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On subspaces of pseudo-radial spaces

Jin-Yuan Zhou

Abstract. It is proved that, under the Martin’s Axiom, every T1-space with countable
tightness is a subspace of some pseudo-radial space. We also give several characterizations
of subspaces of pseudo-radial spaces and conclude that being a subspace of a pseudo-radial
space is a local property.
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1. Introduction.

In [1] the authors proposed the following problem: find necessary or sufficient (or
both) conditions for a topological space to be a subspace of a pseudo-radial space.
They also asked whether, in particular, N ∪ {p} is a subspace of a pseudo-radial
space for p ∈ βN \N . In Section 2 we give some necessary and sufficient conditions
for a space to be a subspace of a pseudo-radial space. In Section 3 we prove that,
under Martin’s Axiom, every T1 space with countable tightness is a subspace of
a pseudo-radial space. Thus we partly answer the question 3.4 of [1].

Definition 1.1. A subset A of a topological space X is called closed w.r.t. chain-
net if for each x ∈ X , if there exists a transfinite sequence in A converging to x, then
x ∈ A. For any B ⊆ X we denote by clseqXB the smallest subset of X containing
B and closed w.r.t. chain-net.

Definition 1.2 (5). A space is called pseudo-radial if for each A ⊆ X , A =
clseqXA. A space is called sub pseudo-radial if it is a subspace of some pseudo-radial
space.

There was a lot of equivalent definitions of pseudo-radial spaces (see [1] and [2]).
All spaces are assumed to be T1. If {Xα : α ∈ Σ} is a family of spaces, we denote

by ⊕α∈ΣXα the topological sum of {Xα : α ∈ Σ}.

2. Some characterizations.

We start with a lemma.

Lemma 2.1. Every quotient of a sub pseudo-radial space is sub pseudo-radial.

Proof: Since every quotient of a pseudo-radial space is pseudo-radial, it is enough
to see that for any class M of spaces, if M is closed under quotient mappings, then
the class consisting of subspaces of the spaces in M is also closed under quotient
mappings. �
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We call a space a prime space if it has only one non-isolated point. Given any
space X and a point p in X , denote by Xp the prime space constructed by making
each point, other than p, isolated with p retaining its original neighborhoods. We
call Xp the prime factor of X at p. Obviously, each topological space is the quotient
of the topological sum of all its prime factors.

Proposition 2.2. For a space X the following conditions are equivalent:

(i) X is sub pseudo-radial,
(ii) for every p in X , Xp is sub pseudo-radial,

(iii) for each subset A of X and q ∈ A, there exists a subset B of A such that
q ∈ B and B ∪ {q} is sub pseudo-radial.

Proof: The implication (i) → (iii) is obvious. The proof of the implication (i) →
(ii) is completely the same as that of Proposition 5.1 of [3].
To prove the left two implications, let Z = ⊕p∈XXp when (ii) holds and Z =

⊕{Y : Y ⊆ X and Y is sub pseudo-radial} when (iii) holds. It is easy to see
that, in both cases, X is a quotient of Z and Z is sub pseudo-radial. By virtue of
Lemma 2.1, X is a pseudo-radial space when (ii) or (iii) holds. �

Corollary 2.3. A space X is sub pseudo-radial if either

(i) each subset of X with cardinality not greater than the tightness of X is sub
pseudo-radial, or

(ii) each point of X has a sub pseudo-radial neighborhood.

3. Countable case.

In this section, N denotes the set of natural numbers. βN is the Čech-Stone com-
pactification of the discrete space N . If A and B are subsets of N , A ⊆ ∗B means
that there exists an n in N such that A \ {0, 1, 2, . . . , n − 1} ⊆ B. A family A of
subsets of N is called an almost disjoint family, shortened as a.d. family, if for any
distinct elements A1 and A2 of A, A1 ∩A2 is finite. We say that A has sfip (strong
finite intersection property) if every nonempty finite subfamily of A has infinite
intersection. We say that B is a pseudo-intersection of A if B ⊆ ∗A for each A
in A. For any set A, |A| denotes the cardinality of A; c denotes the cardinality of
the power set PN of N .
The following lemma is well-known in set-theory (for example, see 11C of [14]).

Lemma 3.1 (MA). For each family A of subsets of N , if |A| < c and A has sfip,
then A has an infinite pseudo-intersection.

Theorem 3.2 (MA). Every space with countable tightness is sub pseudo-radial.

Proof: It is a consequence of the following Theorem 3.3 and (i) of Corollary 2.3,
�

Theorem 3.3 (MA). Every countable space is sub pseudo-radial.

Proof: By virtue of Proposition 2.2, we only need to prove that every countable
prime space is sub pseudo-radial. Let X = N ∪ {p} be a prime space with the
unique non-isolated point p. We prove the X is sub pseudo-radial.
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W.l.o.g., we assume that χ(p, X) = c. Let B be a filter base on N such that the

set {B ∪ {p} : B ∈ B} constitutes a local base at p. Let A = B ∪ {A ⊆ N ; p ∈ A
X

and A contains no infinite pseudo-intersection of B}.
Let A = {Aα : α < c} be an enumeration of A such that for each A ∈ A, the set

{α < c : Aα = A} is unbounded in c. We construct by induction an almost disjoint
sequence C = {Cα : α < c} and a sequence {Bα : α < c} ⊆ B such that

(i) ∀α < c, Cα ⊆ Aα and Cα is infinite;
(ii) ∀β < α < c, if Aβ ∈ B, then Cα ⊆ ∗Aβ ;
(iii) ∀α < c, Cα ∩ Bα = ∅.

Assume α < c and we have constructed {Cβ : β < α} and {Bβ : β < α} satisfying
(i) to (iii). We construct Cα, Bα as follows.

Case I. Aα /∈ B. Since p ∈ A
X

α , we apply Lemma 3.1 on the family

B′ = {Bβ ∩ Aα : β < α} ∪ {Aβ ∩ Aα : β ≤ α and Aβ ∈ B}.

We obtain an infinite subset A of Aα which is a pseudo-intersection of B′. Since A
cannot be a pseudo-intersection of B, there is a B ∈ B such that A \ B is infinite.
Let Cα = A \ B and Bα = B.

Case II. Aα ∈ B. Let B′ as in the Case I. Since X is a T1 space and |B′| <
c = χ(p, X), there exists a B∗ ∈ B such that for each finite subfamily B′ of B,⋂

B∈B′ B \ B∗ is infinite. Therefore the family F = {B \ B∗ : B ∈ B} has the
sfip. Again by Lemma 3.1, we obtain an infinite A ⊆ Aα \ B∗ which is a pseudo-
intersection of B′. Let Cα = A and Bα = B∗. Thus we have finished the induction.
Now we construct a Hausdorff pseudo-radial space Y containingX as a subspace.

Let Y = X ∪ (c × {0}). We define a topology on Y as follows. The set N is open
discrete in Y . For each α < c, let {Cα \ n ∪ {(α, 0)} : n ∈ N} be a local base at
the point (α, 0). For the point p, let {U(Aα) : Aα ∈ B, α < c} be a local base,
where U(Aα) = {p} ∪ Aα ∪ {(β, 0) : α < β < c}. It is easy to see that the above
topology is well-defined and that X is a subspace of Y . Y is Hausdorff because of
the above property (iii) and the fact that, for each Bα, the set {β < c : Aβ = Bα}
is unbounded in c. We are left to check that Y is pseudo-radial. Let E ⊆ Y

and y ∈ E
Y

. To avoid the trivialities, we assume y = p and E ⊆ N . Then

p ∈ E
X

. If E ∈ A, then {(α, 0) : α < c and Aα = E} ⊆ clseqY E. Since the
set {α < c : Aα = E} is unbounded in c, p ∈ clseqY {(α, 0) : Aα = E}. Thus
p ∈ clseqY E. If E /∈ A, then there exists an infinite subset E′ of E which is
a pseudo-intersection of B. But this obviously implies that p ∈ clseqXE. Therefore
p ∈ clseqY E. We are done. �

Remark. For any p ∈ βN \ N , it is easy to see that N ∪ {p} is not pseudo-radial.
But by Theorem 3.2, we see that it is sub pseudo-radial under the Martin’s Axiom.
Thus we partly answer the question 4 of [1].
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