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On hit-and-miss hyperspace topologies

Gerald Beer, Robert K. Tamaki

Abstract. The Vietoris topology and Fell topologies on the closed subsets of a Hausdorff
uniform space are prototypes for hit-and-miss hyperspace topologies, having as a subbase
all closed sets that hit a variable open set, plus all closed sets that miss (= fail to intersect)
a variable closed set belonging to a prescribed family ∆ of closed sets. In the case of the
Fell topology, where ∆ consists of the compact sets, a closed set A misses a member B of
∆ if and only if A is far from B in a uniform sense. With the Fell topology as a point of
departure, one can consider proximal hit-and-miss hyperspace topologies, where “miss” is
replaced by “far from” in the above formulation. Interest in these objects has been driven
by their applicability to convex analysis, where the Mosco topology, the slice topology, and
the linear topology have received close scrutiny in recent years.
In this article we look closely at the relationship between hit-and-miss and proximal

hit-and-miss topologies determined by a class ∆. In the setting of metric spaces, necessary
and sufficient conditions on ∆ are given for one to contain the other. Particular attention
is given to these topologies when ∆ consists of the family of closed balls in a metric space,
and their interplay with the Wijsman topology is considered in some detail.

Keywords: hyperspace, hit-and-miss topology, proximal topology, Wijsman topology,
Kuratowski-Painlevé convergence, almost convex metric

Classification: 54B20

1. Introduction.

Let 〈X,U〉 be a Hausdorff uniform space, and let CL(X) and K(X) be the
nonempty closed and compact subsets of X , respectively. Two of the most familiar
hyperspace topologies, i.e. topologies on CL(X), are the Vietoris topology and the
Fell topology. Generically, these are “hit-and-miss” topologies. To explain this
terminology, we introduce some notation. If E ⊂ X , we write E− and E+ for the
following collections of subsets of CL(X) :

E− ≡ {A ∈ CL(X) : A ∩ E 6= ∅},

E+ ≡ {A ∈ CL(X) : A ⊂ E}.

Sets in E− hit E, whereas sets in E+ miss the complement Ec of E. The Vietoris
topology τV [Mi], [KT], [FLL], [BLLN] has as subbase all sets of the form V − where
V is an open subset of X , plus all sets of the form W+ where W is an open subset
of X . The weaker Fell topology τF [Fe], [Po], [At], [KT] has as a subbase all sets of
the form V − where V is open, plus all sets of the form W+ where W has compact
complement.
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There is a significant qualitative difference between these two topologies, which
in our view, explains the greater applicability of the latter (see e.g. [At]) : if a closed
set A misses a compact set K, it is automatically far from A, in that there exists
an entourage U ∈ U such that A ∩ U [K] = ∅. On the other hand, if A misses
a closed set F , then A and F can be asymptotic to one another. In the last six
years, so-called proximal topologies [DCNS] have been under intense investigation,
wherein the family K(X) of far sets is replaced by a different family ∆. If B ⊂ X ,
we now write (Bc)++ for the closed sets that are far from B, that is, (Bc)++ ≡
{A ∈ CL(X) : ∃U ∈ U with A ∩ U [B] = ∅}.

Definition 1.1. Let 〈X,U〉 be a uniform space, and let ∆ be a subfamily of CL(X).
Then the ∆-proximal topology τ++∆ on CL(X) has as subbase all sets of the form

V − where V is open, plus all sets of the form (Bc)++, where B ∈ ∆.

In contrast, we will write τ+∆ for the topology having as subbase all sets of the

form V − where V is open, plus all sets of the form (Bc)+, where B ∈ ∆, as studied
in the abstract by Poppe [Po]. Although proximal topologies perhaps were first
explicitly noted by Nachman [Na], they did not receive much attention until it was
shown that one of them was compatible with the celebrated Mosco convergence
[Mo1], [Mo2], [At], [So] of sequences of closed convex sets in an arbitrary Banach
space: take ∆ = the nonempty weakly compact subsets of the Banach space [Be2,
Theorem 3.1]. Again for convex sets, with ∆ = the nonempty closed convex subsets
of a normed linear space, the induced proximal topology is the supremum of the
weak topologies induced by support functionals and distance functionals, viewed
as functions of a set argument with fixed point variable [Be4], [He]. With ∆ =
the nonempty closed and bounded convex subsets, the induced proximal topology,
called the slice topology , agrees with the fundamental Joly topology [Jo] formulated
in the context of locally convex spaces, and is stable with respect to duality in any
normed linear space [Be5]. Proximal topologies defined on the closed subsets of
a metric space 〈X, d〉 induced by the families ∆ = CL(X) and ∆ = the nonempty
closed and bounded sets are considered in [BLLN], [BL1], [BL2], [SZ].

For the proximal topologies that have received much scrutiny — including all of
those mentioned above, it has been the case that τ+∆ ⊃ τ++∆ . But this containment
need not always hold; in particular, it need not hold when ∆ = the closed balls
of a metric space. It is the main purpose of this note to display in the context
of an arbitrary metric space necessary and sufficient conditions for the inclusions
τ+∆ ⊃ τ++∆ and for τ+∆ ⊂ τ++∆ . Particular attention is given to the case when ∆ =
the family of closed balls, and we look closely at the relationship of the hyperspaces
τ+∆ and τ

++
∆ to the Wijsman topology, i.e. the topology of pointwise convergence

of distance functionals [Wi], [Co], [FLL], [LL], [Be1], [BaP], [BLLN], [BL1], . . . .

2. Notation and terminology.

Let 〈X, d〉 be a metric space. If x ∈ X and A is a nonempty subset of X , we
write d(x,A) for the distance from x to A, i.e. d(x,A) = infa∈A d(x,A). If A and
B are nonempty subsets of X , we write Dd(A,B) for the gap between A and B,
i.e. Dd(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. If x ∈ X and α > 0, we write Sα[x] and
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Sα[x] for the open and closed balls about x of radius α, respectively. We denote
the family of closed balls by B. If A is a nonempy subset of X , then Sα[A] ≡ {x :
d(x,A) < α} =

⋃
a∈A Sα[a], and Sα[A] ≡ {x : d(x,A) ≤ α}, which may contain⋃

a∈A Sα[a] properly. We call sets of the form Sα[A] and Sα[A] enlargements of A.
When working with the proximal topologies in the context of metric spaces, the
metric uniformity will be understood. Thus, nonempty sets A and B are far if and
only if for some α > 0, we have Sα[A] ∩ B = ∅, that is, Dd(A,B) > 0. Clearly,
A and B are far if and only if cl A and cl B are far, and so that when considering
proximal topologies, there is no loss in generality in requiring members of ∆ to
belong to CL(X).

3. Results.

It is clear that the relationship between the topologies τ+∆ and τ
++
∆ is deter-

mined by the relationship between the “upper topologies” generated by the families
{(Bc)+ : B ∈ ∆} and {(Bc)++ : B ∈ ∆}. Nevertheless, we choose to formulate our
results for the full topologies, although their equal “lower halves” never come into
play.
In a recent article, Di Maio and Naimpally [DMN] claimed to give a counterex-

ample to the inclusion τ+∆ ⊃ τ++∆ when ∆ is B, the family of closed balls in a metric
space. It is instructive to see exactly why their construction is valid, and we pause
to provide the details.

Example 3.1. Let ℓ∞ be the normed linear space of bounded real sequences with
the usual sup norm. Write θ for the origin of the space, and let {en : n ∈ Z+} be
the standard set of unit vectors. Consider the metric subspace

X = {θ} ∪ {e2n : n ∈ Z+} ∪ {
n+ 1

n
en : n ∈ Z+},

and let A = {n+1
n en : n odd}. Note that every point in A has distance more than

1 from every other point of X . The space X and the set A are shown in Figure 1.
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B
− τ+

B
. To see this, observe that A ∈ (S1[θ]
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be an arbitrary basic τ+
B
-open neighborhood of A, where sk is an even positive

integer, and either λk = 1 or λk = (sk+1)/sk, and U1, U2, . . . , Un are open subsets
of X each of which meets A. Defining

F = A ∪ {
n+ 1

n
en : n even, and n 6= s1, . . . , sk},

we claim that F ∈ V , whereas F /∈ (S1[θ]
c)++ because F contains a terminal tail

of the set

E = {
n+ 1

n
en : n even}.

Since A ∈ V , δ ≤ 1, and so Sδ[θ] cannot contain any points of E. Each Sδi
[λiesi

]

cannot contain more than one point of E (viz. the point si+1
si

esi
), since otherwise

it would contain points of A. Finally, since F ⊃ A, F hits all of the Ui’s used in
the definition of V . �

For many classes ∆, we have the following property which is clearly sufficient for
τ++∆ ⊂ τ+∆ : whenever B0 ∈ ∆ and A ∈ CL(X) are far, then there exists B1 ∈ ∆
and ε > 0 such that Sε[B0] ⊂ B1 ⊂ Ac. This is true for ∆ = CL(X), ∆ = the
closed and bounded sets, and in a normed linear space, ∆ = the closed convex
sets, ∆ = the closed and bounded convex sets, ∆ = the closed connected sets,
∆ = the closed balls, . . . . A natural first guess for a necessary and sufficient
condition is this somewhat weaker sufficient condition: whenever B0 ∈ ∆ and
A ∈ CL(X) are far, then there exists {B1, B2, . . . , Bn} in ∆ and ε > 0 such that
Sε[B0] ⊂

⋃n
i=0Bi ⊂ Ac. For example, if X is the line with the usual topology,

and ∆ consists of the set of all closed balls in X with radius 1, then ∆ satisfies the
second condition but not the first. But this, too, is not necessary, for if ∆ = K(X)
(in which case (Bc)+ = (Bc)++ for each B ∈ ∆ with no restriction on X), then
the latter condition forces local compactness on X .
We now come to the anticipated characterization theorem.

Theorem 3.2. Let 〈X, d〉 be metric space, and ∆ a family of nonempty closed
subsets of X . The following are equivalent :

(1) τ+∆ ⊃ τ++∆ on CL(X);
(2) whenever A ∈ CL(X) and B0 ∈ ∆ are far, then there exists a finite subset

{B1, B2, . . . , Bn} of ∆ such that
⋃n

i=0Bi ⊂ Ac and such that each sequence

〈xk〉 in (B0∪B1∪· · ·∪Bn)
c with limk→∞ d(xk, B0) = 0 has a cluster point.

Proof: (2) ⇒ (1). It suffices to show that for each B ∈ ∆, (Bc)++ contains

a τ+∆ -neigborhood of each of its points. Fix B0 ∈ ∆ and A ∈ CL(X) with A ∈

(Bc
0)
++; then A is far from B0. Pick B1, B2, . . . , Bn as guaranteed by (2). Since⋃n

i=0Bi ⊂ Ac, we have A ∈
⋂n

i=0(B
c
i )
+. We claim that if F ∈ CL(X) and

F ∈
⋂n

i=0(B
c
i )
+, then F must be far from B0. Otherwise, there exists a sequence

〈xk〉 in F with limk→∞ d(xk, B0) = 0. By (2), 〈xk〉 has a cluster point, which must
be simultaneously in F and B0. However, this violates F ∈ (Bc

0)
+. We have shown
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that

A ∈
n⋂

i=0

(Bc
i )
+ ⊂ (Bc

0)
++,

as required.

(1)⇒ (2). We prove the contrapositive. Suppose (2) fails. Then there exist B0 ∈
∆ and A ∈ CL(X) far from B0 such that for each finite subset {B1, B2, . . . , Bn}
of ∆ with

⋃
Bi ⊂ Ac, there exists a sequence s({B1, B2, . . . , Bn}) in (

⋃n
i=0Bi)

c

approaching B0 having no cluster point. Since A is far from B0, without loss of
generality, we may assume that the range of s({B1, B2, . . . , Bn}) is contained in
Ac. Now let Ω be the family of finite subsets of ∆ whose union misses A, partially
ordered by inclusion, and for each F ∈ Ω, denote by T (F) the range of s(F), a closed
nonempty subset of Ac satisfying Dd(B0, T (F)) = 0. Define ψ : Ω → CL(X) by

ψ(F) = A ∪ T (F). Clearly, the net ψ converges to A in τ+∆ but not in τ
++
∆ , as the

net ψ(F) is never far from B0, although A is. Thus, (1) fails. �

Corollary 3.3. Suppose 〈X, d〉 is a metric space and ∆ is a family of nonempty
closed subsets ofX that is closed under finite unions. The following are equivalent :

(1) τ+∆ ⊃ τ++∆ on CL(X);
(2) whenever A ∈ CL(X) and B0 ∈ ∆ are far, then there exists B1 ∈ ∆ with

B0 ⊂ B1 ⊂ Ac such that each sequence 〈xk〉 in B
c
1 with limk→∞ d(xk , B0)

= 0 has a cluster point.

Corollary 3.4. Suppose 〈X, d〉 is a metric space, and ∆ ⊂ CL(X). Suppose that
whenever B0 ∈ ∆ and A ∈ CL(X) are far, then there exists {B1, B2, . . . , Bn} in ∆
and ε > 0 such that Sε[B0] ⊂

⋃n
i=0Bi ⊂ Ac. Then τ+∆ ⊃ τ++∆ on CL(X).

We now present an application of Theorem 3.2.

Proposition 3.5. Let 〈X, d〉 be a metric space. Let ∆ be the family of nonempty
closed nowhere dense subsets of X , i.e. A ∈ ∆ provided int A = ∅. Then τ+∆ ⊃ τ++∆
on CL(X) if and only if the set of limit points X ′ of X is compact.

Proof: Suppose X ′ is noncompact. We show that the condition (2) of Theo-
rem 3.2 fails. Choose a sequence 〈wk〉 in X

′ with distinct terms with no cluster
point. Clearly B0 ≡ {wk : k ∈ Z+} is a nowhere dense closed proper subset
of X . Take a0 ∈ Bc

0; then A ≡ {a0} is far from B0. We can find a sequence

〈εk〉 of positive scalars such that 〈εk〉 → 0, {Sεk
[wk] : k ∈ Z+} is a disjoint

family, and such that d(wk, a0) > εk. Now if {B1, B2, . . . , Bn} ⊂ ∆, then ∀ k
{B0, B1, B2, . . . , Bn} fails to cover Sεk

[wk ], because nowhere dense sets are closed
under finite unions. Choosing xk ∈ Sεk

[wk ] −
⋃n

i=0Bi does the job, because
lim sup d(xk , B0) ≤ lim sup d(xk , wk) = 0, and if 〈xk〉 has a cluster point, then
so would 〈wk〉.
For the converse, suppose X ′ is compact and B0 is a closed nowhere dense subset

of X far from A ∈ CL(X). Since B0 can contain no isolated points of X , we have
B0 ⊂ X ′. Condition (2) of Theorem 3.2 is fulfilled with {B1, B2, . . . , Bn} = {B0},
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because if limk→∞ d(xk , B0) = 0, then by the compactness of B0, 〈xk〉 must have
a cluster point. �

We note that the metrizable spaces X described in Proposition 3.5 are those
having a compatible metric for which disjoint closed sets are far [Ng], [Be3], equiv-
alently, a metric with respect to which each continuous function on X is uniformly
continuous [At]. Metric spaces of this kind are called Atsuji spaces or UC spaces in
the literature. For additional characterizations of metrizable spaces for which X ′ is
compact, the reader may consult [Ra].

We now look at the reverse inclusion τ+∆ ⊂ τ++∆ .

Lemma 3.6. Let 〈X, d〉 be metric space, and let ∆ be a family of nonempty closed
subsets of X . The following are equivalent :

(i) τ+∆ ⊂ τ++∆ on CL(X);
(ii) for A ∈ CL(X) and B ∈ ∆, A ∩B = ∅ ⇒ A and B are far.

Proof: (ii) ⇒ (i). This is obvious, for (ii) yields (Bc)++ = (Bc)+ for each B ∈ ∆.

(i) ⇒ (ii). Suppose A ∈ (Bc)+; by (i), there exists {B1, B2, . . . , Bn} ⊂ ∆
such that A ∈

⋂n
i=1(B

c
i )
++ ⊂ (Bc)+. Clearly, B ⊂

⋃n
i=1Bi, else choosing b ∈

B−
⋃n

i=1Bi, we would have {b} far from each Bi, a contradiction, as {b} meets B.
But then B∩Bi far from A for each i implies that B =

⋃n
i=1(B∩Bi) is far from A,

as required. �

Theorem 3.2 and Lemma 3.6 together yield

Theorem 3.7. Let 〈X, d〉 be metric space, and let ∆ be a family of nonempty
closed subsets of X . The following are equivalent :

(i) τ+∆ = τ
++
∆ on CL(X);

(ii) τ+∆ ⊂ τ++∆ on CL(X);
(iii) for A ∈ CL(X) and B ∈ ∆, A ∩B = ∅ ⇒ A and B are far.

Proof: (i) ⇒ (ii). This is trivial.

(ii) ⇒ (iii). This is a consequence of the last result.

(iii) ⇒ (i). Condition (iii) says that for each B ∈ ∆ we have (Bc)+ = (Bc)++,
and so subbasic open sets for the two topologies agree. This implication also follows
from Lemma 3.6 upon verifying the condition (2) of Theorem 3.2. This is simple : if
A ∈ CL(X) and B0 ∈ ∆ are far, then we claim that the choice {B1, B2, . . . , Bn} =
{B0} works. To see this, suppose to the contrary that 〈xk〉 is a sequence in B

c
0 with

limk→∞ d(xk , B0) = 0 that has no cluster point. Then {xk : k ∈ Z+} and B0 are
disjoint closed sets that are not far, in violation of (ii). �

When ∆ = CL(X) in the condition (iii) of Theorem 3.7, we have the Atsuji
spaces. The case ∆ = the nonempty closed and bounded sets has been recently
considered in [BDC]. Metrizable spaces that admit a metric of this kind are those
for which X ′ is locally compact and separable.



On hit-and-miss hyperspace topologies 723

4. On the Wijsman topology and ball hyperspace topologies.

The ball topology τ+
B
and the proximal ball topology τ++

B
arose in the first

place in an essentially unsuccessful attempt to find alternative presentations of the
Wijsman topology in a general metric space. In this section we intend to survey the
terrain. Following [FLL], we introduce the Wijsman topology as a weak topology.
We may regard d(x,A) as a function of a set variable by holding x fixed and letting
A vary.

Definition 4.1. Let 〈X, d〉 be a metric space. The Wijsman topology τWd
is the

weakest topology τ on CL(X) such that for each x ∈ X , A → d(x,A) is a τ -
continuous functional.

Basic facts about this topology are established in [Co], [FLL], [LL]. It may be
argued that the Wijsman topology is the most important construction in the the-
ory of hyperspaces of a metric space, given that so many important hit-and-miss
topologies can be expressed as suprema of Wijsman topologies, including the Vi-
etoris and slice topologies [BLLN], [Be5], [BL1]. The inclusion τWd

⊂ τ+
B
is valid

in any metric space (see e.g. [FLL, Proposition 2.3] and [Be1, Lemma 2.0]). The

inclusion τWd
⊃ τ+

B
requires extremely strong conditions; for example, it is neces-

sary (but not sufficient) that whenever B is a closed ball and A is a closed set with
B ∩A = ∅, then A and B are far [Be1, Lemma 2.8]. If closed and bounded subsets
of X are compact, then the inclusion is satisfied [FFL, Proposition 2.5], although
it need not be valid in an Atsuji space [Be1, Example 2.9].

Relative to the relationship between the proximal ball topology τ++
B
and the

Wijsman topology, we introduce the following condition (∗) :

(∗) ∀x ∈ X, ∀µ > 0, ∀α > 0, ∃ δ > µ such that Sδ[x] ⊂ Sα[Sµ[x]].

Proposition 4.2. Let 〈X, d〉 be a metric space. Then the proximal ball topology
τ++
B
on CL(X) contains the Wijsman topology τWd

. Conversely, if the metric d

satisfies (∗), then τWd
contains τ++

B
.

Proof: The inclusion τWd
⊂ τ++

B
, valid in any metric space, is established in

[DMN]. For the reverse inclusion, we show that the Wijsman topology contains
each subbasic open set for the proximal ball topology, subject to the condition
(∗). That V − ∈ τWd

for each open V requires no assumptions whatsoever on the

metric (see [FLL, Proposition 2.1]). Now suppose A0 ∈ (B
c)++ where B is a closed

ball, say B = Sµ[x0]. Choosing α > 0 with Dd(A0, Sµ[x0]) > α, we see that

Sα[Sµ[x0]] ∩ A0 = ∅, and the condition (∗) now gives Sδ[x0] ∩ A0 = ∅ for some
δ > µ. Thus, d(x0, A0) ≥ δ, and as a result,

A0 ∈ {A ∈ CL(X) : d(x0, A) >
1

2
(δ + µ)} ⊂ (Bc)++,

completing the proof that τWd
⊃ τ++

B
. �
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Example 4.3. The condition (∗) does not imply the following relative of a condi-
tion of Francaviglia, Levi, and Lechicki [FLL] : ∀x ∈ X , ∀µ > 0, ∀α > 0, ∃ δ > µ
such that Sδ[x] ⊂ Sα[Sµ[x]]! Consider L = {(x, 0) : x ≥ 0} ∪ {(0, y) : y ≥ 0} as
a metric subspace of the plane equipped with the box metric, d[(x1, y1), (x2, y2)] =
max{|x1− x2|, |y1− y2|}. This space satisfies much more than the condition (∗); in
fact, for each x ∈ L and µ > 0, there exists α > 0 such that Sα+µ[x] = Sα[Sµ[x]].
However, S1/2[S1[(0, 1)]] contains no open ball about (0, 1) of radius greater than
one. �

The condition (∗) holds in particular in any normed linear space, where the
equality of the Wijsman and proximal ball topologies was observed by Sonntag and
Zalinescu [SZ]. In our condition (∗), the scalar δ depends not only on µ and α
but also on x. We now look at a stronger condition (∗∗), where δ may be chosen
independent of x.

(∗∗) ∀µ > 0, ∀α > 0, ∃ δ > µ such that ∀x ∈ X, Sδ[x] ⊂ Sα[Sµ[x]].

With (∗∗), Wijsman convergence is equivalent to the classical Kuratowski-Pain-
levé convergence [KT], [Mr], [FLL], [Ah] [Do] of all closed enlargements of fixed
radius.

Definition 4.4. Let 〈X, τ〉 be a topological space and let 〈Aλ〉 be a net in CL(X).
The limit inferior LiλAλ and limit superior LsλAλ of the net 〈Aλ〉 are defined by
the formulas

LiλAλ ≡ {x ∈ X : each neighborhood of x meets Aλ eventually};

LsλAλ ≡ {x ∈ X : each neighborhood of x meets Aλ frequently}.

The net 〈Aλ〉 is declared Kuratowski-Painlevé convergent to a (closed) set A pro-
vided A = LiλAλ = LsλAλ. In this case, we write A = K-limλAλ.
As is well-known [FLL], [Be1], in an arbitrary metric space 〈X, d〉, Wijsman con-

vergence ensures Kuratowski-Painlevé convergence in CL(X); the converse holds
if and only if each proper closed ball in the metric space is compact [Be1, Theo-
rem 2.3].

Theorem 4.5. Let 〈X, d〉 be a metric space satisfying (∗∗). Let 〈Aλ〉 be a net in
CL(X) and let A ∈ CL(X). The following are equivalent :

(i) A = τWd
-limλAλ;

(ii) A = τ++
B
-limAλ;

(iii) for each µ > 0, Sµ[A] = K-limλ Sµ[Aλ].

Proof: Since the condition (∗∗) gives the condition (∗), the conditions (i) and (ii)
are equivalent by Proposition 4.2. We establish the equivalence of (i) and (iii).

(iii) ⇒ (i). This holds with no assumptions on the metric. First, suppose that
x0 ∈ X is fixed and d(x0, A) < µ. Write β = 12 (µ+d(x0, A)); then β > 0 and we have

x0 ∈ Sβ [A]. Since Sβ [A] ⊂ LiλSβ [Aλ], there exists an index λ0 such that for each
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λ ≥ λ0, we have Sµ−β [x0]∩Sβ [Aλ] 6= ∅, and for each such λ, we have d(x0, Aλ) < µ.

On the other hand, if d(x0, Aλ) ≤ µ frequently, then x0 ∈ LsλSµ[Aλ] ⊂ Sµ[A], in
which case d(x0, A) ≤ µ. Thus, d(x0, A) > µ ensures d(x0, Aλ) > µ eventually.

(i) ⇒ (iii). Fix µ > 0. We show Sµ[A] ⊂ LiλSµ[Aλ] and LsλSµ[Aλ] ⊂ Sµ[A].

For the first inclusion, fix x0 ∈ Sµ[A] and let ε > 0. Choose by (∗∗) δ > µ such

that for each x ∈ X , we have Sδ[x] ⊂ Sε/2[Sµ[x]]. Clearly, d(x0, A) < δ, and by

Wijsman convergence, there exists an index λ0 such that for each λ ≥ λ0 we have
d(x0, Aλ) < δ. For each such λ, there exists aλ ∈ Aλ with d(x0, aλ) < δ. By the
choice of δ there exists wλ ∈ X with both d(x0, wλ) < ε and d(wλ, aλ) ≤ µ. This
shows that Sε[x0] ∩ Sµ[Aλ] 6= ∅ for λ ≥ λ0, and the inclusion Sµ[A] ⊂ LiλSµ[Aλ]
follows.

We now turn to the second inclusion. By the equivalence of (i) and (ii), the
net 〈Aλ〉 converges to A in the topology σ with subbase {(Bc)++ : B a closed
ball}. Suppose to the contrary that LsλSµ[Aλ] 6⊂ Sµ[A]. Choose x0 ∈ LsλSµ[Aλ]
with d(x0, A) > µ, and then β strictly between µ and d(x0, A). Although A ∈
[(Sβ [x0])

c]++, it is clear that Aλ hits Sβ [x0] frequently, so that convergence in

σ fails, a contradiction. Thus, LsλSµ[Aλ] ⊂ Sµ[A] is a consequence of Wijsman
convergence, and the proof is complete. �

Example 4.6. The condition (∗∗) cannot be replaced by the condition (∗) in the
statement of Theorem 4.5. We revisit the space L of Example 4.3. In this space,
closed and bounded sets are compact, and the Wijsman topology, the ball topology,
and the proximal ball topologies all coincide. But Wijsman convergence — in
fact even Hausdorff metric convergence — cannot guarantee Kuratowski-Painlevé
convergence of closed enlargements. To see this, let A = {(0, 1)} and let An =
{(0, (n+ 1)/n)}. We have

(1, 0) ∈ S1[A] = {(x, 0) : x ∈ [0, 1]} ∪ {(0, y) : y ∈ [0, 2]},

whereas (1, 0) /∈ Lsn→∞S1[An]. �

Let σ be the topology on CL(X) generated by {(Bc)++ : B a closed ball}.
The proof of Theorem 4.5 shows that with no assumptions on 〈X, d〉, the condition
A = σ-limAλ implies LsλSµ[Aλ] ⊂ Sµ[A] for each µ > 0. The converse holds
assuming the condition (∗); we leave this as an easy exercise for the reader. But the
converse is not true in general. Returning to Example 3.1, let An = A ∪ { i+1

i ei : i
even, and i ≥ 2n}. Clearly, 〈An〉 fails to converge to A in the topology generated
by {(Bc)++ : B a closed ball}, as A ∈ (S1[θ]

c)++. Still, whenever µ > 0, we
have Lsn→∞Sµ[An] ⊂ Sµ[A]. There are two cases to consider : if µ < 1, then

Sµ[An] ⊂ A ∪ { i+1
i ei : i even, and i ≥ 2n} ∪ {ei : i even, and i ≥ 2n}, and

Lsn→∞Sµ[An] = A = Sµ[A]. If µ ≥ 1, then

Lsn→∞Sµ[An] = X − {
i+ 1

i
ei : i even, and

i+ 1

i
> µ} = Sµ[A].
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With some effort, one can show that the condition (∗∗) is equivalent to the
following cumbersome condition (∗ ∗ ∗) :

(∗ ∗ ∗)

∀µ > 0, ∀α > 0, ∃ ε1 > 0 and ε2 > 0

such that ∀ y ∈ X, ∀A ∈ CL(X),

inf{d(x,A) : x ∈ Sε1 [y]} < µ+ ε2 ⇒ ∃ v ∈ Sα[y] with d(v,A) ≤ µ.

The reason that we bring this formulation to the attention of the reader is that when
(∗∗) is viewed in this way, one can apply the quasi-equi-semicontinuity machinery
of Dolecki [Do, p. 234] to produce an “epi-convergence proof” of Theorem 4.5. We
leave this to the interested leader.
Evidently, the condition (∗∗) holds in each metric space 〈X, d〉 in which the

closed ball operator is “additive” : ∀x ∈ X , ∀µ > 0, ∀α > 0, Sα+µ[x] = Sα[Sµ[x]].
Such metric spaces have a number of simple characterizations. A metric is often
called convex provided for each α ∈ (0, d(x1, x2)), there exists x3 ∈ X such that
d(x1, x3) = α and d(x2, x3) = d(x1, x2)−α [Bl]. Metrics for which the ball operator
is additive are almost convex, as we now define in the most convenient form for our
purposes.

Definition 4.7. We call a metric d on a set X almost convex provided whenever
{x1, x2} ⊂ X , α > d(x1, x2), and 0 < β < α, there exists w ∈ X such that both
d(x1, w) < β and d(w, x2) < α− β.

It is easy to check that almost convexity amounts to the following condition,
which better justifies its name: whenever 0 < α < d(x1, x2) and ε > 0, there
exists x3 ∈ X such that |d(x1, x3) − α| < ε and |d(x2, x3) − (d(x1, x2) − α)| < ε.
Clearly, each convex metric is almost convex; in particular, each metric determined
by a norm is almost convex. The rationals as a subspace of the line is an almost
convex metric space, but the usual metric so restricted is not convex.
In closing, we verify that additivity of the ball operation, interpreted in a variety

of ways, is equivalent to almost convexity of the metric.

Proposition 4.8. Let 〈X, d〉 be a metric space. The following are equivalent :

(i) the metric d is almost convex;
(ii) for each x0 ∈ X , µ > 0 and α > 0, we have Sα[Sµ[x0]] = Sα+µ[x0];
(iii) for each A ⊂ X , µ > 0 and α > 0, we have Sα[Sµ[A]] = Sα+µ[A];

(iv) for each A ⊂ X , µ > 0 and α > 0, we have Sα[Sµ[A]] = Sα+µ[A];

(v) for each x0 ∈ X , µ > 0 and α > 0, we have Sα[Sµ[x0]] = Sα+µ[x0].

Proof: (i) ⇒ (ii). One always has Sα[Sµ[x0]] ⊂ Sα+µ[x0]. Let x ∈ Sα+µ[x0];
since d(x, x0) < α + µ, by almost convexity, there exists w ∈ X with d(w, x0) < µ
and d(x,w) < α. This shows that x ∈ Sα[Sµ[x0]].

(ii) ⇒ (iii). According to (ii),

Sα+µ[A] =
⋃

a∈A

Sα+µ[a] =
⋃

a∈A

Sα[Sµ[a]] = Sα[Sµ[A]].
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(iii) ⇒ (iv). We will actually show that

cl Sα[Sµ[A]] = Sα[Sµ[A]] = Sα+µ[A].

By the triangle inequality, we always have cl Sα[Sµ[A]] ⊂ Sα[Sµ[A]] ⊂ Sα+µ[A].
By (iii),

(#) Sα+µ[A] = Sα[Sµ[A]] ⊂ cl Sα[Sµ[A]].

Now fix x1 ∈ Sα+µ[A], i.e. with d(x1, A) ≤ α + µ, and let ε > 0. Since x1 ∈
Sα+µ+ε[A] = Sε[Sα+µ[A]], there exists w ∈ X and a ∈ A with d(a,w) < α+ µ and
d(w, x1) < ε. By condition (#), x1 ∈ cl Sα+µ[A] ⊂ cl Sα[Sµ[A]].

(iv) ⇒ (v). This is trivial.

(v) ⇒ (i). Suppose d(x1, x2) < α and β ∈ (0, α). If β > d(x1, x2), then with
w = x2, we have d(x1, w) < β and d(w, x2) = 0 < α−β. Otherwise we may assume
that β ≤ d(x1, x2). Choose a positive ε with 0 < 2ε < min{β, α − d(x1, x2)}, and
let µ = β − ε/2 and let γ = d(x1, x2)− (β − ε); by (v), we have

x2 ∈ Sγ+µ[x1] = Sγ [Sµ[x1]]

and so there exists w ∈ Sµ[x1] with

d(x2, w) < γ + ε = d(x1, x2)− (β − ε) + ε < α− β.

Since d(w, x1) ≤ µ < β, the metric d is almost convex. �
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