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On the uniformly normal structure

of Orlicz spaces with Orlicz norm*

Tingfu Wang, Zhongrui Shi

Abstract. We prove that in Orlicz spaces endowed with Orlicz norm the uniformly normal
structure is equivalent to the reflexivity.
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Closely related to the fixed point theory, the conceptions of normal structure and
uniformly normal structure were introduced in Banach spaces [1], [2]. A Banach
space X is said to have normal structure provided that for every closed bounded
convex subset C of X containing more than one element, there is an element p ∈ C
such that sup{‖p − x‖ : x ∈ C} < diam (C), X is said to have uniformly normal
structure provided that there is a constant h < 1 such that for all above C, there
is a p ∈ C with sup{‖p− x‖ : x ∈ C} < h diam(C).
In 1984, T. Landes found the criterion of normal structure for Orlicz sequence

spaces equipped with Luxemburg norm, in light of his work it is easy to get it for
Orlicz function spaces [3]. In recent years T. Wang, B. Wang [4] and S. Chen,
Y. Duan [5] have investigated it for Orlicz norm. S. Chen and H. Sun recently
get the criterion of uniformly normal structure for Orlicz spaces with Luxemburg
norm [6]. In this paper we shall discuss it for Orlicz norm.
Let (G,Σ, µ) be a finite non-atomic measure space; M(u) be an N -function and

N(v) be its complemented one N(v) = max{u|v| − M(u) : for u ≥ 0}; RM (x) =∫
G M(x(t)) dµ be the modular of an element x(t); LM be the Orlicz space generated
by M(u):

LM = {x(t) : RM (λx) < ∞, for some λ > 0}

equipped with Orlicz norm

‖x‖ = inf
k>0

1

k
(1 +RM (kx)) (= sup{

∫

G
x(t)y(t) dµ : y(t) with RN (y) ≤ 1}),

where the infimum is attained, which forms a Banach space.
M(u) is said to satisfy the ∆2-condition (M ∈ ∆2) if for any u0 > 0 and H > 1,

there is K > 1 such that for all u ≥ u0, M(Hu) ≤ KM(u) [7].
We only discuss Orlicz function spaces because the result is the same in Orlicz

sequence spaces. We first introduce several lemmas.
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Lemma 1. If the Banach spaceX fails to have the uniformly normal structure, then
for an arbitrary integer n and positive number ε > 0, there exist x1, . . . , xn+1 ∈ x
such that

‖xj‖ ≤ 1, ‖xi − xj‖ ≤ 1 1 ≤ i ≤ j ≤ n+ 1

‖xm+1 −
1

m

m∑

i=1

xi‖ > 1− ε m = 1, 2, . . . , n.

Proof: It is easy to deduce the result from the definition of the uniformly normal
structure. �

Lemma 2. The following statements are equivalent:

(1) M ∈ ∆2,
(2) for any u0 > 0, any ε > 0, there is ℓ > 1 such that

M(ℓu) ≤ (1 + ε)M(u) (for all u ≥ u0),
(3) for any v0 > 0, any 0 < α < 1, there is δ > 0 such that

N(αv) ≤ α(1 − δ)N(v) (for all v ≥ v0).

Proof: See [8]. �

Lemma 3. Suppose M ∈ ∆2 and N ∈ ∆2, then for an arbitrary λ0 ∈ (0,
1
2 ) and

b > 0, there exist δ > 0 and c > 1 such that when λ0 ≤ λ ≤ 1− λ0 and |u| ≥ b, for
either uv < 0 or |u| ≥ c|v| it holds

M(λu+ (1− λ)v) ≤ (1− δ)[λM(u) + (1 − λ)M(v)].

Proof: Since N ∈ ∆2, for b > 0 and λ0 there is δ′, 0 < δ′ < 1 such that

M((1 − λ0)u)

(1 − λ0)M(u)
≤ 1− δ′ (for all |u| ≥

λ0
1− λ0

b).

Since
M(u)

u is a nondecreasing function, it follows that for all λ ≤ 1− λ0

M(λu) ≤ (1 − δ′)λM(u) (for all |u| ≥
λ0
1− λ0

b).

By M ∈ ∆2, there is c > 1 such that for all |u| ≥ b

M((1 +
1− λ0
cλ0

)u) ≤ (1 + δ′)M(u).

Now we shall discuss two cases.

(I) uv < 0 and |u| ≥ b.

If |λu| ≥ |(1− λ)v|, we have

M(λu + (1− λ)v) ≤ M(λu) ≤ (1− δ′)λM(u) ≤ (1 − δ′)(λM(u) + (1− λ)M(v)).
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If λ|u| < |(1− λ)v|, then |v| ≥ λ
1−λ |u| ≥

λ0
1−λ0

|u| ≥ λ0
1−λ0

b, hence

M(λu + (1− λ)v) ≤ M((1− λ)v)

≤ (1− δ′)(1 − λ)M(v) ≤ (1− δ′)(λM(u) + (1 − λ)M(v)).

(II) |u| ≥ c|v| and |u| ≥ b.

M(λu+ (1− λ)v) ≤ M(λ(1 +
1− λ

cλ
)u) ≤ (1− δ′)λM((1 +

1− λ

cλ
)u)

≤ (1− δ′)λ(1 + δ′)M(u) = (1− δ′
2
)λM(u)

≤ (1− δ′
2
)(λM(u) + (1 − λ)M(v)).

Setting δ = δ′2, we get the required result. �

Let us come to the main result.

Theorem. The Orlicz space LM with Orlicz norm possesses uniformly normal

structure if and only if LM is reflexive, i.e. M ∈ ∆2 and N ∈ ∆2.

Proof: Necessity. It is enough to notice that in the class of Banach spaces the
uniformly normal structure implies the reflexivity [2].
Sufficiency. We shall prove it in five steps.

1. Find a finite set in which the distance of arbitrary two elements is near to
one.

Denote k = sup{kx :
1
2 ≤ ‖x‖ ≤ 1 where ‖x‖ = 1k (1 +RM (kxx))},

σ = inf{RM (x) :
1
2 ≤ ‖x‖ ≤ 1}.

By M ∈ ∆2 and N ∈ ∆2, it follows that k < ∞ and σ > 0 [9].
Pick a > 0 with M(2a)µG < σ

4 .
By M ∈ ∆2, it follows that there is d > 0 such that

M(2u) ≤ dM(u), |u| ≥ a.

Pick b > 0 with M(b)µG < σ
8d .

Applying Lemma 3 to b and 1

1+k
2 , we have that there exist δ > 0 and c > 1

such that for all λ with 1

1+k
2 ≤ λ ≤ k

2

1+k
2 and all u, v with |u| ≥ b such that either

|u| ≥ c|v| or uv < 0, it holds

M(λu + (1− λ)v) ≤ (1− δ)(λM(u) + (1 − λ)M(v)).

Pick a positive integer p > 32dc2k
2
/σ and n = 4p.

Suppose that LM fails to have the uniformly normal structure. Then by Lemma 1,

we deduce that for 0 < ε < δσ
4n2d
, there exist xi (i = 1, . . . , n + 1) with ‖xi‖ ≤

1, ‖xi − xj‖ ≤ 1 and ‖xm+1 − 1
m

∑m
i=1 xi‖ ≥ 1 − ε (m = 1, 2, . . . , n). Thus∑m

i=1 ‖xm+1 − xi‖ > m(1− ε), hence ‖xm+1 − xi‖ > 1− mε > 1
2 (m+ 1 6= i).

2. Establish the inequality
∑2p

s=1

∫
As
(M(vs(t)) +M(vp+s(t))) dµ < σ

4d
(the meaning of symbols will be given below).
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Set xn+1(t)− xi(t) = ui(t) i = 1, 2, . . . , n.
For each t ∈ G, rearrange {ui(t)}

n
i=1 from the smallest to the largest and denote

as v1(t) ≤ v2(t) ≤ · · · ≤ vn(t). Set v(t) = 12 (v2p(t) + v2p+1(t)). Define

A = {t ∈ G : for at least 2p ‘i’ : ui(t)v(t) < 0 or |ui(t)| > kc|v(t)|

or |ui(t)| < |v(t)|/kc}.

When t ∈ A, for s = 1, . . . , 2p,

(∗) vs(t)v2p+s(t) < 0 or |vs(t)| > kc|v2p+s(t)| or |vs(t)| < |v2p+s(t)|/kc.

In fact, suppose that (∗) fails to hold for some s, 1 ≤ s ≤ 2p. Since {vs(t)}
n
s=1

is not decreasing with respect to s, vs(t), vs+1(t), . . . , v2p+s(t) and also v(t) have
the same sign, assumed to be positive without loss of generality. Therefore, from
v(t) ≥ vs(t) ≥ v2p+s(t)/kc ≥ v(t)/kc, we derive

v(t)

kc
≤ vs

2p+1︷ ︸︸ ︷
(t) ≤ vs+1(t) ≤ · · · ≤ v2p+s(t) ≤ kcv(t).

Combined with the definition of A, we get t /∈ A. Set

As = {t ∈ A : either |vs(t)| > b or |v2p+s(t)| > b} (s = 1, . . . , 2p),

1

ki
(1 +RM (kiui)) = ‖ui‖ (i = 1, 2, . . . , n), k = n/(

n∑

i=1

1

ki
),

∏n

j=1
j 6=i

kj/
n∑

i=1

∏n

j=1
j 6=i

kj = λi =
k

nki
.

Notice that 12 ≤ ‖ui‖ ≤ 1, so that 1 < ki ≤ k and 1
1+(n−1)k

≤ λi ≤
k

n−1+k
.

Define k′i and λ′i as k′i(t) = kj and λ′i(t) = λj if vi(t) = uj(t). Notice that when

t ∈ A, vi(t)v2p+i(t) < 0 or |k′i(t)vi(t)| ≥ |vi(t)| ≥ kc|v2p+i(t)| ≥ c|k′2p+i(t)v2p+i(t)|

or |k′2p+i(t)v2p+i(t)| ≥ |v2p+i(t)| > kc|vi(t)| ≥ c|k′i(t)vi(t)|, we have

ε = 1− (1− ε) ≥
1

n

n∑

i=1

‖xn+1 − xi‖ − ‖xn+1 −
1

n

n∑

i=1

xi‖

=
1

n

n∑

i=1

‖ui‖ − ‖
1

n

n∑

i=1

ui‖ ≥
1

n

n∑

i=1

1

ki
(1 +RM (kiui))−

1

k
(1 +RM (

k

n

n∑

i=1

ui))

=
1

k
(

n∑

i=1

λiRM (kiui)− RM (
n∑

i=1

λikiui))
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=
1

k

∫

G
[

n∑

i=1

λiM(kiui(t))− M(

n∑

i=1

λikiui(t))] dµ

=
1

k

∫

G
{

n∑

i=1

λ′i(t)M(k
′
i(t)vi(t))− M(

n∑

i=1

λ′i(t)k
′
i(t)vi(t))} dµ

≥
1

k

∫

G
{

2p∑

s=1

[λ′s(t)M(k
′
s(t)vs(t)) + λ′2p+s(t)M(k

′
2p+s(t)v2p+s(t))]

−

2p∑

s=1

(λ′s(t) + λ′2p+s(t))M(
λ′s(t)

λ′s(t) + λ′2p+s(t)
k′s(t)vs(t)

+
λ′2p+s(t)

λ′s(t) + λ′2p+s(t)
k′2p+s(t)v2p+s(t))} dµ

=
1

k

2p∑

s=1

{

∫

G
[λ′s(t)M(k

′
s(t)vs(t)) + λ′2p+s(t)M(k

′
2p+s(t)v2p+s(t))

− (λ′s(t) + λ′2p+s(t))M(
λ′s(t)

λ′s(t) + λ′2p+s(t)
k′s(t)vs(t)

+
λ′2p+s(t)

λ′s(t) + λ′2p+s(t)
k′2p+s(t)v2p+s(t))] dµ}

≥
1

k

2p∑

s=1

{

∫

As

[λ′s(t)M(k
′
s(t)vs(t)) + λ′2p+s(t)M(k

′
2p+s(t)v2p+s(t))

− (λ′s(t) + λ′2p+s(t))M(
λ′s(t)

λ′s(t) + λ′2p+s(t)
k′s(t)vs(t)

+
λ′2p+s(t)

λ′s(t) + λ′2p+s(t)
k′2p+s(t)v2p+s(t))] dµ}

≥
1

k

2p∑

s=1

{

∫

As

[λ′s(t)M(k
′
s(t)vs(t)) + λ′2p+s(t)M(k

′
2p+s(t)v2p+s(t))

− (1 − δ)(λ′s(t)M(k
′
s(t)vs(t)) + λ′2p+s(t)M(k

′
2p+s(t)v2p+s(t)))] dµ}

which follows because of 1

1+k
2 ≤ λi

λi+λj
≤ k

2

1+k
2 .

Notice that λiki =
k
n and ki ≥ 1; we continuously have

ε ≥
δ

k

2p∑

s=1

{

∫

As

λ′s(t)M(k
′
s(t)vs(t)) + λ′2p+s(t)M(k

′
2p+s(t)v2p+s(t)) dµ}

≥
δ

n

2p∑

s=1

∫

As

[M(vs(t)) +M(v2p+s(t))] dµ.
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From the choice of ε, we get

2p∑

s=1

∫

As

[M(vs(t)) +M(v2p+s(t))] dµ ≤
nε

δ
<

σ

4d
.

3. Establish the inequality RM (
x2−x1
2 χB) ≥

3σ
8d where B = G \ A.

By ‖x2 − x1‖ ≥ 1
2 , we derive RM (x2 − x1) ≥ σ. Hence

σ ≤ RM (x2 − x1) ≤

∫

G(|x2(t)−x1(t)|≥2a)
M(x2(t)− x1(t)) dµ

+

∫

G(|x2(t)−x1(t)|<2a)
M(x2(t)− x1(t)) dµ

≤ dRM (
x2 − x1
2

) +
σ

4
,

so

RM (
x2 − x1
2

) ≥
3σ

4d
.

Set D′ = {t ∈ A : |u1(t)| > b}, D′′ = {t ∈ A : |u2(t)| > b}; we have

∫

A
M(

x2(t)− x1(t)

2
) dµ ≤

1

2

∫

A
[M(u1(t)) +M(u2(t))] dµ

≤
1

2

∫

D′

M(u1(t)) dµ+
1

2

∫

D′′

M(u2(t)) dµ+
σ

8d

≤

2p∑

s=1

∫

As

[M(vs(t)) +M(v2p+s(t))] dµ+
σ

8d
<

σ

4d
+

σ

8d
=
3σ

8d
.

Hence

RM (
x2 − x1
2

χB) = RM (
x2 − x1
2

)− RM (
x2 − x1
2

χA) ≥
3σ

4d
−
3σ

8d
=
3σ

8d
.

4. Establish
∫ eB M(x′(t)− x1(t)) dµ ≥ 3σ

16d
(the meaning of symbols will be given below).

Split B into the following parts:

B4 = {t ∈ B : |x4(t)− x3(t)| ≤
kc
p |v(t)|},

B5 = {t ∈ B \ B4 : |x5(t)− xi(t)| ≤
kc
p |v(t)| for some i, 3 ≤ i < 5},

. . . . . .

Bn = {t ∈ B \
⋃n−1

j=4 Bj : |xn(t)− xi(t)| ≤
kc
p |v(t)| for some i, 3 ≤ i < n}.
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There is B = B4 ∪ B5 ∪ · · · ∪ Bn. Indeed, if t ∈ B \
⋃n

j=4Bj , it follows that

|xi(t)− xj(t)| = |ui(t)− uj(t)| ≥ kc|v(t)|/p (i = 4, 5, . . . , n; j = 3, . . . , i − 1).

While there are q ‘i’ with ui(t)v(t) < 0, there are 4p−q−2 ‘i’ with {ui(t)} having
the same sign as v(t). Therefore there are 3p− q− 2 ‘i’ satisfying |ui(t)−ui0(t)| >

kc|v(t)|, where ui0(t) is the smallest one with respect to the absolute value, so for

such i, |ui(t)| > kc|v(t)|. Notice that for such t, there are 3p− q − 2+ q = 3p− 2 >
2p ‘i’ with ui(t)v(t) < 0 or |ui(t)| > kc|v(t)|, thus we get t ∈ A, which contradicts
the fact t ∈ B.
Define

x′(t) =

{
0 t ∈ A,

xm(t) t ∈ Bm m = 4, 5, . . . , n,

then x′(t) is µ-measurable, and we have

1

2
[RM ((x

′ − x1)χB) +RM ((x
′ − x2)χB)] ≥ RM (

x2 − x1
2

χB) ≥
3σ

8d
.

Without loss of generality, we assume that RM ((x
′ − x1)χB) ≥

3σ
8d . Set

B̃ = {t ∈ B : |x′(t)− x1(t)| > max(
c2k
2

p
|v(t)|, b)}.

Notice that fact that |v(t)| ≤ 2
n

∑n
i=1 |vi(t)|; indeed, when |v2p(t)| ≤ |v2p+1(t)|,

then v2p+1(t) > 0, so

|v(t)| ≤
1

2
(|v2p(t)| + |v2p+1(t)|) ≤ |v2p+1(t)|

≤
|v2p+1(t)|+ · · ·+ |vn(t)|

n/2
=
2(|v2p+1(t)|+ · · ·+ |vn(t)|)

n

≤
2(|v1(t)|+ · · ·+ |vn(t)|)

n
.

The argument is analogous to that when |v2p(t)| > |v2p+1(t)|. Thus we derive

∫

B\ eB M(x′(t)− x1(t)) dµ ≤ M(b)µG+

∫

G
M(

c2k
2

p
v(t)) dµ

≤
σ

8d
+

∫

G
M(

c2k
2

p

2(|v1(t)|+ |v2(t)|+ · · ·+ |vn(t)|)

n
) dµ

≤
σ

8d
+
2c2k

2

p

∫

G
M(

|u1(t)|+ |u2(t)|+ · · ·+ |un(t)|

n
) dµ

≤
σ

8d
+
2c2k

2

p
<

σ

8d
+

σ

16d
=
3σ

16d
,
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so

∫ eB M(x′(t)− x1(t)) dµ ≥

∫

B
M(x′(t)− x1(t)) dµ −

∫

B\ eB M(x′ − x1) dµ

≥
3σ

8d
−
3σ

16d
=
3σ

16d
.

Set B̃m = B̃ ∩ Bm. Then B̃ =
⋃n

m=4 B̃m.

5. Prove
∫ eB M(x′(t)− x1(t)) dµ < 3σ

16d ; this implies a contradiction:

Split B̃m precisely into the following parts (m = 4, 5, . . . , n)

B̃3m = {t ∈ B̃m : |x3(t)− xm(t)| ≤
kc
p |v(t)|},

B̃4m = {t ∈ B̃m \ B̃3m : |x4(t)− xm(t)| ≤
kc
p |v(t)|},

. . . . . .

B̃m−1
m = {t ∈ B̃m \

⋃m−2
i=3 B̃i

m : |xm−1(t)− xm(t)| ≤
kc
p |v(t)|}.

Then B̃m =
⋃m−1

i=3 B̃i
m.

Notice that for t ∈ B̃i
m,

(∗∗)

|xm(t)− x1(t)| = |x′(t)− x1(t)| ≥ b,

|xm(t)− x1(t)| = |x′(t)− x1(t)| ≥
k
2
c2

p
|v(t)| ≥ kc|xm(t)− xi(t)|.

Define

ki
m : ‖xm − xi‖ =

1

ki
m

(1 +RM (k
i
m(xm − xi))) (i = 1, . . . , m − 1),

k̃m = (m − 1)/(

m−1∑

j=1

1/kj
m) (m = 4, . . . , n),

λi
m =

∏m-1

j=1
j 6=i

kj
m/

m−1∑

i=1

∏m-1

j=1
j 6=i

kj
m = k̃m/(m − 1)ki

m.

For t ∈ B̃i
m, ki

m|xm(t) − x1(t)| ≥ kc|xm(t) − xi(t)| ≥ c|ki
m(xm(t) − xi(t))|; we

have

ε = 1− (1− ε) ≥
1

m − 1

m−1∑

i=1

‖xm − xi‖ − ‖xm −
1

m − 1

m−1∑

i=1

xi‖

≥
1

m − 1

m−1∑

i=1

1

ki
m

(1 +RM (k
i
m(xm − xi))) −

1

k̃m

(1 + RM (k̃m

m−1∑

i=1

xm − xi

m − 1
))



On the uniformly normal structure of Orlicz spaces with Orlicz norm 441

=
1

k̃m

∫

G
[

m−1∑

i=1

λi
mM(ki

m(xm(t)− xi(t)))− M(

m−1∑

i=1

λi
mki

m(xm(t)− xi(t)))] dµ

≥
1

k̃m

∫ eBm

[

m−1∑

i=1

λi
mM(ki

m(xm(t)− xi(t))) − M(

m−1∑

i=1

λi
mki

m(xm(t)− xi(t)))] dµ

=
1

k̃m

m−1∑

j=3

∫ eBj
m

[

m−1∑

i=1

λi
mM(ki

m(xm(t)− xi(t)))− M(

m−1∑

i=1

λi
mki

m(xm(t)− xi(t)))] dµ

≥
1

k̃m

m−1∑

j=3

∫ eBj
m

{
m−1∑

i=1

λi
mM(ki

m(xm(t)− xi(t))) −
∑m-1

i=2
i6=j

λi
mM(ki

m(xm(t)− xi(t)))

− (1 − δ)(λ1mM(k1m(xm(t)− x1(t))) + λj
mM(kj

m(xm(t)− xj(t))))} dµ,

which follows for the same fact as in 2. Continuing the computation, we have

ε ≥
δ

k̃m

m−1∑

j=3

∫ eBj
m

[λ1mM(k1m(xm(t)− x1(t))) + λj
mM(kj

m(xm(t)− xj(t)))] dµ

≥
δ

m − 1

m−1∑

j=3

∫ eBj
m

M(xm(t)− x1(t)) dµ =
δ

m − 1

∫ eBm

M(xm(t)− x1(t)) dµ,

hence ∫ eBm

M(xm(t)− x1(t)) dµ ≤
(m − 1)ε

δ
(m = 4, 5, . . . , n).

We obtain

∫ eB M(x′(t)− x1(t)) dµ =

∫Sn
m=4

eBm

M(x′(t)− x1(t)) dµ

=

n∑

m=4

∫ eBm

M(xm(t)− x1(t)) dµ ≤
εn2

2δ
≤

σ

8d
<
3σ

16d

which yields a contradiction to

∫ eB M(x′(t)− x1(t)) dµ ≥
3σ

16d
,

and the proof is completed. �
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