Some conditions under which a uniform space is fine

Umberto Marconi

Abstract. Let X be a uniform space of uniform weight μ . It is shown that if every open covering, of power at most μ , is uniform, then X is fine. Furthermore, an ω_{μ} -metric space is fine, provided that every finite open covering is uniform.

Keywords: uniform space, uniform weight, fine uniformity, uniformly locally finite, $\omega_\mu\text{-}$ additive space, $\omega_\mu\text{-}metric$ space

Classification: Primary 54E15; Secondary 54A25, 54A35

0. A recurrent problem about uniform spaces is to see whether a uniformity is the finest one compatible with the topology. Isiwata and Atsuji solved this problem in metric spaces [2], [6]. The following theorem summarizes some equivalent conditions of Theorem 1 of [2].

Theorem 1. The following conditions on a metric space X are equivalent:

- (1) every open covering is uniform;
- (2) every countable open covering is uniform;
- (3) every open covering consisting of two elements is uniform;
- (4) the subset K of limit points is compact and, for every uniform covering U, the subspace X \ St(K,U) is uniformly discrete.

(The star St(K, U) of K with respect to U is the union of all elements of U which have a non-empty intersection with K).

It is interesting to see if a suitable version of Theorem 1 also holds in uniform spaces. Metric spaces are uniform spaces with a countable base for the uniformity; this base can be assumed to be well ordered by star-refinement. In uniform spaces, the existence of a well ordered base is a very strong property.

We will prove that an equivalence analogous to $1 \Leftrightarrow 2$ holds for general uniform spaces and depends only on cardinal properties, while the equivalence $1 \Leftrightarrow 3$ can be generalized to ω_{μ} -metric spaces (= uniform spaces which admit a base of uniform coverings well ordered by a regular cardinal ω_{μ}). In ω_{μ} -metric spaces we will provide a suitable formulation of the condition 4 (obviously in uniform spaces $3 \neq 1$ and $1 \neq 4$).

1. Unless otherwise specified, the space X is a uniform space, with the uniform topology.

The following lemma is useful for working with cardinal properties of locally finite families. The proof is easy to check (for example, see [7]).

Lemma 1. Let \mathcal{G} be a locally finite family of subsets of X. If the power of \mathcal{G} is at most μ , then there exists an open covering \mathcal{B} , of power at most μ , such that every element of \mathcal{B} meets only finitely many elements of \mathcal{G} .

We recall that the uniform weight of X is the smallest cardinal number of a base for the uniformity.

The following theorem is the uniform analogue of $2 \Rightarrow 1$ in Theorem 1.

Theorem 2. Let μ be the uniform weight of X. If every open covering of power at most μ is uniform, then every open covering is uniform.

We shall prove Theorem 2 in three steps (the statements of each step hold under the hypotheses of Theorem 2).

Let $\{\mathcal{U}_{\alpha} : \alpha < \mu\}$ be a base for the uniformity, consisting of open uniform coverings.

Step 1. X is a paracompact topological space.

PROOF: Let \mathcal{A} be an open covering. For every $x \in X$, choose $\alpha(x) < \mu$ such that $\operatorname{St}(x, \mathcal{U}_{\alpha(x)})$ is contained in some element of \mathcal{A} . For every α , let

$$A_{\alpha} = \bigcup_{\alpha(x)=\alpha} \operatorname{St}(x, \mathcal{U}_{\alpha(x)}).$$

By assumption, the covering $\{A_{\alpha} : \alpha < \mu\}$ is uniform.

The covering

$$\mathcal{B} = \{A_{\alpha} \cap \operatorname{St}(x, \mathcal{U}_{\alpha(x)}) : \alpha < \mu, \ \alpha(x) = \alpha\}$$

is an open refinement of \mathcal{A} .

Since uniform coverings are normal coverings (in the sense of Tukey), by the condition (g) in [9, Theorem 1.2] it follows that the covering \mathcal{B} has an open star-refinement.

 \square

A family \mathcal{F} of subsets of X is said to be uniformly locally finite if there exists a uniform covering \mathcal{B} such that every element of \mathcal{B} meets \mathcal{F} in only a finite number of elements.

Step 2. Every locally finite family \mathcal{F} is uniformly locally finite.

PROOF: We proceed by contradiction. Suppose that for every α there exist an element $U_{\alpha} \in \mathcal{U}_{\alpha}$ and a countable subfamily \mathcal{F}_{α} of \mathcal{F} such that $U_{\alpha} \cap F \neq \emptyset$ for every $F \in \mathcal{F}_{\alpha}$.

Let \mathcal{G} be the union of all subfamilies \mathcal{F}_{α} . \mathcal{G} is a locally finite family of subsets and the power of \mathcal{G} is at most μ . By Lemma 1, there exists an open covering \mathcal{B} of power at most μ such that every element of \mathcal{B} meets \mathcal{G} only in a finite number of elements. \mathcal{B} is an open covering of power at most μ , which cannot be uniform because the family \mathcal{G} is not uniformly locally finite. This is a contradiction with the hypothesis of Theorem 2. **Step 3.** Every locally finite open covering \mathcal{A} is uniform.

PROOF: By Step 2, \mathcal{A} is uniformly locally finite. For every α , by possibly refining coverings \mathcal{U}_{α} , we can assume that every element of \mathcal{U}_{α} meets \mathcal{A} only for a finite number of elements.

If \mathcal{A} is not a uniform covering, then for every α there exists $U_{\alpha} \in \mathcal{U}_{\alpha}$ such that $U_{\alpha} \setminus A \neq \emptyset$ for every $A \in \mathcal{A}$.

Let $\mathcal{A}_{\alpha} = \{A \in \mathcal{A} : A \cap U_{\alpha} \neq \emptyset\}$ and let $\mathcal{C} = \bigcup_{\alpha} \mathcal{A}_{\alpha}$.

Every \mathcal{A}_{α} is a finite family, thus the power of \mathcal{C} is at most μ . Therefore we have a contradiction, because the open covering $\mathcal{C} \cup \{\bigcup(\mathcal{A} \setminus \mathcal{C})\}$, of power at most μ , cannot be uniform. In fact, for every α , $U_{\alpha} \cap (\bigcup(\mathcal{A} \setminus \mathcal{C})) = \emptyset$ and $U_{\alpha} \setminus A \neq \emptyset$ for every $A \in \mathcal{C}$.

The conclusion of Theorem 2 follows from Step 1 and Step 3.

Remark. One might conjecture that every open covering is uniform, provided that the open coverings of power less than μ are uniform coverings. This, however, is not the case. For a counterexample, let X be the space of ordinals less than ω_1 , equipped with the unique (precompact) uniformity (an open covering is uniform iff it has a finite subcovering).

By countable compactness of X, every countable open covering is uniform and it is easy to verify that the uniform weight of X is ω_1 . Furthermore, X is not a paracompact topological space [4, p. 380].

2. Denote by \mathbf{C}^* the weak uniformity of continuous bounded real functions on a completely regular Hausdorff space X.

X is a normal space iff every open covering consisting of two elements belongs to \mathbb{C}^* .

It is an interesting question to see when a uniformity finer than \mathbf{C}^* is fine. For example, the implication $3 \Rightarrow 1$ of Theorem 1 says that metric uniformities finer than \mathbf{C}^* are fine. Another example of uniform space with this property are sequentially uniform spaces [3].

In the next theorem, we extend the equivalences $1 \Leftrightarrow 3 \Leftrightarrow 4$ of Theorem 1 to ω_{μ} metric spaces. Notice that the proof of this theorem follows from ordinal properties.

An ω_{μ} -metric space is a uniform space which admits a base of uniform coverings

$$\mathbf{B} = \{\mathcal{U}_{\alpha}: \ \alpha < \omega_{\mu}\}$$

well ordered by refinement (hence by star-refinement) by a regular cardinal ω_{μ} .

An ω_{μ} -metric space is paracompact (ultra-paracompact if $\mu > 0$) [1].

Let λ be a cardinal number. A topological space is said to be λ -compact if every open covering has a subcovering of power less than λ . A weakly paracompact space X is λ -compact iff the power of every discrete closed subset of X is less than λ (as one can prove by mimicking the proof of [4, Theorem 5.3.2]).

In the proof of Theorem 3, the base **B** is assumed well ordered by star-refinement. The equivalence $1 \Leftrightarrow 2$ has been already proved in [8]. **Theorem 3.** Let X be an ω_{μ} -metric space. The following conditions are equivalent:

- (1) every open covering is uniform;
- (2) the set K of limit points is ω_{μ} -compact and for every α the subspace $X \setminus \operatorname{St}(K, \mathcal{U}_{\alpha})$ is uniformly discrete;
- (3) every finite open covering is uniform.

PROOF: $1 \Rightarrow 3$ Obvious.

 $3 \Rightarrow 2$ By way of contradiction, assume that there exists a closed discrete subset $D = \{x_{\alpha} : \alpha < \omega_{\mu}\}$ of pairwise distinct limit points.

We shall prove that, for every α , one can choose $\beta(\alpha) \geq \alpha$ such that the collection $\mathcal{F} = \{\operatorname{St}(x_{\alpha}, \mathcal{U}_{\beta(\alpha)}) : \alpha < \omega_{\mu}\}$ consists of pairwise disjoint subsets. We proceed by transfinite induction. Choose $\beta(0) \geq 0$ such that $\overline{\operatorname{St}(x_0, \mathcal{U}_{\beta(0)})}$ is disjoint from $D \setminus \{x_0\}$. Let $\alpha > 0$ and $C_{\alpha} = \bigcup_{\gamma < \alpha} \overline{\operatorname{St}(x_{\gamma}, \mathcal{U}_{\beta(\gamma)})}$. The set C_{α} is closed, because X is an ω_{μ} -additive topological space [1]. The set $C = C_{\alpha} \cup \{x_{\gamma} : \gamma > \alpha\}$ is closed and therefore there exists $\beta(\alpha) \geq \alpha$ such that the subset $\overline{\operatorname{St}(x_{\alpha}, \mathcal{U}_{\beta(\alpha)})}$ is disjoint from C.

Choose $y_{\alpha} \in \text{St}(x_{\alpha}, \mathcal{U}_{\beta(\alpha)}), y_{\alpha} \neq x_{\alpha}$. The subset $F = \{y_{\alpha} : \alpha < \omega_{\mu}\}$ has no limit points and the open covering $\{X \setminus F, X \setminus D\}$ cannot be uniform, because the subsets F and D cannot be separated by a uniform covering.

What we still need to prove is that for every $\mathcal{U} \in \mathbf{B}$ the subspace $Y = X \setminus \mathrm{St}(K, \mathcal{U})$ is uniformly discrete (notice that every subset of Y is closed in X). We argue by way of contradiction. Again using transfinite induction, it is easy to choose elements x_{α} , y_{α} such that $y_{\alpha} \in \mathrm{St}(x_{\alpha}, \mathcal{U}_{\alpha})$ and $x_{\alpha} \neq y_{\beta}$ for every α, β . Thus the open covering consisting of $X \setminus \{x_{\alpha} : \alpha < \omega_{\mu}\}$ and $X \setminus \{y_{\alpha} : \alpha < \omega_{\mu}\}$ cannot be uniform. This contradiction concludes the proof.

 $2 \Rightarrow 1$

It is enough to prove that the trace on K of every open covering is a uniform covering of K. This trace can be refined by a covering of the form $\{\operatorname{St}(\operatorname{St}(x, \mathcal{U}_{\alpha(x)}), \mathcal{U}_{\alpha(x)}) : x \in K\}$. As K is ω_{μ} -compact, the covering $\{\operatorname{St}(x, \mathcal{U}_{\alpha(x)}) : x \in K\}$ has a subcovering of power less than ω_{μ} , say $\{\operatorname{St}(x_i, \mathcal{U}_{\alpha(x_i)}) : i < \delta\}$ for a suitable $\delta < \omega_{\mu}$. Thus $\{\operatorname{St}(x, \mathcal{U}_{\gamma}) : x \in K\}$ where $\gamma = \sup\{\alpha(x_i) : i < \delta\}$ is the required uniform refinement (see [4, Theorem 4.3.31]).

Remark. It follows from the proof that the condition 2 of the above theorem can be strengthened as follows:

(2') the set K of limit points is ω_{μ} -compact and every closed discrete subset of X is uniformly discrete.

Remark. It is well-known that the fine uniformity on a metrizable topological space X is a metric uniformity iff the set of limit points is compact (see for example [10]).

We can see that an analogous result holds for ω_{μ} -metrizable spaces: precisely, if the subset K of limit points of an ω_{μ} -metrizable space X is ω_{μ} - compact, then the fine uniformity is an ω_{μ} -metric uniformity. Let

$$\mathbf{B} = \{\mathcal{U}_{\alpha}: \ \alpha < \omega_{\mu}\}$$

be a well ordered base for a compatible uniformity. For every α , consider the open covering

$$\mathcal{V}_{\alpha} = \left\{ \{x\}, U: \ U \in \mathcal{U}_{\alpha}, U \cap K \neq \emptyset, x \in X \setminus \mathrm{St}(K, \mathcal{U}_{\alpha}) \right\}.$$

It is easy to check that $\mathbf{C} = \{\mathcal{V}_{\alpha} : \alpha < \omega_{\mu}\}$ is a well ordered (by refinement) base which induces the fine uniformity (see Theorem 3).

References

- Artico G. and Moresco R., ω_μ-additive topological spaces, Rend. Sem. Mat. Univ. Padova 67 (1982), 131–141.
- [2] Atsuji M., Uniform continuity of continuous functions of metric spaces, Pacific J. Math. 8 (1958), 11–16.
- [3] Di Concilio A., Naimpally S.A., Uniform continuity in sequentially uniform spaces, Acta Mathematica Hungarica 61 3-4 (1993) (to appear).
- [4] Engelking R., General Topology, Polish Scientific Publishers, Warsaw, 1977.
- [5] Isbell J.R., Uniform Spaces, Mathematical Surveys nr 12 AMS, Providence, Rhode Island, 1964.
- [6] Isiwata T., On uniform continuity of C(X) (Japanese), Sugaku Kenkiu Roku of Tokyo Kyoiku Daigaku **2** (1955), 36–45.
- [7] Marconi U., On the uniform paracompactness, Rend. Sem. Mat. Univ. Padova 72 (1984), 101–105.
- [8] _____, On uniform paracompactness of the ω_{μ} -metric spaces, Rend. Accad. Naz. Lincei **75** (1983), 102–105.
- [9] Morita K., Paracompactness and product spaces, Fund. Math. 50 (1962), 223-236.
- [10] Rainwater J., Spaces whose finest uniformity is metric, Pacific J. Math. 9 (1959), 567–570.

DIPARTIMENTO DI MATEMATICA PURA E APPLICATA, UNIVERSITÀ DEGLI STUDI DI PADOVA, I-35131 PADOVA, ITALY

(Received September 23, 1992)