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On the existence of the price

equilibrium by different methods

E. Tarafdar, H.B. Thompson

Abstract. We have given several proofs on the existence of the price equilibrium — via
variational inequality — via degree theory and via Brouwer’s theorems.
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Smale [6] considered the price equilibrium of a pure exchange economy and uni-
fied the existence, algorithm and dynamic questions of the economy. In this paper
we only give some new proofs of his existence theorems and show that the price
equilibrium is a fixed point of continuous mapping of the price simplex into itself
and indicate how the known algorithms can be used to compute the price equilib-
rium. The model of the exchange economy under consideration is described by:
n commodities; a price system p = (p1, p2, . . . , pn), pi ≥ 0, where pi represents
the price of a unit of the i-th commodity; two functions D : R

n
+ \ {0} → R

n
+ and

S : Rn
+ \ {0} → R

n
+ respectively called the demand and the supply function where

R
n
+ = {x ∈ {x1, x2, . . . , xn} ∈ R

n : xi ≥ 0, i = 1, 2, . . . , n}. The excess demand
function ξ : Rn

+\{0} → R
n is defined by ξ(p) = D(p)−S(p), p ∈ R

n
+\{0}. The price

p at which ‘supply’ equals ‘demand’, i.e. D(p) = S(p), i.e. ξ(p) = 0, is called price
(economic) equilibrium. We also use the notation ξ(p) = (ξ1(p), ξ2(p), . . . , ξn(p))
where ξi(p) is the i-th coordinate function, i.e. the excess demand for the i-th com-
modity at the price p.
Let ∆1 = {p = {p1, p2, . . . , pn} ∈ R

n : pi ≥ 0 for i = 1, 2, . . . , n and
∑n

i=1 pi = 1}
and ∆0 = {p = (p1, p2, . . . , pn) ∈ R

n :
∑n

i=1 pi = 0}.
It is natural to impose the following conditions on the excess demand function ξ:

(i) ξ(λp) = ξ(p) for λ ≥ 0 (homogeneity);
(ii) p · ξ(p) = 0 for each p ∈ ∆1 (Walras law), where p · q denotes the inner
product of p and q;

(iii) if p ∈ ∆1 and pi = 0, then ξi(p) ≥ 0 (weak boundary condition).

No explicit use of the condition (i) will occur in our works. We first prove that
the following results due to Smale [6] are equivalent.

Theorem 1. If the function ∆1 → R
n is continuous and satisfies the Walras law

and weak boundary condition, then there is a price vector p̄ ∈ ∆1 such that ξ(p̄) = 0.
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Theorem 2. If ψ : ∆1 → ∆0 is continuous and satisfies the condition that
ψi(p) ≥ 0 if pi = 0, then there is p̄ ∈ ∆1 such that ψ(p̄) = 0. Here ψi(p) is
the i-th coordinate function of ψ(p̄).

We assume that Theorem 1 is true. Let ψ : ∆1 → ∆0 be a continuous function
satisfying ψi(p) ≥ 0 if pi = 0. We define ξ : ∆1 → R

n by

ξ(p) = ψ(p)−
p

‖p‖2

(

n
∑

i=1

ψi(p)pi

)

, p ∈ ∆1.

Then ξ is continuous as ‖p‖ > 0 and ξi(p) = ψi(p) if pi = 0. Thus ξ satisfies the
weak boundary condition. Also p · ξ(p) =

∑n
i=1 piψi(p)−

∑n
i=1 piψi(p) = 0. Hence

ξ satisfies the Walras law. Therefore by Theorem 1 there is a vector p̄ ∈ ∆1 such
that ξ(p̄) = 0. Now as

∑n
i=1 p̄i = 1 and

∑n
i=1 ψi(p̄) = 0, it follows that

0 =
n

∑

i=1

ξi(p̄) =
n

∑

i=1

ψi(p̄)−

∑n
i=1 ψi(p̄)p̄i

‖p̄‖2
.

Hence
∑n

i=1 ψi(p̄)p̄i = 0. Thus 0 = ξ(p̄) = ψ(p̄) and therefore Theorem 2 is true.
Next we assume that Theorem 2 is true and let ξ : ∆1 → R

n be a continuous
mapping satisfying the Walras law and weak boundary condition. We define the
mapping ψ : ∆1 → ∆0 by

ψ(p) = ξ(p)−
(

n
∑

i=1

ξi(p)
)

p, p ∈ ∆1.

Then ψ is continuous,
∑n

i=1 ψi(p) =
∑n

i=1 ξi(p)− (
∑n

i=1 ξi(p))
∑n

i=1 pi = 0 and if
pi = 0, ψi(p) = ξi(p) ≥ 0. Thus by Theorem 2, there is a vector p̄ ∈ ∆1 such that
ψ(p̄) = 0. Hence 0 = p̄ · ψ(p̄) = p̄ · ξ(p̄) − (

∑n
i=1 ξi(p̄))‖p̄‖

2 and hence by virtue of
Walras law,

∑n
i=1 ξi(p̄) = 0. Thus ψ(p̄) = ξ(p̄) = 0. We have, therefore, proved

that Theorem 1 holds.

Proof of Theorem 1 via variational inequality.

We now first give an independent proof of Theorem 1 by using the variational
inequality due to Hartman and Stampacchia [4, Lemma 3.1] which we give here
as a lemma below. For more general results on variational inequality we refer to
Browder [3].
We note that Aliprantis and Brown [1] used inequality to prove the existence of

price equilibrium in the Riesz space under boundary condition different from that
of Smale (see also Border [2]).

Lemma 1 (Hartman and Stampacchia). If K is a compact convex subset of R
n

and f : K → R
n is a continuous mapping, then there exists a vector p̄ ∈ K such

that p̄·f(p̄) ≥ p·f(p̄) for all p ∈ K. Such p̄ ∈ K is called a solution of the variational
inequality.
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Theorem 1′. If ξ : Rn
+ \ {0} → R

n is a continuous mapping satisfying the Walras

law and weak boundary condition, then there is a vector p̄ ∈ ∆1 such that ξ(p̄) = 0.

Proof of Theorem 1′: Let ξ̄ denote the restriction of ξ to ∆1. Then by Lemma 1
there is a vector p̄ ∈ ∆1 such that p̄ · ξ̄(p̄) ≥ p · ξ̄(p̄) for every p ∈ ∆1. We will prove
that each such p̄ is a price equilibrium, i.e. ξ(p̄) = 0. By Walras law it follows that
p · ξ̄(p̄) ≤ 0 for every p ∈ ∆1. Now since for each i = 1, 2, . . . , n, ei ∈ ∆1 where
ei = {δi,j}

n
j=1 and

δi,j =

{

0 if i 6= j

1 if i = j,

we have that for each i = 1, 2, . . . , n, ei · ξ̄(p̄) ≤ 0, i.e. ξ̄i(p̄) ≤ 0. Let J = {i ∈
{1, 2, . . . , n} : p̄i = 0} where p̄i is the i-th coordinate of p̄. Then by weak boundary
condition ξ̄i(p̄) ≥ 0 for each i ∈ J . Hence for each i ∈ J , ξ̄i(p̄) = 0. Let P =
{i /∈ J : ξ̄i(p̄) 6= 0}, i.e. P = {i /∈ J : ξ̄i(p̄) < 0}. We complete the proof by
showing that P = ∅. If possible, let P 6= ∅. Then

∑

i∈P p̄i · ξ̄i(p̄) = l < 0. Thus
∑n

i=1 p̄iξ̄i(p̄) =
∑

i/∈J p̄i · ξ̄i(p̄) = l < 0, which contradicts the Walras law. Hence
P = ∅. �

Proof of Theorem 2 via degree theory.

Letm = ( 1n ,
1
n , . . . ,

1
n ) ∈ R

n and ∆̃1 = {q ∈ ∆0 : q = p−m for some p ∈ ∆1}. We

now define a mapping φ : ∆̃1 → ∆0 by φ(q) = ψ(p) where q = p−m. Then clearly

φ is continuous. Let H : [0, 1]× ∆̃1 be the continuous mapping defined by H(t, x) =
−tφ(x)+(1− t)x, t ∈ [0, 1] and x ∈ ∆̃1. Now ∆0 isomorphic (linear homeomorphic)
to R

n−1 (to see this it suffices to note that ∆0 = f̄−1{0} where f : Rn → R is the
linear functional defined by f(p) =

∑n
i=1 pi, p = (p1, p2, . . . , pn) ∈ R

n) and under

this isomorphism ∂∆̃1 = boundary of ∆̃1 = {p = (p1, p2, . . . , pn) ∈ ∆̃1 : pi = − 1n
for at least one i = 1, 2, . . . , n} since ∆̃1 = {p = (p1, p2, . . . , pn) ∈ ∆0 : pi ≥ − 1n for
all i = 1, 2, . . . , n}.

Now if x = (x1, x2, . . . , xn) ∈ ∂∆̃1, then xi = − 1n for some i = 1, 2, . . . , n.

This implies −tφi(x) ≤ 0, which in turn implies Hi(t, x) ≤ (1 − t)(− 1n). Thus
H(t, x) = 0 implies t = 1 and φ(x) = 0 and in this case we have the required

solution ψ(x + m) = 0. If H(t, x) 6= 0 for all (t, x) ∈ [0, 1] × ∂∆̃1, then by the
homotopy invariance of the Brouwer’s degree

d(−φ, ∆̃01, 0) = d(I, ∆̃
0
1, 0) = 1

and hence −φ(x) = 0 has a solution in ∆̃01 where ∆̃
0
1 is the interior of ∆̃1 and

d denotes the Brouwer’s degree. Thus in this case we have the required solution
ψ(x+m) = 0. �

Proof of Theorem 2 by Brouwer’s fixed point theorem.

For each i = 1, 2, . . . , n let us first define the function Ki : R
n → R by Ki(p) =

max{0, pi}, p = (p1, p2, . . . , pn) ∈ R
n. Let K : R

n → R
n be defined by K(p) =
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(K1(p),K2(p), . . . ,Kn(p)). Then K is continuous. Now let us define T : ∆1 → ∆1
by

T (p) =
K(p+ ψ(p))

∑n
i=1Ki(p+ ψ(p))

, p ∈ ∆1.

As
∑n

i=1Ki(p+ψ(p)) ≥
∑n

i=1(pi+ψi(p)) = 1 andK and ψ are continuous, it follows
that T is continuous and clearly T (∆1) ⊂ ∆1. Hence by Brouwer’s fixed point
theorem there exists a point p̄ ∈ ∆1 such that p̄ = T (p̄). Thus it suffices to show that
T (p̄) = p̄+ψ(p̄). If 0 < p̄i = Ti(p̄), then Ki(p̄+ψ(p̄)) > 0 as

∑n
i=1Ki(p̄+ψ(p̄)) ≥ 1.

Thus Ki(p̄+ψ(p̄)) = p̄i+ψ(p̄). If 0 = p̄i = Ti(p̄), then by given condition ψi(p̄) ≥ 0,
hence p̄i + ψ(p̄) ≥ 0. This implies that Ki(p̄+ ψ(p̄)) = p̄i + ψ(p̄). Thus we always
have

∑n
i=1Ki(p̄+ ψ(p̄)) =

∑n
i=1(p̄i + ψ(p̄)) = 1 and

p̄ = T (p̄) =
K(p̄+ ψ(p̄))

∑n
i=1Ki(p̄+ ψ(p̄))

= p̄+ ψ(p̄).

Hence ψ(p̄) = 0. �

Remark on the computation of the price equilibrium.

Given a continuous demand function ξ : Rn
+ \{0} → R

n we define the continuous
mapping ψ : ∆1 → ∆0 by

ψ(p) = ξ(p)−
(

n
∑

i=1

ξi(p)
)

p, p ∈ ∆1.

Finally we define the continuous mapping T : ∆1 → ∆1 by

T (p) =
K(p+ ψ(p))

∑n
i=1Ki(p+ ψ(p))

, p ∈ ∆1.

Then by what has been done above, it follows that every fixed point of T is a price
equilibrium of the economy for which ξ is an excess demand function. The Brouwer’s
fixed point theorem guarantees the existence of a fixed point theorem which is the
price equilibrium. Beside the pioneering work of Scarf [5], several algorithms (see
Todd [7]) by which fixed points of T can be computed are known.
Without contradicting the concluding remark in Smale [6] we would like to point

out that out of the four existence proofs including the Smale’s proof based on Sard
implicit function theorem it appears to us that the proof by Brouwer’s fixed point
theorem is easier and more natural.
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