JIN-YUAN ZHOU

Abstract. It is proved that, under the Martin's Axiom, every T_1 -space with countable tightness is a subspace of some pseudo-radial space. We also give several characterizations of subspaces of pseudo-radial spaces and conclude that being a subspace of a pseudo-radial space is a local property.

Keywords: pseudo-radial spaces, prime spaces, sub pseudo-radial spaces, tightness, Martin's Axiom

Classification: 54A35, 54B05, 54D99

1. Introduction.

In [1] the authors proposed the following problem: find necessary or sufficient (or both) conditions for a topological space to be a subspace of a pseudo-radial space. They also asked whether, in particular, $N \cup \{p\}$ is a subspace of a pseudo-radial space for $p \in \beta N \setminus N$. In Section 2 we give some necessary and sufficient conditions for a space to be a subspace of a pseudo-radial space. In Section 3 we prove that, under Martin's Axiom, every T_1 space with countable tightness is a subspace of a pseudo-radial space. Thus we partly answer the question 3.4 of [1].

Definition 1.1. A subset A of a topological space X is called closed w.r.t. chainnet if for each $x \in X$, if there exists a transfinite sequence in A converging to x, then $x \in A$. For any $B \subseteq X$ we denote by $clseq_X B$ the smallest subset of X containing B and closed w.r.t. chain-net.

Definition 1.2 (5). A space is called pseudo-radial if for each $A \subseteq X$, $\overline{A} = clseq_X A$. A space is called sub pseudo-radial if it is a subspace of some pseudo-radial space.

There was a lot of equivalent definitions of pseudo-radial spaces (see [1] and [2]).

All spaces are assumed to be T_1 . If $\{X_\alpha : \alpha \in \Sigma\}$ is a family of spaces, we denote by $\bigoplus_{\alpha \in \Sigma} X_\alpha$ the topological sum of $\{X_\alpha : \alpha \in \Sigma\}$.

2. Some characterizations.

We start with a lemma.

Lemma 2.1. Every quotient of a sub pseudo-radial space is sub pseudo-radial.

PROOF: Since every quotient of a pseudo-radial space is pseudo-radial, it is enough to see that for any class M of spaces, if M is closed under quotient mappings, then the class consisting of subspaces of the spaces in M is also closed under quotient mappings.

We call a space a prime space if it has only one non-isolated point. Given any space X and a point p in X, denote by X_p the prime space constructed by making each point, other than p, isolated with p retaining its original neighborhoods. We call X_p the prime factor of X at p. Obviously, each topological space is the quotient of the topological sum of all its prime factors.

Proposition 2.2. For a space X the following conditions are equivalent:

- (i) X is sub pseudo-radial,
- (ii) for every p in X, X_p is sub pseudo-radial,
- (iii) for each subset A of X and $q \in \overline{A}$, there exists a subset B of A such that $q \in \overline{B}$ and $B \cup \{q\}$ is sub pseudo-radial.

PROOF: The implication (i) \rightarrow (iii) is obvious. The proof of the implication (i) \rightarrow (ii) is completely the same as that of Proposition 5.1 of [3].

To prove the left two implications, let $Z = \bigoplus_{p \in X} X_p$ when (ii) holds and $Z = \bigoplus_{\{Y\}} Y \subseteq X$ and Y is sub pseudo-radial} when (iii) holds. It is easy to see that, in both cases, X is a quotient of Z and Z is sub pseudo-radial. By virtue of Lemma 2.1, X is a pseudo-radial space when (ii) or (iii) holds. \Box

Corollary 2.3. A space X is sub pseudo-radial if either

- (i) each subset of X with cardinality not greater than the tightness of X is sub pseudo-radial, or
- (ii) each point of X has a sub pseudo-radial neighborhood.

3. Countable case.

In this section, N denotes the set of natural numbers. βN is the Čech-Stone compactification of the discrete space N. If A and B are subsets of N, $A \subseteq {}^*B$ means that there exists an n in N such that $A \setminus \{0, 1, 2, \ldots, n-1\} \subseteq B$. A family \mathcal{A} of subsets of N is called an almost disjoint family, shortened as a.d. family, if for any distinct elements A_1 and A_2 of \mathcal{A} , $A_1 \cap A_2$ is finite. We say that \mathcal{A} has sfip (strong finite intersection property) if every nonempty finite subfamily of \mathcal{A} has infinite intersection. We say that B is a pseudo-intersection of \mathcal{A} if $B \subseteq {}^*A$ for each A in \mathcal{A} . For any set A, |A| denotes the cardinality of A; c denotes the cardinality of the power set $\mathcal{P}N$ of N.

The following lemma is well-known in set-theory (for example, see 11C of [14]).

Lemma 3.1 (MA). For each family \mathcal{A} of subsets of N, if $|\mathcal{A}| < c$ and \mathcal{A} has sfip, then \mathcal{A} has an infinite pseudo-intersection.

Theorem 3.2 (MA). Every space with countable tightness is sub pseudo-radial.

PROOF: It is a consequence of the following Theorem 3.3 and (i) of Corollary 2.3, $\hfill \Box$

Theorem 3.3 (MA). Every countable space is sub pseudo-radial.

PROOF: By virtue of Proposition 2.2, we only need to prove that every countable prime space is sub pseudo-radial. Let $X = N \cup \{p\}$ be a prime space with the unique non-isolated point p. We prove the X is sub pseudo-radial.

W.l.o.g., we assume that $\chi(p, X) = c$. Let \mathcal{B} be a filter base on N such that the set $\{B \cup \{p\} : B \in \mathcal{B}\}$ constitutes a local base at p. Let $\mathcal{A} = \mathcal{B} \cup \{A \subseteq N; p \in \overline{A}^X$ and A contains no infinite pseudo-intersection of $\mathcal{B}\}$.

Let $\mathcal{A} = \{A_{\alpha} : \alpha < c\}$ be an enumeration of \mathcal{A} such that for each $A \in \mathcal{A}$, the set $\{\alpha < c : A_{\alpha} = A\}$ is unbounded in c. We construct by induction an almost disjoint sequence $\mathcal{C} = \{C_{\alpha} : \alpha < c\}$ and a sequence $\{B_{\alpha} : \alpha < c\} \subseteq \mathcal{B}$ such that

- (i) $\forall \alpha < c, C_{\alpha} \subseteq A_{\alpha}$ and C_{α} is infinite;
- (ii) $\forall \beta < \alpha < c$, if $A_{\beta} \in \mathcal{B}$, then $C_{\alpha} \subseteq {}^{*}A_{\beta}$;
- (iii) $\forall \alpha < c, C_{\alpha} \cap B_{\alpha} = \emptyset.$

Assume $\alpha < c$ and we have constructed $\{C_{\beta} : \beta < \alpha\}$ and $\{B_{\beta} : \beta < \alpha\}$ satisfying (i) to (iii). We construct C_{α} , B_{α} as follows.

Case I. $A_{\alpha} \notin \mathcal{B}$. Since $p \in \overline{A}_{\alpha}^{X}$, we apply Lemma 3.1 on the family

$$\mathcal{B}' = \{ B_{\beta} \cap A_{\alpha} : \beta < \alpha \} \cup \{ A_{\beta} \cap A_{\alpha} : \beta \le \alpha \text{ and } A_{\beta} \in \mathcal{B} \}.$$

We obtain an infinite subset A of A_{α} which is a pseudo-intersection of \mathcal{B}' . Since A cannot be a pseudo-intersection of \mathcal{B} , there is a $B \in \mathcal{B}$ such that $A \setminus B$ is infinite. Let $C_{\alpha} = A \setminus B$ and $B_{\alpha} = B$.

Case II. $A_{\alpha} \in \mathcal{B}$. Let \mathcal{B}' as in the Case I. Since X is a T_1 space and $|\mathcal{B}'| < c = \chi(p, X)$, there exists a $B^* \in \mathcal{B}$ such that for each finite subfamily \mathcal{B}' of \mathcal{B} , $\bigcap_{B \in \mathcal{B}'} B \setminus B^*$ is infinite. Therefore the family $\mathcal{F} = \{B \setminus B^* : B \in \mathcal{B}\}$ has the sfip. Again by Lemma 3.1, we obtain an infinite $A \subseteq A_{\alpha} \setminus B^*$ which is a pseudo-intersection of \mathcal{B}' . Let $C_{\alpha} = A$ and $B_{\alpha} = B^*$. Thus we have finished the induction.

Now we construct a Hausdorff pseudo-radial space Y containing X as a subspace. Let $Y = X \cup (c \times \{0\})$. We define a topology on Y as follows. The set N is open discrete in Y. For each $\alpha < c$, let $\{C_{\alpha} \setminus n \cup \{(\alpha, 0)\} : n \in N\}$ be a local base at the point $(\alpha, 0)$. For the point p, let $\{U(A_{\alpha}) : A_{\alpha} \in \mathcal{B}, \alpha < c\}$ be a local base, where $U(A_{\alpha}) = \{p\} \cup A_{\alpha} \cup \{(\beta, 0) : \alpha < \beta < c\}$. It is easy to see that the above topology is well-defined and that X is a subspace of Y. Y is Hausdorff because of the above property (iii) and the fact that, for each B_{α} , the set $\{\beta < c : A_{\beta} = B_{\alpha}\}$ is unbounded in c. We are left to check that Y is pseudo-radial. Let $E \subseteq Y$ and $y \in \overline{E}^Y$. To avoid the trivialities, we assume y = p and $E \subseteq N$. Then $p \in \overline{E}^X$. If $E \in \mathcal{A}$, then $\{(\alpha, 0) : \alpha < c \text{ and } A_{\alpha} = E\} \subseteq clseq_Y E$. Since the set $\{\alpha < c : A_{\alpha} = E\}$ is unbounded in $c, p \in clseq_Y\{(\alpha, 0) : A_{\alpha} = E\}$. Thus $p \in clseq_Y E$. If $E \notin \mathcal{A}$, then there exists an infinite subset E' of E which is a pseudo-intersection of \mathcal{B} . But this obviously implies that $p \in clseq_X E$. Therefore $p \in clseq_Y E$. We are done.

Remark. For any $p \in \beta N \setminus N$, it is easy to see that $N \cup \{p\}$ is not pseudo-radial. But by Theorem 3.2, we see that it is sub pseudo-radial under the Martin's Axiom. Thus we partly answer the question 4 of [1].

Acknowledgement. Author would like to thank Professor J. Vaughan for his helpful discussions in proving the main theorem.

Jin-Yuan Zhou

References

- Arhangel'skii A.V., Isler R., Tironi G., On pseudo-radial spaces, Comment. Math. Univ. Carolinae 27 (1986), 137–154.
- [2] Tironi G., Some remarks on radial and pseudo-radial spaces, in: Proceedings of the Fifth Topological Symposium 1981, ed. by J. Novák, pp. 608–612.
- [3] Franklin S.P., Rajagopalan M., On subsequential spaces, Topology Appl. 35 (1990), 1–19.
- [4] Fremlin D.H., Consequences of Martin's Axiom, Cambridge Tracts in Mathematics, Cambridge, 1984.
- [5] Jane I., Meyer P.R., Simon P., Wilson P.G., On tightness in chain-net spaces, Comment. Math. Univ. Carolinae 22 (1981), 809–817.

DEPARTMENT OF MATHEMATICS AND STATISTICS, YORK UNIVERSITY, NORTH YORK, ONTARIO M3J 1P3, CANADA

(Received January 25, 1993)