On direct sums of $\mathcal{B}^{(1)}$ -groups

Claudia Metelli

Abstract. A necessary and sufficient condition is given for the direct sum of two $\mathcal{B}^{(1)}$ -groups to be (quasi-isomorphic to) a $\mathcal{B}^{(1)}$ -group. A $\mathcal{B}^{(1)}$ -group is a torsionfree Abelian group that can be realized as the quotient of a finite direct sum of rank 1 groups modulo a pure subgroup of rank 1.

Keywords: $\mathcal{B}^{(1)}$ -groups, Butler groups of finite rank Classification: 20K15

All groups in the following are Abelian and of finite rank.

Let $\mathcal{B}^{(n)}$ be the class of groups that can be realized as quotients of a completely decomposable group modulo a pure subgroup of rank n. Any such realization is called a *representation* of the group. The union of all classes $\mathcal{B}^{(n)}$ for n = 1, 2, 3, ...is the well known class of Butler groups. In [FM] the class $\mathcal{B}^{(1)}$ is investigated, showing that the major quasi-isomorphism-invariant properties of a $\mathcal{B}^{(1)}$ -group are easily recognized on its *representation type*, that is the isomorphy class of the completely decomposable group occurring as the numerator in the representation. The representation type itself determines the group up to quasi-isomorphism. In this context, "quasi-isomorphic" means "isomorphic to a subgroup of finite index"; this weaker form of isomorphism is the most natural one for a first broad study of classes of torsionfree groups of finite rank, and we will assume it as our standard approach in this paper. For more on quasi-isomorphism, we refer to [F II].

An example is given in [FM] to show that the direct sum of two $\mathcal{B}^{(1)}$ -groups need not be quasi-isomorphic to a $\mathcal{B}^{(1)}$ -group. We give here a necessary and sufficient condition for this to happen. Following the philosophy of [FM], the condition will consist operatively of a simple check to be performed on the representation types of the groups. The necessary results from [FM] will be quoted without proof; the only other result needed is the main result in [H]. In the references, we quote some other papers, both published and in printing, dealing with $\mathcal{B}^{(1)}$ -groups from a similar angle.

Let

$$G = \sum_{i=1}^{m} \langle g_i \rangle_* \qquad (g_i \in G)$$

be a $\mathcal{B}^{(1)}$ -group, with

$$t_i = t(g_i)$$

C. Metelli

the type of g_i (that is the isomorphy class of $\langle g_i \rangle_*$), and

$$T = T(G) = \{t_1, \ldots, t_m\}$$

the representation type of G. (By this we mean that G is the quotient of the outer direct sum $\bigoplus_{i=1}^{m} \langle g_i \rangle_*$ modulo a pure subgroup of rank 1.) Note that G may have different representation types; see [FM, Example 4.1].

We first reduce the problem to regular $\mathcal{B}^{(1)}$ -groups. From [FM, 1] we know that all $\langle g_i \rangle_*$ whose type t_i is not $\geq \inf\{t_j \mid j \neq i\}$ are direct summands of G. If we drop them, while maintaining the above notation, T becomes regular, that is the infimum if its types coincides with the infimum of all but (any) one of them. Then by [FM, 1.2] we may suppose G itself is regular, which means that the only relation holding in G is $\sum_{i=1}^{m} g_i = 0$ and its consequences.

We now define a set T_I of types of elements of G. As in [FM, 2.3], let

$$I(G) = I = \{1, \dots, m\}$$

be the index set of the representation, and for $E \subset I^1$ set

$$\tau_E = \bigwedge_{i \in E} t_i$$

(thus in particular $\tau = \tau_I$ is the minimum type of G). Then

$$t_E = \tau_E \vee \tau_{I \setminus E}$$

is the type of

$$g_E = \sum_{i \in E} g_i$$

Finally set

$$T_I = \{t_E \mid E \subset I, E \neq \{i\}, E \neq I \setminus \{i\} \text{ for each } i \in I\}.$$

(For the $\mathcal{B}^{(1)}$ -group $H = \sum_{j=1}^{n} \langle h_j \rangle_*$ the notation will be: $u_j = t(h_j), U = T(H) = \{u_1, \ldots, u_n\}, J = I(H) = \{1, \ldots, n\}, \text{ and, for } F \subset J, v_F = \bigwedge_{j \in F} u_j \text{ with } v = v_j \text{ the minimum type of } H; \text{ then } u_F = v_F \vee v_{J \setminus F} \text{ is the type of } h_F = \sum_{j \in F} h_j.$ U_J is defined similarly to T_I .)²

If G is not strongly decomposable, by 3.2 and 3.3 of [FM] quasi-decomposability of G is signalled by a type $t_E = t(\sum_{i \in E} g_i) \in T_I$ matching or exceeding some type

588

¹The symbols \subset , \supset denote proper containment.

 $^{^{2}}v = \text{greek u.}$

 $t_i \in T$; by the symmetry of the definition of t_E we may suppose $i \notin E = \{1, \ldots, k\}$ (say, for some k < m - 1). This (resorting, if necessary, to a quasi-isomorphic image) will then yield

$$G = G_E \oplus G_F$$
, with $I = E \cup \{i\} \cup F$

where³

$$G_E = \sum_{i \in E} \langle g_i \rangle_* + \langle g_{I \setminus E} \rangle_*$$

is again a $\mathcal{B}^{(1)}$ -group with regular representation type T' and index set I'

$$T' = T(G_E) = \{t_1, \dots, t_k, t_E\}$$

$$I' = I(G_E) = \{1, \dots, k, E\}.$$

The types signalling a possible splitting in G_E are again of the form $t(\sum_{j \in K} g_j)$ for $K \subset I'$; this is t_K , if $K \subset \{1, \ldots, k\}$; $t_{K \cup (I \setminus E)}$ otherwise. Moreover, such a type must either be $\geq t_j$ for some $j = 1, \ldots, k$ or $\geq t_E$ which was $\geq t_i$. Hence a quasisplitting of G_E is already signalled in G by a type $(t_K, \text{ or } t_{K \cup (I \setminus E)})$ of T_I . Since in a finite number of steps we are bound to reach the uniquely determined quasidecomposition of G into strongly indecomposable summands [FM, 3.5], clearly the partial order of T_I yields all the information needed to decompose G.

Let us first consider a special situation in which the solution is simplest.

Lemma 1. Let G, H have representation types T resp. U with $T \cap U \neq \emptyset$. Then $G \oplus H$ is a $\mathcal{B}^{(1)}$ -group.

PROOF: In this case, setting $H = \sum_{j=1}^{n} \langle h_j \rangle_*$, and supposing g_m and h_1 are the elements with the same type (and, without loss of generality, characteristic), we have

$$G \oplus H \ge K = \langle g_1 \rangle_* + \dots + \langle g_{m-1} \rangle_* + \langle g_m + h_1 \rangle_* + \langle h_2 \rangle_* + \dots + \langle h_n \rangle_*.$$

Now $h_1 = (g_1 + \cdots + g_{m-1}) + (g_m + h_1)$, and the characteristics of the three elements are the same, therefore $K \ge \langle h_1 \rangle_*$. By symmetry this holds for $\langle g_m \rangle_*$ as well, therefore K contains both G and H.

This result generalizes to a necessary and sufficient condition.

Define the type t to be a *basic type* of G if t belongs to some representation type T of G.

Theorem 1. Let G, H be regular $\mathcal{B}^{(1)}$ -groups with minimum types τ resp. v. Then $G \oplus H$ is a $\mathcal{B}^{(1)}$ -group if and only if

(*) there are basic types t of G and u of H such that $t \lor u \leq \tau \lor v$.

 $^{{}^{3}\}overset{\bullet}{\cup}$ means disjoint union.

C. Metelli

PROOF: For sufficiency, suppose without loss of generality $t = t_m$ and $u = u_1$, and consider the group $K = \langle g_1 \rangle_* + \cdots + \langle g_{m-1} \rangle_* + \langle g_m + h_1 \rangle_* + \langle h_2 \rangle_* + \cdots + \langle h_n \rangle_* \leq G \oplus H$. Clearly K is a regular $\mathcal{B}^{(1)}$ -group, $h_1 = g_1 + \cdots + g_{m-1} + (g_m + h_1)$, and the type u_1 of h_1 in H is greater than or equal to the type of h_1 in K, namely $(t_1 \wedge \cdots \wedge t_{m-1} \wedge (t_m \wedge u_1)) \lor (u_2 \wedge \cdots \wedge u_n) = (\tau \wedge u_1) \lor v$ (by the regularity of U) $= (\tau \lor v) \land (u_1 \lor v)$. It is easy to verify that this equals u_1 if and only if $u_1 \leq \tau \lor v$. This proves quasi-equality of K and $G \oplus H$; but since, for a suitable choice of the elements g_i in $\langle g_i \rangle_*$ and h_j in $\langle h_j \rangle_*$, the above equalities will be satisfied by their characteristics [FM, 2.1], we get $K = G \oplus H$.

Necessity requires some deeper probing, which was done in [H]. There it is proved that every summand of a $\mathcal{B}^{(1)}$ -group G' is quasi-isomorphic to one of the form G'_E for some $E \subset I$, so that we may restrict our consideration to the standard situation $G' = G'_E \oplus G'_F$ with $I = E \cup \{i\} \cup F$. Here $g_i = g_{I \setminus E} + g_{I \setminus F}$ entails $t_i = t_E \wedge t_F$; therefore $t_F = (\tau_E \wedge t_i) \vee \tau_F = (\tau_E \wedge t_F) \vee \tau_F = (\tau_E \vee \tau_F) \wedge (t_F \vee \tau_F)$ yields $t_F \leq \tau_E \vee \tau_F$ (note, from above, that t_F is indeed a basic type of G'_F). This is the desired conclusion, since by the regularity of G'_E the infimum of its types is indeed τ_E , and since the same conclusion can be drawn for t_E .

Observation 1. A representation type of $G \oplus H$ is $\{t_1, \ldots, t_{m-1}, t_m \land u_1, u_2, \ldots, u_n\}$.

Observation 2. An equivalent condition for the quasi-decomposability of a $\mathcal{B}^{(1)}$ group G' is for it to have a regular representation type $\{t_1, \ldots, t_{m-1}, t, u_2, \ldots, u_n\}$ with $t \leq \tau \lor v$ (where $\tau = \bigwedge_{j=1}^{m-1} t_i$ and $v = \bigwedge_{j=2}^n u_i$): then in the above notation $t_E = \tau \lor (v \land t) = (\tau \lor v) \land (\tau \lor t) = (\tau \lor t) \ge t$. Here $t_F = v \lor (\tau \land t) = (v \lor t)$,
hence the two new types needed to complete the representations of G_E and G_F are $t_m = \tau \lor t$ and $u_1 = v \lor t$.

In the special case where H is completely decomposable, $G \oplus H$ is always a $\mathcal{B}^{(1)}$ -group, having as its only relation the one holding in G. If we want it to be regular, though, the following restriction applies:

Corollary. Let G be a regular $\mathcal{B}^{(1)}$ -group, H completely decomposable. $G \oplus H$ is a regular $\mathcal{B}^{(1)}$ -group if and only if each extractible type of H is greater than or equal to some basic type of G.

PROOF: Consider first the case where H is of rank 1 and type t. A regular representation for H has representation type $\{u_1, u_2\}$ where $u_1 = u_2 = t = v$. $\tau \leq t$ is required for the regularity of $G \oplus H$. $t \leq \tau \lor v$ is trivially satisfied, while $t_i \leq \tau \lor t = t$ remains the only condition. The extension to the finite rank case is now immediate.

Summing up, we get

Theorem 2. Let A, B be $\mathcal{B}^{(1)}$ -groups, $A = G \oplus Y$, $B = H \oplus Z$, where Y, Z are completely decomposable and G, H are regular $\mathcal{B}^{(1)}$ -groups. $A \oplus B$ is a $\mathcal{B}^{(1)}$ -group if and only G and H satisfy (*).

Since the interplay between representation types (mirroring the structural properties of $\mathcal{B}^{(1)}$ -groups) is by no means transparent, we give now a different interpretation to the condition (*), rephrasing it in terms of types:

(**) there are types t in T and u in U such that $t \lor u \leq \tau \lor v$.

We need the following lemma, whose proof is the same as the proof of [FM, 3.1]:

Lemma 2. In the above notation, if G is a $\mathcal{B}^{(1)}$ -group and $t_i \geq t_j$ for some $i \neq j \in I$, then $G = \langle g_i \rangle_* \oplus G'$, where G' is a $\mathcal{B}^{(1)}$ -group, and is regular if G was regular.

Theorem 3. Let the $\mathcal{B}^{(1)}$ -groups G, H have regular representation types T resp. U. If T and U satisfy (**), a regular $\mathcal{B}^{(1)}$ -group A with representation type $T \stackrel{\bullet}{\cup} U$ is quasi-isomorphic to $G \oplus H \oplus R$, where R is a rank 1 group of type $\tau \vee v$.

PROOF: Let A be the quotient of the outer direct sum $\bigoplus_{i=1}^{m} \langle g_i \rangle_* \oplus \bigoplus_{j=1}^{n} \langle h_j \rangle_*$ modulo the rank 1 subgroup $\langle \sum_{i=1}^{m} g_i + \sum_{j=1}^{n} h_j \rangle_*$. A is then a regular $\mathcal{B}^{(1)}$ -group, so the types of the elements g_i, h_j in A are the same they have in G resp. H; and $\tau \lor v$ is the type of the element $a_I = \sum_{i=1}^{m} g_i$ of A. As before, set $t = t_m$ and $u = u_1$. The part of the condition (*) requiring $u_1 \leq \tau \lor v$ entails a quasi-splitting $A = G' \oplus H'$, where the representation type of G' is $T' = \{t_1, \ldots, t_m, \tau \lor v\}$ and the one of H' is $U' = \{u_2, \ldots, u_n, (\tau \lor v) \land u_1\}$. The last type is in fact $= u_1$, thus H' is quasi-isomorphic to H. As for G', $t_m \leq \tau \lor v$ entails by Lemma 2 the splitting of G' into $G \oplus R$, where R is a rank 1 group of type $\tau \lor v$. Therefore A is quasi-isomorphic to $G \oplus H \oplus R$.

Observation 3. From Observation 2 we see that A has, besides $T \stackrel{\bullet}{\cup} U$, also the representation type $\{t_1, \ldots, t_{m-1}, t_m \land u_1, u_2, \ldots, u_n, \tau \lor v\}$.

As a last remark, we note that the property of being a summand of a $\mathcal{B}^{(1)}$ -group is not "translation invariant" on the typeset of G. In fact, if the minimum type of the $\mathcal{B}^{(1)}$ -group G is the type of \mathbb{Z} , and $G \oplus H$ is a $\mathcal{B}^{(1)}$ -group, then the condition and Lemma 2 imply that, if H is itself a $\mathcal{B}^{(1)}$ -group, it must be quasi-decomposable; while this need not be true for a $\mathcal{B}^{(1)}$ -group G' with a higher minimum type.

References

- [FM] Fuchs L., Metelli C., On a class of Butler groups, Manuscripta Math 71 (1991), 1–28.
- [B] Höfling B., On direct summands of Butler $\mathcal{B}^{(1)}$ -groups, to appear in Comm. in Algebra.
- [FII] Fuchs L., Infinite Abelian Groups, Vol. II, Academic Press, London-New York, 1973.
- Albrecht U.F., Goeters H.P., Megibben C., Zero-one matrices with an application to Abelian groups, to appear in Rend. Sem. Mat. Univ. Padova.
- Goeters H.P., Megibben C., Quasi-isomorphism and $\mathbb{Z}(2)$ representations for a class of Butler groups, preprint.
- Goeters H.P., Ullery W., Butler groups and lattices of types, Comment. Math. Univ. Carolinae 31 (1990), 613–619.
 - ____, Quasi-summands of a certain class of Butler groups, to appear in Proceedings of the 1991 Curacao Conference.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI "RENATO CACCIOPPOLI", UNIVERSITÀ DI NAPOLI, VIA CINTIA, 80126 NAPOLI, ITALY