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The distance between subdifferentials

in the terms of functions

Libor Veselý

Abstract. For convex continuous functions f, g defined respectively in neighborhoods of
points x, y in a normed linear space, a formula for the distance between ∂f(x) and ∂g(y)
in terms of f, g (i.e. without using the dual) is proved. Some corollaries, like a new
characterization of the subdifferential of a continuous convex function at a point, are
given. This, together with a theorem from [4], implies a sufficient condition for a family
of continuous convex functions on a barrelled normed linear space to be locally uniformly
Lipschitz.
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Let X be a real normed linear space, x ∈ X . Let f be a continuous convex
function defined in a convex neighborhood U of x. Then the subdifferential of f at
x is the set

∂f(x) = {x∗ ∈ X∗ | f(u) ≥ f(x) + 〈u − x, x∗〉 for all u ∈ U}.

The set ∂f(x) is a nonempty weak∗-compact convex subset of the dual X∗ of X
(cf. [2, Proposition 1.11] or [1, p. 132]). It does not depend on U since

(1) ∂f(x) = {x∗ ∈ X∗ | 〈v, x∗〉 ≤ f ′
+(x, v) for all v ∈ X},

where

f ′
+(x, v) = lim

t→0+

f(x+ tv)− f(x)

t

is the one-sided derivative of f at x in the direction v (cf. [2, p. 43]). For connections
between differentiability properties of f and properties of its subdifferential map
x 7→ ∂f(x) we refer the reader to [1] and [2].
In particular, if X = R and ϕ is a convex function defined in an open interval

that contains x, then

(2) ∂ϕ(x) = [ϕ′
−(x), ϕ

′
+(x)]

where ϕ′
+(x) = ϕ′(x, 1) and ϕ′

−(x) = −ϕ′(x,−1) are the right and left derivative
of ϕ at x (see also [3, p. 32]).
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Let U, V be convex neighborhoods of respectively x, y ∈ X . Let the functions
f : U → R and g : V → R be continuous and convex. The aim of the present paper
is to express the distance

dist
(

∂f(x), ∂g(y)
)

= inf
x∗∈∂f(x)
y∗∈∂g(y)

‖x∗ − y∗‖

in terms of the functions f, g only. This is done in Theorem 2 followed by some
corollaries. In concrete situations, these results make possible the calculation of
distances between subdifferentials without knowing any representation of the dual,
and without calculating explicitly the subdifferentials.
In the end of the present paper, these results are applied to a local uniform

boundedness principle for monotone operators from [4] to obtain a principle of local
uniform Lipschitz property for families of continuous convex functions: For each
function f belonging to a family F of continuous convex functions on an open
convex set U ⊂ X , and each point x ∈ X , we define a number λf (x) (a lower
estimate for a possible local Lipschitz constant of f at x). If X is barrelled and
{λf (x) | f ∈ F} is bounded for each x ∈ U , then F is locally uniformly Lipschitz
in U in the sense that each x ∈ U has a neighborhood on which all functions from
F are Lipschitz with the same constant (depending on x).

Let us begin with a one-dimensional auxiliary theorem.

Theorem 1. Let ϕ be a convex function defined on an open interval I ⊂ R, x ∈ I.
Then

lim inf
s→0+
t→0+

|ϕ(x+ t)− ϕ(x − s)|

t+ s
= min

k∈∂ϕ(x)
|k|.

Proof: (a) First, suppose ϕ′
−(x) < 0 < ϕ′

+(x). By (2) we have

(3) ϕ(x+ h)− ϕ(x) ≥ max{ϕ′
−(x)h, ϕ′

+(x)h} whenever x+ h ∈ I.

Take h0 > 0 such that [x+ h0, x− h0] ⊂ I and put µ = min{ϕ(x+ h0), ϕ(x− h0)}.
Clearly, µ > ϕ(x) since (3) implies that x is a point of strict minimum for ϕ on I.
Choose a sequence {µn} ⊂ (ϕ(x), µ) such that µn → ϕ(x). The properties of {µn}
imply that there exist sequences {sn} and {tn} in (0, h0) such that ϕ(x + tn) =
ϕ(x − sn) = µn. By (3), both {sn} and {tn} converge to 0. Consequently

0 ≤ lim inf
s→0+
t→0+

|ϕ(x + t)− ϕ(x − s)|

t+ s

≤ lim
n→∞

|ϕ(x + tn)− ϕ(x − sn)|

tn + sn

= 0

= min
k∈∂ϕ(x)

|k|.
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(b) Now, suppose 0 ≤ ϕ′
−(x). By the convexity of ϕ we have

ϕ(x)− ϕ(x − s)

s
≤

ϕ(x+ t)− ϕ(x − s)

t+ s

for all s, t > 0. Consequently,

(4) 0 ≤ ϕ′
−(x) = lim

s→0+

ϕ(x) − ϕ(x − s)

s
≤ lim inf

s→0+
t→0+

ϕ(x+ t)− ϕ(x − s)

t+ s
.

At the same time,

(5)

lim inf
s→0+
t→0+

ϕ(x+ t)− ϕ(x − s)

t+ s
≤ lim inf

s→0+

(

lim
t→0+

ϕ(x + t)− ϕ(x − s)

t+ s

)

= lim inf
s→0+

ϕ(x) − ϕ(x − s)

s
= ϕ′

−(x).

From (4) and (5) we deduce

lim inf
s→0+
t→0+

|ϕ(x + t)− ϕ(x − s)|

t+ s
= lim inf

s→0+
t→0+

ϕ(x + t)− ϕ(x − s)

t+ s
= ϕ′

−(x) = min
k∈∂ϕ(x)

|k|.

(c) The remaining case ϕ′
+(x) ≤ 0 is similar to the case (b). �

The following lemma is a well-known consequence of the Hahn-Banach theorem.

Lemma 1. Let f be a continuous convex function defined on an open convex
neighborhood of a point x in a normed linear space X . Let v ∈ X . Then the
function

ϕv(t) = f(x+ tv)

is a convex function defined on a neighborhood of 0 ∈ R and the following subdif-
ferential formula holds

∂ϕv(0) = {〈v, x∗〉 | x∗ ∈ ∂f(x)}.

Sketch of the proof: The inclusion “⊃” follows immediately from definitions.
To prove “⊂”, take any k ∈ ∂ϕv(0). Then the linear functional ξ(tv) = tk, defined
on Rv, satisfies ξ(h) ≤ f ′(x, h) for all h ∈ Rv. By the Hahn-Banach theorem, there
exists an extension x∗ ∈ X∗ of ξ such that 〈h, x∗〉 ≤ f ′(x, h) for all h ∈ X . Thus
x∗ ∈ ∂f(x) and 〈v, x∗〉 = ξ(v) = k. �
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Lemma 2. Let X be a normed linear space, K be a weak∗-closed convex subset
of X∗. Then

dist(0, K) = sup
‖v‖=1

inf
x∗∈K

|〈v, x∗〉|.

Proof: (a) Clearly

sup
‖v‖=1

inf
x∗∈K

|〈v, x∗〉| ≤ inf
x∗∈K

‖x∗‖ = dist(0, K).

If 0 ∈ K, the proof is complete.

(b) If 0 /∈ K, take an arbitrary 0 < r < dist(0, K). Then rB∗ ∩ K = ∅ where
B∗ denotes the closed unit ball in X∗. By the Hahn-Banach separation theorem
(cf. [1, p. 70]) there exists vr ∈ X such that ‖vr‖ = 1 and r = supz∗∈rB∗〈vr , z

∗〉 <
infx∗∈K〈vr , x

∗〉. Consequently, r < infx∗∈K〈vr , x
∗〉 ≤ sup‖v‖=1 infx∗∈K |〈v, x∗〉|.

Since this holds for any r ∈
(

0, dist(0, K)
)

, we get dist(0, K) ≤
sup‖v‖=1 infx∗∈K |〈v, x∗〉|. �

Theorem 2. Let U and V be open convex sets in a normed linear space X . Let
f : U → R and g : V → R be continuous convex functions. Then for any x ∈ U
and any y ∈ V the following formula holds:

dist
(

∂f(x), ∂g(y)
)

= sup
‖v‖=1

lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s
−

g(y + sv)− g(y − tv)

s+ t

∣

∣

∣

∣

.

Proof: (a) Suppose first that g ≡ 0. Then, for any v ∈ X , Theorem 1 and
Lemma 1 imply

(6) lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s

∣

∣

∣

∣

=

= lim inf
s→0+
t→0+

|ϕv(t)− ϕv(−s)|

t+ s
= min

k∈∂ϕv(0)
|k| = min

x∗∈∂f(x)
|〈v, x∗〉|

where ϕv is as in Lemma 1. From (6) and Lemma 2, applied to K = ∂f(x), we get

dist
(

∂f(x), 0
)

= sup
‖v‖=1

min
x∗∈∂f(x)

|〈v, x∗〉| = sup
‖v‖=1

lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s

∣

∣

∣

∣

.

(b) Let now g be an arbitrary continuous convex function on V . We can define
a new function g̃ by the formula

g̃(x + h) = g(y − h) whenever y − h ∈ V.

Then g̃ is a continuous convex function defined on the open convex set x + y − V
that contains x. It follows easily from definitions that ∂g̃(x) = −∂g(y). Moreover,
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∂(f + g̃)(x) = ∂f(x) + ∂g̃(x) by the Moreau-Rockafellar theorem (cf. [2, Theo-
rem 3.23], note that the proof works in incomplete spaces, too). Using the part (a)
of the present proof, we can compute

dist
(

∂f(x), ∂g(y)
)

= dist
(

∂f(x)− ∂g(y) , 0
)

= dist
(

∂f(x) + ∂g̃(x) , 0
)

= dist
(

∂(f + g̃)(x) , 0
)

= sup
‖v‖=1

lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s
+

g̃(x+ tv)− g̃(x − sv)

t+ s

∣

∣

∣

∣

= sup
‖v‖=1

lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s
−

g(y + sv)− g(y − tv)

s+ t

∣

∣

∣

∣

.

�

Corollary 1. Under the assumptions of Theorem 2, ∂f(x)∩ ∂g(y) 6= ∅ if and only
if

(7) lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s
−

g(y + sv)− g(y − tv)

s+ t

∣

∣

∣

∣

= 0 for every v ∈ X.

Proof: The assertion follows immediately from the equivalence ∂f(x) ∩ ∂g(y) 6=
∅ ⇐⇒ dist

(

∂f(x), ∂g(y)
)

= 0 (this because the two subdifferentials are weak∗-
compact) and from the fact that the absolute value in (7) is positively homogeneous
as a function of v. �

Corollary 2. Let f be a continuous convex function defined in a neighborhood of
a point x in a normed linear space X , x∗ ∈ X∗. Then

dist
(

∂f(x), x∗
)

= lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s
− 〈v, x∗〉

∣

∣

∣

∣

.

Proof: Apply Theorem 2 for g = x∗ (note that ∂g(0) = {x∗}). �

Corollary 3. Under the assumptions of Corollary 2, x∗ ∈ ∂f(x) if and only if

lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s
− 〈v, x∗〉

∣

∣

∣

∣

= 0 for every v ∈ X.

Proof: The assertion follows directly from Corollary 2. �

As an application of the above results and of a Banach-Steinhaus theorem for
monotone operators proved in [4], we state a local uniform Lipschitz property prin-
ciple for families of convex functions. Note that the number λf (x) from Theorem 3
is a lower estimate for a (possible) local Lipschitz constant of the function f at x, i.e.
if f is locally Lipschitz with a constant L on a neighborhood of x then necessarily
L ≥ λf (x).
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Theorem 3. Let U be an open convex subset of a barrelled normed linear space
X . Let F be a family of continuous convex functions on U such that

sup
f∈F

λf (x) < +∞ for every x ∈ U,

where

λf (x) = sup
‖v‖=1

lim inf
s→0+
t→0+

∣

∣

∣

∣

f(x+ tv)− f(x − sv)

t+ s

∣

∣

∣

∣

.

Then the family F is locally uniformly Lipschitz in U , i.e. for each x ∈ U there exist
its neighborhood Vx ⊂ U and a number Lx ≥ 0 such that |f(y)−f(x)| ≤ Lx‖y−z‖
whenever y, z ∈ Vx and f ∈ F .

Proof: The family T = {∂f | f ∈ F} is a family of monotone operators defined
on U , such that

sup
T∈T

dist
(

T (x), 0
)

< +∞ for each x ∈ U,

since dist
(

∂f(x), 0
)

= λf (x) for x ∈ X, f ∈ F by Corollary 2. By [4, Corollary 2]
the family T is locally uniformly bounded on U , i.e. for each x ∈ U there is its
neighborhood Vx and a constant Lx ≥ 0 such that

‖y∗‖ ≤ Lx whenever y∗ ∈ ∂f(y), y ∈ Vx, f ∈ F .

For y, z ∈ Vx and f ∈ F , take y∗ ∈ ∂f(y) and z∗ ∈ ∂f(z) arbitrarily and compute

|f(y)− f(z)| = max
{

f(y)− f(z), f(z)− f(y)
}

≤ max
{

〈y − z, y∗〉, 〈z − y, z∗〉
}

≤ max
{

‖y∗‖, ‖z∗‖
}

· ‖y − z‖ ≤ Lx‖y − z‖.
�
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