \longrightarrow K(\mathbb{Z}_2, 2) \times K(\mathbb{Z}, 4)$$

which is a 5-equivalence. In particular, for any topological closed 5-manifold M, we have

$$\mathcal{N}_{5}(M) \simeq [M, G/TOP] \simeq [M, K(\mathbb{Z}_{2}, 2) \times K(\mathbb{Z}, 4)] \simeq$$
$$H^{2}(M; \mathbb{Z}_{2}) \oplus H^{4}(M) \simeq H_{2}(M; \mathbb{Z}_{2}) \oplus H_{1}(M) \simeq$$
$$H_{2}(M; \mathbb{Z}_{2}) \oplus \oplus_{g} \mathbb{Z} \simeq H_{2}(M; \mathbb{Z}_{2}) \oplus L_{6}(\Pi_{1}).$$

Thus we have Ker $\sigma_5 \simeq \text{Im } \eta_5 \simeq H_2(M; \mathbb{Z}_2)$ by (17) as requested.

As a direct consequence of Theorem 6 (see also [10]), we obtain the following

Corollary 7.

- (1) If M has the homotopy type of $\#_g \mathbb{S}^1 \times \mathbb{S}^4$, then M is diffeomorphic to $\#_g \mathbb{S}^1 \times \mathbb{S}^4$.
- (2) Any h-cobordism of $\#_q \mathbb{S}^1 \times \mathbb{S}^4$ with itself is a product.
- (3) Let L be a disjoint union of g copies of \mathbb{S}^3 and let $\psi : L \longrightarrow \mathbb{S}^5$ be a smooth imbedding. Then ψ is ambient isotopic to the standard inclusion $L \subset \mathbb{S}^5$ if and only if $\mathbb{S}^5 \setminus \psi(L)$ has the homotopy type of the wedge $\vee_q \mathbb{S}^1$.

Now we use (1) of Corollary 7 to prove the following result.

Corollary 8. Let M be a closed orientable smooth (or PL) 5-manifold with $\Pi_1(M) \simeq *_g \mathbb{Z}$ and $H_2(M) \simeq 0$. Suppose that there exists a crystallization (G, c) of M for which at least one of α_{ijhr} 's equals g + 1. Then M is (PL) homeomorphic to $\#_g \mathbb{S}^1 \times \mathbb{S}^4$.

PROOF: First we note that a finite presentation $\langle X : R \rangle$ of the fundamental group $\Pi_1(M)$ can be directly obtained from the crystallization (G, c) of M (for details see [5]). Here we briefly recall the construction. If $\mathcal{C}_G = \{i, j, h, r, s, t\}$ is the color set of G, then the generators of X are in bijection with the connected components of the subgraph $G_{\{i,j,h,r\}}$, but one, while the relators of R are in bijection with the $\{s, t\}$ -colored cycles of G. This implies that the inequality

$$\alpha_{ijhr} - 1 \ge \operatorname{rk} \Pi_1(M) = g$$

holds. Suppose for example $\alpha_{0234} = g + 1$. Then the pseudocomplex K(1,5) consists of two vertices joined by exactly 1+g edges, hence its regular neighborhood N = N(1,5) is (PL) homeomorphic to $\#_g \mathbb{S}^1 \times B^4$. Further we have that $H_4(M) \simeq H^1(M) \simeq \oplus_g \mathbb{Z}$ and $H_3(M) \simeq H^2(M) \simeq FH_2(M) \oplus TH_1(M) \simeq 0$. Then the Mayer-Vietoris sequence of the triple (M, N, N'), N' = N(0, 2, 3, 4), implies that

$$0 \longrightarrow H_4(M) \simeq \oplus_g \mathbb{Z} \longrightarrow H_3(\partial N) \simeq \oplus_g \mathbb{Z} \longrightarrow H_3(N') \longrightarrow 0,$$
$$0 \longrightarrow H_2(N') \longrightarrow H_2(M) \simeq 0,$$

$$0 \longrightarrow H_1(\partial N) \simeq \oplus_g \mathbb{Z} \longrightarrow H_1(N) \oplus H_1(N') \simeq \oplus_g \mathbb{Z} \oplus H_1(N') \rightarrow \longrightarrow H_1(M) \simeq \oplus_g \mathbb{Z} \longrightarrow 0,$$

hence $H_1(N') \simeq \bigoplus_g \mathbb{Z}$ and $H_2(N') \simeq 0$. Furthermore $H_3(N')$ is free since N' =N(0,2,3,4) collapses onto the 3-dimensional pseudocomplex K(0,2,3,4). Thus the first exact sequence splits, i.e. $H_3(N') \simeq 0$. This implies that there do not exist two 3-simplexes in K(0,2,3,4) with common boundary (notice that any ball of a pseudocomplex is abstractly isomorphic to the standard simplex of the same dimension). Therefore any 3-simplex of K(0,2,3,4) can be retracted, by deformation, on a 2-dimensional subcomplex, i.e. K(0, 2, 3, 4) collapses onto a 2-dimensional subcomplex, say \tilde{K} . Moreover, \tilde{K} is still a pseudocomplex, so any two faces of a simplex of \tilde{K} do not identify together. Thus the conditions $H_2(N') \simeq H_2(\tilde{K}) \simeq 0$ and $H_1(\tilde{K}) \simeq H_1(N') \simeq \bigoplus_q \mathbb{Z}$ imply that \tilde{K} (and whence K(0,2,3,4)) collapses to a onedimensional subcomplex formed by two vertices joined by exactly 1 + g edges (use the same argument as above). Then N' is also (PL) homeomorphic to $\#_q \mathbb{S}^1 \times B^4$. The manifold M is obtained by attaching two disjoint copies of $\#_q \mathbb{S}^1 \times B^4$ along their boundaries. Since $\Pi_1(M) \simeq *_g \mathbb{Z}$, M is homotopy equivalent to $\#_g \mathbb{S}^1 \times \mathbb{S}^4$, hence $M \simeq_{PL} \#_g \mathbb{S}^1 \times \mathbb{S}^4$ by (1) of Corollary 7.

We conjecture that $\Pi_1(M) \simeq *_g \mathbb{Z}$ and g(M) = g imply the hypothesis of Corollary 8.

We complete the section with the following

PROOF: Let $\psi_i : \mathbb{S}^1 \times B^4 \longrightarrow M$ be disjoint imbeddings such that the homotopy class $[\psi_i|_{\mathbb{S}^1 \times 0}]$ is the *i*-th generator of $\Pi_1(M) \simeq *_g \mathbb{Z}, i = 1, 2, \ldots, g$. We set $M_0 = M \setminus \bigcup_{i=1}^g \psi_i(\mathbb{S}^1 \times \overset{\circ}{B}^4)$ and consider the cobordism

$$W^6 = M \times I \cup_{\psi} \bigcup_{i=1}^g B^2 \times B^4$$

between M and $M' = M_0 \cup \bigcup_{i=1}^g B^2 \times \mathbb{S}^3$. Here we set I = [0,1] and $\psi = \{\psi_i : i = 1, 2, \ldots, g\}$ as usual. Obviously M' is a simply-connected 5-manifold obtained from M by killing the generators of $\Pi_1(M)$ according to ψ . Further the pairs (M, M_0) and (M', M_0) are homology equivalent (by excision) to the disjoint unions $\cup_{i=1}^g (\mathbb{S}^1 \times B^4, \mathbb{S}^1 \times \mathbb{S}^3)$ and $\cup_{i=1}^g (B^2 \times \mathbb{S}^3, \mathbb{S}^1 \times \mathbb{S}^3)$ respectively. The following diagram easily implies that $H_2(M) \simeq H_2(M_0) \simeq H_2(M')$:

$$H_{3}(M', M_{0}) \simeq 0$$

$$\downarrow$$

$$0 \simeq H_{3}(M, M_{0}) \longrightarrow H_{2}(M_{0}) \xrightarrow{\text{iso}} H_{2}(M) \longrightarrow H_{2}(M, M_{0}) \simeq 0$$

$$\downarrow$$

$$H_{2}(M')$$

$$\downarrow$$

$$H_{2}(M', M_{0}) \simeq \oplus_{g}\mathbb{Z}$$

$$\downarrow$$

$$0 \simeq H_{2}(M, M_{0}) \longrightarrow H_{1}(M_{0}) \xrightarrow{\text{iso}} H_{1}(M) \simeq \oplus_{g}\mathbb{Z} \longrightarrow H_{1}(M, M_{0}) \simeq 0$$

$$\downarrow$$

$$H_{1}(M') \simeq 0$$

We also recall that the Stiefel-Whitney numbers are invariant under surgery (see [7]), hence $w_2(M) \simeq w_2(M') \simeq 0$. Since $H_2(M')$ is free, M' is diffeomorphic to $\#_k \mathbb{S}^2 \times \mathbb{S}^3$ by the classification theorem of simply connected spin 5-manifolds (see [13]). Thus W is a cobordism between M and $\#_k \mathbb{S}^2 \times \mathbb{S}^3$, where $k = rkH_2(M)$. Let \hat{W} be a compact 6-manifold obtained from W by capping the boundary component $\#_k \mathbb{S}^2 \times \mathbb{S}^3$ by $\#_k \mathbb{S}^2 \times B^4$. Since M bounds \hat{W} , the proof is completed. \Box

We conjecture that if $\Pi_1(M) \simeq *_g \mathbb{Z}$ and g(M) = g, then M bounds exactly $\#_g \mathbb{S}^1 \times B^5$, i.e. $M \simeq_{PL} \#_g \mathbb{S}^1 \times \mathbb{S}^4$.

References

- [1] Barden D., Simply connected five-manifolds, Ann. of Math. 82 (1965), 365–385.
- Bracho J., Montejano L., The combinatorics of colored triangulations of manifolds, Geom. Dedicata 22 (1987), 303–328.
- [3] Cappell S., Mayer-Vietoris sequences in hermitian K-theory, preprint.
- [4] Cavicchioli A., A combinatorial characterization of S³ × S¹ among closed 4-manifolds, Proc. Amer. Math. Soc. 105 (1989), 1008–1014.
- [5] Ferri M., Gagliardi C., Grasselli L., A graph-theoretical representation of PL-manifolds. A survey on crystallizations, Aequationes Math. 31 (1986), 121–141.
- [6] Mandelbaum R., Four-dimensional topology: an introduction, Bull. Amer. Math. Soc. 2 (1980), 1–159.
- [7] Milnor J.W., A procedure for killing the homotopy groups of differentiable manifolds, in Proc. Symp. in Pure Math. (Differential Geometry), Amer. Math. Soc. 3 (1961), 39–55.
- [8] Milnor J., Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
- [9] Rourke C.P., Sanderson B.J., Introduction to piecewise-linear topology, Springer-Verlag Ed., Berlin-Heidelberg-New York, 1972.
- [10] Shaneson J.L., Wall's surgery obstruction groups for $G \times \mathbb{Z}$, Ann. of Math. **90** (1969), 296–334.
- [11] ______, Non-simply connected surgery and some results in low dimension topology, Comm. Math. Helv. 45 (1970), 333–352.
- [12] _____, On non-simply connected manifolds, in Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, Rhode Island 22 (1970), 221–229.
- [13] Smale S., On the structure of 5-manifolds, Ann. of Math. 75 (1962), 38–46.
- [14] Wall C.T.C., Surgery on Compact Manifolds, Academic Press, London-New York, 1970.
- [15] White A.T., Graphs, Groups and Surfaces, North Holland Ed., Amsterdam, 1973.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI MODENA, VIA CAMPI 213/B, 41100 MODENA, ITALY

(Received September 1, 1992, revised March 25, 1993)