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Some adaptive estimators for slope parameter

Tran Quoc Viet

Abstract. An adaptive estimator (of a slope parameter) based on rank statistics is con-
structed and its asymptotic optimality is studied. A complete orthonormal system is in-
corporated in the adaptive determination of the score generating function. The proposed
sequential procedure is based on a suitable stopping rule. Various properties of the sequen-
tial adaptive procedure and the stopping rule are studied. Asymptotic linearity results of
linear rank statistics are also studied and some rates of the convergence are established.

Keywords: asymptotically optimal score generating function, Fisher information, orthonor-
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1. Introduction.

For n = 1, 2, . . . , let X1, . . . , Xn be independent observations such that

(1.1) Xi = θ0 + θ1ci + ei, i = 1, 2, . . . , n,

where θ0, θ1 are unknown parameters, c1, . . . , cn are known regression constants,
e1, . . . , en are independent random errors fulfilling certain regularity assumptions.
The problem is to estimate θ1 (slope parameter). The estimator is based on ranks

and a score-generating function ϕ defined on (0, 1). If the distribution function F of
ei’s possesses an absolutely continuous density function (p.f.d) f with a finite Fisher

information I(f) =
∫

(f
′

f )
2 dF (< ∞), where f ′ stands for the first derivative of f ,

then for the estimation problem, the score-generating function ϕf = − f ′(F−1)
f(F−1)

(F−1

stands for the quantile function corresponding to F ) is asymptotically optimal in the
sense that the asymptotic variance of the estimator of θ1 attains the Cramer-Rao
lower bound.
In practice, however, F and hence ϕf are rarely known, so the estimation of ϕf is

of a considerable interest. Several types of estimations of ϕf have been developed.
Here we shall concentrate on the Fourier expansion type via the estimation of the
Fourier coefficients of ϕf . In this approach, Beran [1] used the trigonometric sys-
tem to study this type, he described the construction of uniformly asymptotically
efficient rank estimates in the two-sample location model. For this two-sample loca-
tion model, Hušková [4] used a general type of Fourier series to estimate the Fourier
coefficients and these estimators were based on the linearity of rank statistics. And
in [6], Hušková and Sen considered the Legendre polynomials to estimate ϕf . Using
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similar ideas, Rödel [7] developed an adaptive rank statistics for testing indepen-
dence. Towards this problem, he used the system of Legendre polynomials and the
Fourier expansion to estimate the bivariate density.
In the present paper, asymptotically efficient rank estimators are constructed,

and differ from those mentioned above. In fact, we use the general type of Fourier
series to estimate the score function and construct an asymptotically optimal esti-
mator for the slope parameter in the simple regression model (1.1). Our proposed
procedure is a sequential one based on a well defined stopping rule. This is pre-
sented in Section 2. The main results on the asymptotic optimality of the proposed
procedure are considered in Section 3. The proofs of the main results are mentioned
in Section 4.

2. Assumptions and notation.

We shall adopt the following assumptions in the sequel:

Assumption A. The regression constants c1, . . . , cn fulfil:

(i) n−1Cn → C > 0,
(ii) n−1∑n

i=1 c4i = O(1) as n → ∞, with

Cn =

[

n
∑n

i=1 ci
∑n

i=1 ci
∑n

i=1 c2i

]

and C > 0 is a positively definite matrix.
The condition (ii) is slightly stronger than one usually considered for rank esti-

mates, however, still reasonable when ϕf is known.

Assumption B. e1, . . . , en are iid random variables with distribution function F
satisfying:

(i) f(x) =
dF (x)

dx exists and is absolutely continuous on (−∞,∞),
(ii) the Fisher information in nonzero and finite, i.e.

0 < I(f) =

∫ ∞

−∞

(f ′(x)

f(x)

)2
dx < ∞ ;

(i) and (ii) are the usual regularity assumptions.
Further, throughout the paper we shall work with a complete orthonormal system

{Pk(u), 0 ≤ u ≤ 1, k ≥ 0} in L2([0, 1]). Suppose that the system satisfies the
following properties:

Assumption C. {Pk(u), 0 ≤ u ≤ 1, k ≥ 0} is a complete orthonormal system in
L2([0, 1]) fulfilling: The first three derivatives P

(i)
k (u), i = 0, 1, 2, 3 exist and

Dki = sup
0≤u≤1

|P (i)k (u)| < ∞, i = 0, 1, 2, 3,

where
P 0k = Pk .
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The Legendre polynomial system and trigonometric system satisfy this assump-
tion.
If Assumption B is satisfied, one can easily realize that I(f)=‖ϕf‖2 (=

∫

(f
′

f )
2 dF )

and ϕf ∈ L2([0, 1]). Hence ϕf can be written:

(2.1) ϕf (u) ∼
∑

k≥1

γkPk(u), 0 ≤ u ≤ 1,

where

(2.2) γk = 〈ϕf , Pk〉 =
∫ 1

0
ϕf (u)Pk(u) du =

∫ ∞

−∞
P ′

k(u)(F (x))f
2(x) du.

Following the idea of Hušková and Sen [6], we introduce the stopping rules as
follows:

(2.3) Ln = min{k ≥ K :

k+rn
∑

j=k+1

γ̂2n,j ≤ εn},

where K is a predetermined positive integer and γ̂n,j is the estimator of γj defined
by: (for t 6= 0)

(2.4) γ̂n,j =

= −1
t

n
∑

i=1

cin

[

Pk

(

(n+ 1)−1
◦

Ri

(

θ1n − t

[
∑n

i=1(ci − cn)2]1/2

))

− Pk

(

◦

Ri(θ1n)

n+ 1

)]

with
◦

Ri(u) being the rank of Xi − ciu among X1 − c1u, . . . , Xn − cnu, and

(2.5) cin =
ci − cn

[
∑n

i=1(ci − cn)2]1/2

(

cn = n−1
n

∑

i=1

ci
)

,

θ1n is a preliminary estimator of θ1 satisfying:

(2.6)
[

n
∑

i=1

(ci − cn)
2
]1/2

(θ1n − θ1) = 0p(1) as n → ∞

and {rn} and {εn} are sequences of positive integers and positive real numbers such
that

Assumption D.

(i) {rn} is increasing but rnn−s → 0 as n → ∞, for some s > 0,
(ii) {εn} is nonincreasing with limn εn = 0;
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if rn = O(log n) and εn = O(n−α(logn)β) with α, β > 0, then (i) and (ii) are
satisfied.
Along with Ln we need

(2.7) L∗
n(λ) = min{k ≥ K :

k+rn
∑

j=k+1

γ2j ≤ λεn}, λ > 0.

Together with the stopping rules we consider the following adaptive estimators
ϕ̂n(u) of ϕf (u) (following the idea of [1] and [6])

(2.8) ϕ̂n(u) =
∑

k≤Ln+rn

γ̂n,kPk(u), u ∈ [0, 1],

where Ln, γ̂n,k are given by (2.3), (2.4), respectively.
As an estimator of the Fisher information, we use

(2.9) În =
∑

k≤Ln+rn

γ̂2n,k.

Finally, we are ready to introduce the adaptive estimator of θ1 as follows:

(2.10) θ̂1n = θ1n +
1

În[
∑n

i=1(ci − cn)2]1/2

n
∑

i

cinϕ̂n(
◦

Ri(θ1n)/(n+ 1)),

where ϕ̂n, În are given by (2.8) and (2.9).

We shall investigate the asymptotic properties of the stopping rules, of ϕ̂n, În

and, of course, of the resulting adaptive estimators.
The following assumptions will be needed:

Assumption E. For some δ > 0, some 0 < λ2 < 1 < λ1 and some s > 0, the first
three derivatives of {Pk}∞k=1 satisfy:

(i)
∑L∗(λ2)+rn

k=L∗

n(λ2)+1
[D2k1n

−1+δ + (D2k2 +D2k3)n
−2+δ] ε−1n → 0 as n → ∞,

(ii) maxK≤k<L∗

n(λ1)
∑k+rn

j=k+1 [D
2
k1n

−1+δ+(D2k2+D2k3)n
−2+δ] ε−1n → 0 as n →

∞,
(iii) (L∗

n(λ1) + rn)n
−s → 0 as n → ∞,

where K is a predetermined positive integer.

Assumption F. For some δ > 0, some 0 < λ2 < 1 < λ1 and some s > 0

(i)
∑L∗

n(λ2)+rn

k=1 [D2k1n
−1+δ + (D2k2 +D2k3)n

−2+δ]→ 0 as n → ∞,
(ii)

∑∞
k=L∗

n(λ1)+rn+1
γ2k → 0 as n → ∞,

(iii) (L∗
n(λ2) + rn)n

−s → 0 as n → ∞,
where K is a predetermined positive integer.
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Assumption G. For some δ > 0 and some 0 < λ2 < 1
∑L∗

n(λ2)+rn

k=1 [Dk1n
−1/2+δ + (Dk2 +Dk3)n

−1+δ]→ 0 as n → ∞.
In practice one can consider either the trigonometric system or Legendre poly-

nomial system (see [6], [5]) and Assumptions E, F, G can be replaced by:

Assumption H (trigonometric system). For some 0 < λ2 < 1 < λ1 and some

0 < δ < 1
2

(i) L∗
n(λ1) + rn → ∞ as n → ∞,

(ii) (L∗
n(λ2) + rn)

2n−1/2+δ → 0 as n → ∞,
(iii) lim sup

n→∞

rnn−1/2

εn
< ∞.

Assumption I (Legendre polynomials). For some 0 < λ2 < 1 < λ1 and some

0 < δ < 1
2

(i) L∗
n(λ1) + rn → ∞ as n → ∞,

(ii) (L∗
n(λ2) + rn)

7/2n−1/2+δ → 0 as n → ∞,
(iii) lim sup

n→∞

rn(L∗

n(λ2)+rn)3/2n−1/2

εn
< ∞,

(iv) (L∗
n(λ2) + rn)

8n−1 → 0 as n → ∞.
In these examples some assumptions are stronger, some are weaker than the

above ones.

F (ii) is fulfilled e.g. if L∗
n(λ1) + rn → ∞ as n → ∞ or γk = 0, for all k ≥ M and

L∗
n(λ1) + rn > M .

If Dki ≥ Dk−1,i, Dki ≤ Dk,i+1, k = 1, 2, 3, . . . , i = 0, 1, 2, 3, we can formulate
the above assumptions in a simple way.

3. Main theorems.

In this section the results concerning properties of the stopping rules, ϕ̂n as well

as the asymptotic distribution of the adaptive estimator θ̂1n of θ1 will be formulated.

Theorem 3.1. Let Assumptions A–E and (2.6) be satisfied, then

L∗
n(λ1) ≤ Ln ≤ L∗

n(λ2) in probability as n → ∞ ,

for some 0 < λ2 < 1 < λ1 in the sense that for every ε > 0 there exists a positive
integer n0 such that:

P (L∗
n(λ1) ≤ Ln ≤ L∗

n(λ2)) ≥ 1− ε, for n ≥ n0,

where Ln and L∗
n(λ) are defined by (2.3) and (2.7), respectively, i.e. the stopping

rule Ln is bounded in probability by a nonrandom lower and upper bound in the

above sense.

Next, we state a result concerning ϕ̂n and În.
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Theorem 3.2. Let Assumptions A–F and (2.6) be satisfied, then

‖ϕ̂n − ϕf‖ → 0, in probability as n → ∞ ,(3.2)

L∗

n(λ1)+rn
∑

k=1

γ2k ≤ În ≤
L∗

n(λ2)+rn
∑

k=1

γ2k in probability as n → ∞(3.3)

in the sense as in Theorem 3.1 and hence

lim
n→∞

·În = I(f) in probability as n → ∞ ,

where ϕ̂n and În are given by (2.8) and (2.9).

Thus ϕ̂n and În are consistent estimators of ϕf and I(f), respectively.

Now, we shall present a result on the asymptotic distribution of [
∑n
1 (ci−cn)

2]1/2

(θ̂1n − θ1) as n tending to infinity with θ̂1n given by (2.10).

Theorem 3.3. Let Assumptions A–G and (2.6) be satisfied, then [
∑n
1 (ci−cn)

2]1/2

(θ̂1n − θ1) has asymptotically normal distribution of (0, I(f)
−1), i.e. is an asymp-

totically optimal estimator of θ1.

Theorems 3.2 and 3.3 imply that [
∑n
1 (ci−cn)

2]1/2 (θ̂1n−θ1) has asymptotically
normal distributionN(0, 1) and hence, for some given α ∈ (0, 1), we can find a (1−α)
confidence interval for θ1.

4. Proof of Theorems 3.1, 3.2, 3.3.

At first, we derive a certain extension of the asymptotic linearity result of [6] and
then we use it as a main tool in the proof of Theorems 3.1, 3.2 and 3.3.
Let Z1, Z2, . . . , Zn be iid random variables. Let Ri(t) denote the rank of Zi−cint

among Z1 − c1nt, . . . , Zn − cnnt with cin defined by (2.5). Let Pk be defined on
[0, 1]. Define

(4.1) Sn(t, Pk) =

n
∑

i=1

cin · Pk

(Ri(t)

n+ 1

)

.

Theorem 4.1. Let Z1, Z2, . . . , Zn be iid random variables with absolute continu-

ous density f satisfying Assumption B. Let Assumptions A, C be satisfied. Then
for every s > 0, δ > 0 and A > 0 there exist d > 0 and n0 such that for all n ≥ n0:

(4.2) P ( sup
|t|≤a

{|Sn(t, Pk)− Sn(0, Pk) + tγk|} ≥ dunk) < n−s,

where

(4.3) unk = n−1/2+δ · Dk + n−1+δ(Dk2 +Dk3),
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δ > 0 arbitrary, Sn is defined by (4.1), γk is defined by (2.2).

Proof: The proof is similar to that of Theorem 4 in [6]. Therefore, we shall provide
only the necessary modifications.
In order to prove (4.2) we shall use exponential inequalities and replace the “sup”

in (4.2) by a “max” over a set of gridpoints, noticing

(4.4)

sup
|t|≤a

{|Sn(t, Pk)− Sn(0, Pk)− tγk|} ≤

≤ max
q=1,...,N

{|Sn(tq , Pk)− Sn(0, Pk)− tqγk|+

+ sup
tq≤t≤tq+1

{|Sn(t, Pk)− Sn(tq, Pk)− (t − tq)γk|}},

where
t0 = −a, t1 = −a+ 1a/n, . . . , tn = a, N = 2n.

Now, we have

(4.5)

sup
tq≤t≤tq+1

{|Sn(t, Pk)− Sn(tq, Pk)|} ≤

≤ sup
tq≤t≤tq+1

{

n
∑

i=1

|cin| ·
∣

∣

∣

Ri(t)− Ri(tq)

n+ 1

∣

∣

∣
· Dk1

}

=

=

n
∑

i=1

|cin|(n+ 1)−1Dk1 ·
∑

j 6=i

Wij(Zi),

where

Wij = I{min((cjn − cin)tq, (cjn − cin)tq+1) ≤ Zj − z ≤
≤ max((cjn − cin)tq , (cjn − cin)tq+1)}, z ∈ R1, 1 ≤ i, j ≤ n.

Then one observes that by the exponential inequality and the independence of
Z1, . . . , Zn for z ∈ R1, λ > 0,

(4.6)

P
{

∑

j 6=i

(Wij(z) ≥ λ)
}

≤ e−λ · E
[

exp
{

∑

j 6=i

Wij(z)
}]

≤

≤ e−λ
n

∏

j=1

(

1 +

∞
∑

ν=1

1

ν!
· EWij(z)

)

≤ e−λ exp
{

e ·
∑

j 6=i

EWij(z)
}

≤

≤ exp
{

−λ+ e · K1(|cin|+
1√
n
)
}

for some K1 > 0,

where we used the fact that for z ∈ R1

E{W p
ij(z)} ≤ EWij(z) ≤ K1|cin − cjn|/n, p = 1, 2, . . . for some K1 > 0.
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Then putting λ = d1 logn one can realize for z ∈ R1, d1 > 0 and n large

(4.7) P
{

∑

j 6=i

(Wij(z) ≥ d1 logn)
}

≤ K−d1
2 for some K2 > 0.

From (4.5)–(4.7) one can conclude that for every d1 > 0 there exist d2 > 0 and n0
such that for n ≥ n0

P ( sup
tq≤t≤tq+1

{|Sn(t, Pk)− Sn(tq, Pk)|} ≥ d2 · Dk1n
−1/2 logn) ≤ K2 · n−d1 ,

which further yields

P ( max
q=1,...,N

sup
tq≤t≤tq+1

{|Sn(t, Pk)− Sn(tq, Pk)− (t − tq) · γk|} >

> d2Dk1n
−1/2 logn) < n−d1+2 < n−s

if d1 is chosen such that d1 − 2 > s and n ≥ n0.
Consequently, it remains to show that for every d1 > 0 there exist d2 > 0 and

n0 > 0 such that for n ≥ n0

P [|Sn(t, Pk)− Sn(0, Pk)− tγk| ≥ d2(Dk1n
−1/2+δ + (Dk2 +Dk3)n

−1+δ)] <

< n−d1 for |t| ≤ a

the proof of which is similar to that of Theorem 4 of [6] with t fixed, and hence it
can be omitted. �

Proof of Theorem 3.1: At first, we prove the first inequality.
For every λ > 0 and positive integer p ≤ L∗

n(λ) + rn, put

An(λ) =

L∗

n(λ)+rn
⋂

k=L∗

n(λ)+1

Ank

and

◦

An(λ) =

L∗

n(λ)+rn
⋂

k=p

Ank,

where

(4.8) Ank = {|γ̂n,k − γk| ≤ dunk}

with unk and γ̂n,k being defined by (4.3) and (2.4), respectively.
Then for every ε > 0 from Theorem 4.1 and (2.6) one can easily prove that there

exists a positive integer n0 such that for n ≥ n0

(4.9) P (
◦

Ac
n) ≤ (L∗

n(λ) + rn − p)n−s + ε,
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where
◦

Ac
n is the complement of the event

◦

An.
It follows that

(4.10) P (Ac
n(λ))→ 0 as n → ∞ ,

where Ac
n(λ) is the complement of the event An(λ).

Further, from the inequality

(4.11)
∣

∣

∣

(

m
∑

1

a2i

)1/2
−

(

m
∑

1

b2i

)1/2∣
∣

∣
≤

(

m
∑

1

(ai − bi)
2
)1/2

one receives

[

L∗

n(λ)+rn
∑

k=L∗

n(λ)+1

γ̂2n,k

]1/2
≤

[

L∗

n(λ)+rn
∑

k=L∗

n(λ)+1

(γ̂n,k − γk)
2
]1/2

+ (λεn)
1/2,

which together with the definition of Ln implies that (for λ ∈ (0, 1))

P (L∗
n(λ) < Ln) = P

([

L∗

n(λ)+rn
∑

k=L∗

n(λ)+1

γ̂2n,k

]1/2
> ε
1/2
n

)

≤

≤ P
([

L∗

n(λ)+rn
∑

k=L∗

n(λ)+1

(γ̂n,k − γk)
2
]1/2

> ε
1/2
n (1− λ1/2)

)

.

Hence

(4.12) P (L∗
n(λ) < Ln) ≤

≤ P
(

L∗

n(λ)+rn
∑

k=L∗

n(λ)+1

(γ̂n,k − γk)
2 > εn(1− λ1/2)2, An(λ)

)

+ P (Ac
n(λ)).

On the other hand, on the set An(λ) and for 0 < ε < (1 − λ1/2)2 with 0 < λ < 1
and under Assumptions E (i) and D one can easily see that there exists a positive
integer n0 such that the first summand term on the r.h.s. of (4.12) is equal to 0 for
n ≥ n0 and by (4.10) one obtains

P (L∗
n(λ2) < Ln)→ 0 as n → ∞ , for any 0 < λ2 < 1.

Next, we prove the second inequality. We first note that:

P (L∗
n(λ) > Ln) = P

(

L∗

n(λ)−1
⋃

k=K

{Ln = k}
)

≤

≤ P
(

L∗

n(λ)−1
⋃

k=K

{

k+rn
∑

j=k+1

γ̂2n,j ≤ εn

})

= P
(

min
K≤k<L∗

n(λ)

k+rn
∑

j=k+1

γ̂2n,j ≤ εn

)

.
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Hence

(4.13) P (L∗
n(λ) > Ln) ≤ P

(

min
K≤k<L∗

n(λ)

k+rn
∑

j=k+1

γ̂2n,j ≤ εn, Bn(λ)
)

+ P (Bc
n(λ)),

where

(4.14) Bn(λ) =
⋂

K≤k<L∗

n(λ)

Ank for every λ > 1,

with Ank being defined by (4.8).
Using the inequality (4.11) with a = γj , b = γj − γ̂n,j , and for every K ≤ k <

L∗
n(λ), then one has

(4.15) (λεn)
1/2 ≤

[

k+rn
∑

j=k+1

γ2j

]1/2
≤

[

k+rn
∑

j=k+1

(γ̂n,j − γj)
2
]1/2

+
[

k+rn
∑

j=k+1

γ̂2n,j

]1/2
.

which implies that on the set Bn

(4.16) min
K≤k<L∗

n(λ)

[

k+rn
∑

j=k+1

γ̂2n,j

]1/2
> (λεn)

1/2 − max
K≤k<L∗

n(λ)
d
[

k+rn
∑

j=k+1

u2n,j

]1/2
.

By Assumption E (ii), there exists a positive integer n0 such that for all n ≥ n0 the

second member on the r.h.s. of (4.16) is larger than −εεn (0 < ε < λ1/2 − 1). It
follows that

min
K≤k<L∗

n(λ)

k+rn
∑

j=k+1

γ̂2n,j > (λ1/2 − ε)εn > εn, for n ≥ n0,

which implies that for n ≥ n0, the first summand term on the r.h.s. of (4.12) is
equal to 0. Hence there exists λ1 > 1 for every ε > 0 and n large such that

P (L∗
n(λ) > Ln) ≤ P (Bc

n) ≤ (L∗
n(λ1) + rn)n

−s + ε (by (4.10) and (4.14)),

which tends to 0 by Assumption E (iii). This completes the proof of Theorem 3.1.
�

Proof of Theorem 3.2: At first, we prove (3.2). Putting

(4.17) Cn(λ2) =

L∗

n(λ2)+rn
⋂

k=1

Ank,
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where Ank is defined by (4.8), then by (4.9) and F (iii) one has

P (Cc
n(λ2))→ 0 as n → ∞ ,

where Cc
n(λ2) is the complement of Cn(λ2) for λ2 < 1. Note that

‖ϕ̂n − ϕ‖2 =
∫ 1

0
(ϕ̂n − ϕ)2(u) du =

Ln+rn
∑

k=1

(γ̂n,k − γk)
2 +

∞
∑

k=Ln(λ)+rn+1

γ2k

and

(4.18) P (‖ϕ̂n − ϕ‖ ≥ ε) ≤ P (‖ϕ̂n − ϕ‖ ≥ ε, Ln ≤ L∗
n(λ2), Cn(λ2))+

+ P (Ln > L∗
n(λ2)) + P (Cc

n(λ2)).

By Assumption F (i) and (ii), for every ε > 0 there exists n1 such that for n ≥ n1
the first probability on the r.h.s. of (4.18) is equal to 0 and one gets

P (‖ϕ̂n − ϕ‖ ≥ ε) ≤ P (Ln > L∗
n(λ2)) + P (Cc

n(λ2)), for n ≥ n1,

which together with (4.17) and Theorem 3.1 implies (3.2).
Now, we shall prove (3.3) in two steps:

(i)
∑L∗

n(λ1)+rn

k=1 γ2k ≤ În in probability as n → ∞.
For every ε > 0, we have

P
(

În −
L∗

n(λ1)+rn
∑

k=1

γ2k < −ε
)

≤

≤ P
(

În −
L∗

n(λ1)+rn
∑

k=1

γ2k < −ε, Ln ≥ L∗
n(λ1)

)

+ P (Ln < L∗
n(λ1)).

On the other hand,

−
L∗

n(λ1)+rn
∑

k=1

(γ̂2n,k − γ2k) = −2
L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)γk −
L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)
2 ≤

≤ 2
[

I(f)

L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)
2
]1/2

+

L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)
2.

Hence

(4.19) P
(

În −
L∗

n(λ1)+rn
∑

k=1

γ2k < −ε
)

≤ P (Cc
n(λ1))+

+ P
([

I(f)

L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)
2
]1/2

> ε, Cn(λ1)
)

+ P (Ln < L∗
n(λ1)),
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where Cn(λ1) is defined similarly as Cn(λ2) with 0 < λ2 < 1 < λ1. From (4.9),
F (iii) and Theorem 3.1 one obtains P (Cc

n(λ1)) → 0 as n → ∞. By the same way
as in the proof of (3.2), it follows from F (i) that the second probability on the r.h.s.
(4.19) is equal to 0 as n ≥ n2 (for some positive integer n2). And hence

P
(

În −
L∗

n(λ1)+rn
∑

k=1

γ2k < −ε
)

→ 0 as n → ∞, for every ε > 0,

which implies the first inequality of (3.3).

(ii)
∑L∗

n(λ1)+rn

k=1 γ2k ≥ În in probability as n → ∞.
Choosing ak = γ̂n,k, bk = γk in the inequality (4.11) then, for every ε > 0, we

have

P
(

În >

L∗

n(λ1)+rn
∑

k=1

γ2k + ε
)

≤

≤ P
(

L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)
2 + 2

[

I(f)

L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)
2
]1/2

> ε
)

+

+ P (Ln > L∗
n(λ2)),

which ensures

(4.20) P
(

În >

L∗

n(λ1)+rn
∑

k=1

γ2k + ε
)

≤

≤ P
(

L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)
2 + 2

[

I(f)

L∗

n(λ1)+rn
∑

k=1

(γ̂n,k − γk)
2
]1/2

> ε, Cn(λ2)
)

+

+ P (Ln > L∗
n(λ2)) + P (Cc

n(λ2)),

where Cn(λ2) is defined by (4.17) and Cc
n(λ2) is its complement.

It follows from Assumption F (i) that the first probability on the r.h.s. of (4.20) is
equal to 0 for n ≥ n3 (n3 is some positive integer); and hence, the second inequality
of (3.3) is proved. �

Proof of Theorem 3.3: Recall that

θ̂1n = θ1n +
[

În

(

n
∑

1

(ci − cn)
2
)1/2]−1

n
∑

1

cinϕ̂n(
◦

Ri(θ1n)/(n+ 1)),

where ϕ̂n, În are defined by (2.8) and by (2.9), respectively.
◦

Ri(θ1n) is the rank of

Xi − ciθ1n among X1 − c1θ1n, . . . , Xn − cnθ1n.
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In order to be able to apply Theorem 4.1 we rewrite θ̂1n as follows:

(4.21) θ̂1n = θ1n +
[

În

(

n
∑

1

(ci − cn)
2
)1/2]−1

·

n
∑

1

cinϕ̂n

(

Ri

([

n
∑

1

(ci − cn)
2
]1/2
(θ1n − θ1)

)

/(n+ 1)
)

,

where Ri(t) is the rank of ei − cint among e1 − c1nt, . . . , en − cnnt.
Next,

(4.22)

sup
|t|≤a

∣

∣

∣

n
∑

1

cin[ϕ̂n(Ri(t)/(n+ 1))− ϕ̂n(Ri(0)/(n+ 1))]+

+ t

∫ 1

0
ϕ̂n(u)ϕf (u) du

∣

∣

∣
=

= sup
|t|≤a

∣

∣

∣

Ln+rn
∑

k=1

γ̂n,k

(

n
∑

1

cin[Pk(Ri(t)/(n+ 1))− Pk(Ri(0)/(n+ 1))]+

+ t

∫ 1

0
Pk(u)ϕf (u) du

)
∣

∣

∣
≤

≤ sup
|t|≤a

∣

∣

∣

L∗

n(λ2)+rn
∑

k=1

γ̂2n,k

L∗

n(λ2)+rn
∑

k=1

[

n
∑

1

cin

[

Pk

(Ri(t)

n+ 1

)

− Pk

(Ri(0)

n+ 1

)]

+

+ t

∫ 1

0
Pk(u)ϕf (u) du

]2∣
∣

∣

1/2
in probability as n → ∞ .

Since
∑L∗

n(λ2)+rn

k=1 γ̂2n,k ≤ 2∑L∗

n(λ2)+rn

k=1 γ2k + 2
∑L∗

n(λ2)+rn

k=1 (γ̂n,k − γk)
2 and

∑L∗

n(λ2)+rn

k=1 γ2k ≤ I(f), one gets from Assumption F, Theorem 4.1, (2.6) and (4.21)

(4.23) sup
|t|≤a

∣

∣

∣

n
∑

1

cin[ϕ̂n(Ri(t)/(n+ 1))− ϕ̂n(Ri(0)/(n+ 1))]+

+ t

∫ 1

0
ϕ̂n(u)ϕf (u) du

∣

∣

∣

P→ 0 as n → ∞ .

Further, we have

∫ 1

0
ϕ̂n(u)ϕf (u) du =

Ln+rn
∑

k=1

γ̂n,kγk =

Ln+rn
∑

k=1

γ̂n,k(γk − γ̂n,k) + În.

Hence, by the Cauchy-Schwarz inequality one has

(4.24)
∣

∣

∣
1− (În)

−1
∫ 1

0
ϕ̂n(u)ϕf (u) du

∣

∣

∣

P→ 0 as n → ∞ .
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From (4.21), (4.23) and (4.24) we can write

(4.25)
[

n
∑

1

(ci − cn)
2
]1/2
(θ̂1n − θ1) = (În)

−1
n

∑

1

cinϕ̂n(Ri(0)/(n+ 1))+

+ oP (1) as n → ∞ .

Now, in order to prove the assertion of our theorem, it is sufficient to show that

(4.26) (În)
−1

n
∑

1

cinϕ̂n(Ri(0)/(n+ 1))
D→ N(0, (I(f))−1)

where I(f) is the Fisher information.
Note that (4.26) will be implied by the following two assertions:

(4.27) Hn =

Ln+rn
∑

k=1

(γ̂n,k − γk)

n
∑

1

cinPk(Ri(0)/(n+ 1))
P→ 0 as n → ∞

and

(4.28)

n
∑

1

cin

Ln+rn
∑

k=1

γkPk(Ri(0)/(n+ 1))
D→ N(0, I(f)) as n → ∞ .

Putting

H1n =

Ln+rn
∑

k=1

(γ̂n,k − γk)IAnk

n
∑

1

cinPk(Ri(0)/(n+ 1)),

where Ank is defined by (4.8), IA is the indicator function of the set A and

H2n =

Ln+rn
∑

k=1

(γ̂n,k − γk)IAc
nk

n
∑

1

cinPk(Ri(0)/(n+ 1)).

We shall prove that Hin
P→ 0 as n → ∞, i = 1, 2. Clearly

(4.29) E|H1n| ≤ d

L∗

n(λ2)+rn
∑

k=1

unk

[

E
(

n
∑

1

cinPk(Ri(0)/(n+ 1))
2
)]1/2

,

where

E
(

n
∑

1

cinPk(Ri(0)/(n+ 1))
2
)

= var
(

n
∑

1

cinPk(Ri(0)/(n+ 1))
2
)

=

= (n − 1)−1
n

∑

i=1

[

Pk(i/(n+ 1))− n−1
n

∑

j=1

Pk(j/(n+ 1))
]2

≤

≤ (n − 1)−1
n

∑

i=1

P 2k (i/(n+ 1)) ≤

≤ 1 + n

n − 1
∣

∣

∣

n
∑

i=1

∫ i/n

(i−1)/n
(P 2k (i/(n+ 1))− P 2k (u)) du

∣

∣

∣
≤ 1 + 4(Dk1 +D2k1)n

−1
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(by the mean value theorem for the function P 2k (u)).

Hence, by Assumptions F, G and (4.29), one receives

EH1n → 0 and then H1n
P→ 0 as n → ∞ .

As for H2n, by (4.8) and (4.9) we have for every ε > 0 and n large

P (|H2n| > η) ≤ P (H2n 6= 0) ≤ P (H2n 6= 0, Ln ≤ L∗
n(λ2)) + P (Ln > L∗

n(λ2)) ≤

≤ P (Ln > L∗
n(λ2)) + P

(

L∗

n(λ2)+rn
⋃

k=1

{|γ̂n,k − γk| > dunk}
)

≤

≤ P (Ln > L∗
n(λ2)) + (L

∗
n(λ2) + rn)n

−s + ε,

which tends to 0 as n goes to infinity. Hence (4.27) is proved.

Next, we turn to (4.28). Obviously, it is sufficient to show that

(4.30)

L∗

n(λ1)+rn
∑

k=1

γk

n
∑

1

cinPk(Ri(0).(n+ 1))
D→ N(0, I(f)),

and

(4.31)

Ln+rn
∑

k=L∗

n(λ1)+rn

γk

n
∑

1

cinPk(Ri(0)/(n+ 1))
P→ 0 as n → ∞ .

We start with (4.30). Note that Assumption A implies that

(4.32) max
1≤i≤n

c2in → 0 as n → ∞ .

Putting

an(i) =

L∗

n(λ1)+rn
∑

k=1

γkPk(i/(n+ 1)),

one can write

L∗

n(λ1)+rn
∑

k=1

γk

n
∑

1

cinPk(Ri(0)/(n+ 1)) =

n
∑

i=1

cinan(Ri(0))
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and

∫ 1

0
(an(1 + [un])− ϕf (u))

2 du =

∫ 1

0

{

L∗

n(λ1)+rn
∑

k=1

γk

(

Pk

(1 + [un]

n+ 1

)

− Pk(u)
)

+

+
∞
∑

k=L∗

n(λ1)+rn+1

γkPk(u)
}2

du ≤

≤ 2
∫ 1

0

{

L∗

n(λ1)+rn
∑

k=1

γk((Pk(1 + [un])/(n+ 1))− Pk(u))
}2

du+

+ 2

∫ 1

0

{

∞
∑

k=L∗

n(λ1)+rn+1

γkPk(u)
}2

du ≤

≤ 2
{

L∗

n(λ1)+rn
∑

k=1

|γk|Dk1n
−1

}2
+ 2

∞
∑

k=L∗

n(λ1)+rn+1

γ2k ,

which implies that

∫ 1

0
(an(1 + [un])− ϕf (u))

2 du ≤ 2
L∗

n(λ1)+rn
∑

k=1

γ2k

L∗

n(λ1)+rn
∑

k=1

D2k1n
−2+

+ 2
∞
∑

k=L∗

n(λ1)+rn+1

γ2k → 0 as n → ∞ .

Hence, by Theorem 1.6 (a) in [3, p. 163] and (4.32) we can conclude that

n
∑

1

cin

L∗

n(λ1)+rn
∑

k=1

γkPk(Ri(0)/(n+ 1)) =

n
∑

1

cinan(Ri(0))
D→ N(µ, σ2f ) as n → ∞ ,

where

µ = E

n
∑

1

cinan(Ri(0)) = 0

and

σ2f = limn→∞
var

(

n
∑

1

cinan(Ri(0))
)

=

= lim
n→∞

n
∑

1

c2in

∫ 1

0
(ϕ(u)− ϕ)2 du =

∫ 1

0
(ϕ(u)− ϕ)2 du = I(f)

with ϕ =
∫ 1
0 ϕ(u) du.
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Now, we prove (4.31). Putting

Sj =

L∗

n(λ1)+rn+j
∑

k=L∗

n(λ1)+rn

γk

n
∑

1

cinPk(Ri(0)/(n+ 1)), 1 ≤ j ≤ N,

where N = L∗
n(λ2)− L∗

n(λ1),
S0 = 0,
MN = max

0≤j≤N
|Sj |.

M ′
N = max

0≤j≤N
min{|Sj |, |Sn − Sj |},

then
M ′

N ≤ MN
and by [2, 12.4] we have

MN ≤ M ′
N + SN .

In order to prove (4.31), it is sufficient to check that M ′
N and SN converge in

probability to 0. We start with the first assertion. To do this we will compute

E
[

n
∑

1

cin

q
∑

k=p+1

γkPk(Ri(0)/(n+ 1))
]4
for every p, q :

L∗
n(λ1) + rn ≤ p ≤ q ≤ L∗

n(λ2) + rn.

After straightforward but long computations (cf. [8]) one receives

(4.33) E
[

n
∑

1

cin

q
∑

k=p+1

γkPk(Ri(0)/(n+ 1))
]4

≤ K3

(

q
∑

p+1

γ2k

)2
,

for some K3 > 0 and n large. It follows that for every i, j, k : 0 ≤ i ≤ j ≤ k ≤ N
and for every λ > 0

P (|Sj − Si| > λ, |Sk − Sj | > λ) ≤ P (|Sj − Si| > λ) ≤ λ−4E(Sj − Si)
4 ≤

≤ K4

(

k
∑

m=i+1

γ2m

)2
, for some K4 > 0.

So, the assumption (12.11) of Theorem 12.1, [2], is satisfied, and now this theorem
can be applied, and one gets

P (M ′
N > λ) ≤ λ−4K5

[

L∗

n(λ2)+rn
∑

k=L∗

n(λ1)+rn+1

γ2k

]2
(γ = α = 2),

for some K5 > 0, i.e. M ′
N

P→ 0, and if we take p = L∗
n(λ1)+rn and q = L∗

n(λ2)+rn

in (4.32) then SN
P→ 0. These ensure that

MN = max0≤j≤N |∑L∗

n(λ1)+rn+j
k=L∗

n(λ1)+rn
γk

∑n
1 cinPk(Ri(0)/(n + 1))|

P→ 0 as n → ∞,
hence (4.31) is proved. The proof of the theorem is complete. �

Acknowledgements. The paper is a part of author’s Ph.D. Thesis at Charles
University, Prague, written under the supervision of Professor Marie Hušková whose
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