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On the k-Baire property

Alessandro Fedeli

Abstract. In this note we show the following theorem: “Let X be an almost k-discrete
space, where k is a regular cardinal. Then X is k+-Baire iff it is a k-Baire space and every
point-k open cover U of X such that card (U) ≤ k is locally-k at a dense set of points.”
For k = ℵ0 we obtain a well-known characterization of Baire spaces. The case k = ℵ1 is
also discussed.
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Let k be an infinite cardinal number. A space is almost k-discrete if every non-
empty intersection of fewer than k open sets has non-empty interior. Almost ℵ1-
discrete spaces are called almost P -spaces [4]. A k-Baire space is a space in which
the intersection of fewer than k dense open sets is dense ([3], [5]). Thus the usual
Baire spaces are ℵ1-Baire spaces. A collection U of subsets of a space X is said to
be point-k if each point x ∈ X is in fewer than k members of U . Point-ℵ0 collections
are called point-finite, point-ℵ1 collections are called point-countable. A collection
U is locally-k at a point x if there is an open neighborhood of x meeting fewer than
k members of U . Locally-ℵ0 (locally-ℵ1) collections are called locally finite (locally
countable). The least cardinal strictly greater than k is denoted by k+.

Theorem 1. Let X be an almost k-discrete space, where k is a regular cardinal.

Then X is k+-Baire iff it is a k-Baire space and every point-k open cover U of X

such that card (U) ≤ k is locally-k at a dense set of points.

Proof: Let k be a regular cardinal. The hypothesis that X is an almost k-discrete
space is used only for the sufficiency. The proof of the necessity is essentially
similar as the one showing that every k+-Baire space satisfying the countable chain
condition has caliber λ, for each regular cardinal λ ≤ k ([5, Theorem 3.6]). So
let X be a k+-Baire space and let U = {Uα}α<k be a point-k open cover of X .
Suppose that the set A = {x ∈ X : U is locally-k at x} is not dense, then there is
a non-empty open set V such that V ∩A = ∅. For each β < k let Cβ = V −

⋃
{Uα :

β ≤ α < k}. Since U is point-k (and k is regular), V =
⋃
{Cβ : β < k}. But

each Cβ is nowhere dense, for if Wβ = intX(clX Cβ) 6= ∅ then Gβ = Wβ ∩ V 6= ∅
and Gβ ∩ (

⋃
{Uα : β ≤ α < k}) ⊆ clX (Cβ) ∩ (

⋃
{Uα : β ≤ α < k}) = ∅, so
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∅ 6= Gβ ⊆ V ∩ A, a contradiction. Hence V is the union of less than k+ nowhere

dense sets, contradicting the hypothesis that X is k+-Baire (note that a space
is k-Baire iff no non-empty open set is the union of fewer than k nowhere dense
sets). Finally we show the sufficiency. Let X be a (non-empty) k-Baire almost k-
discrete space such that every its point-k open cover of cardinality ≤ k is locally-k
at a dense set of points. Let {Dα}α<k be a family of dense open subsets of X . For
each α < k let Hα =

⋂
{Dβ : β ≤ α}. From our hypothesis it follows that Hα is

dense in X , so Hα is a non-empty intersection of fewer than k open sets, for each
α < k. Now let Gα = intX(Hα), X is almost k-discrete so Gα 6= ∅. We claim
that Gα is dense in X for each α < k. Let us suppose that there is a non-empty
open set G such that G ∩ Gα = ∅, then G ∩ clX(Gα) = ∅. Take y ∈ G ∩ Hα

(Hα is dense in X). Let V be an open neighborhood of y such that V ∩ Gα = ∅.⋂
{Dβ ∩ V : β ≤ α} is non-empty (it contains y) and X is almost k-discrete so

W = intX(
⋂
{Dβ ∩ V : β ≤ α}) 6= ∅. Therefore ∅ 6=W ⊆ V ∩ Gα, a contradiction.

Hence clX(Gα) = X for each α < k. Therefore G = {Gα : α < k} is a decreasing
family of dense open subsets of X . Without loss of generality we may assume that
α 6= β → Gα 6= Gβ . Since

⋂
{Gα : α < k} ⊆

⋂
{Dα : α < k} then it is enough

to show that
⋂
{Gα : α < k} is dense in X . Let C = clX (

⋂
{Gα : α < k}). If

C 6= X consider the open cover {X} ∪ {Gα − C : α < k}. This cover is point-k
and by hypothesis, there is some y ∈ X − C such that this cover is locally-k at y.
Hence there is an open neighborhood V of y, and a A ⊂ k, card (A) < k, such that
V ∩ (Gα − C) 6= ∅ iff α ∈ A. Since each Gα is dense, we have a contradiction.
Therefore C = X and X is k+-Baire. �

For k = ℵ0 we obtain the following well-known characterization of Baire spaces
([1], [2]).

Corollary 2. X is a Baire space iff every countable point-finite open cover of X is

locally finite at a dense set of points.

The class of ℵ2-Baire spaces is also interesting (see, for instance, Chapter 4
of [6]). Two well-known results about this class of spaces are: (1) (MA + ¬CH)
Every Čech-complete space satisfying the countable chain condition is ℵ2-Baire [5];
(2) Every Hausdorff locally compact almost P -space is ℵ2-Baire [6]. The following
corollary gives a characterization, in the realm of almost P -spaces, of ℵ2-Baire
spaces.

Corollary 3. Let X be an almost P -space. X is ℵ2-Baire iff it is a Baire space
and every point-countable open cover U of X such that card (U) ≤ ℵ1 is locally
countable at a dense set of points.

Remark 4. In the above corollary the assumption thatX is an almost P -space can-
not be omitted, as the following example shows ([5], [7]). Let 2ℵ1 be the topological
product of ℵ1 copies of the two-point discrete space {0, 1}. Let X be the subspace

of 2ℵ1 consisting of all functions f : ω1 → {0, 1} such that {α ∈ ω1 : f(α) = 1}
is countable. X is a Baire space which is the union of ℵ1 nowhere dense sets. Let
D be a countable dense subset of 2ℵ1 and let Y be the subspace D ∪ X of 2ℵ1 . Y

is a Baire space (X is a dense Baire subspace of Y ), it is separable (hence every
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point-countable open cover of Y is countable) but it is not ℵ2-Baire (it is union of
ℵ1 nowhere dense sets).
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