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On variational approach to the Hamilton-Jacobi PDE

J. Chabrowski, Kewei Zhang

Abstract. In this paper we construct a minimizing sequence for the problem (1). In par-
ticular, we show that for any subsolution of the Hamilton-Jacobi equation (∗) there exists
a minimizing sequence weakly convergent to this subsolution. The variational problem (1)
arises from the theory of computer vision equations.
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Introduction.

The main purpose of this article is to construct a minimizing sequence for the
problem

(1) inf
u∈W 1,∞(Ω)

∫

Ω
|H(x, u,Du)| dx = 0,

where H : Ω × R × Rn → R2 is a continuous function and convex with respect
to P ∈ R2 and Ω is a bounded domain in R2. We show that for any sub-solution
u ∈ C1(Ω̄) of the Hamilton-Jacobi equation

(∗) H(x, u,Du) = 0 in Ω,

that is H(x, u,Du) ≤ 0 on Ω, there exists a sequence uj ∈ W 1,∞(Ω) such that

uj ⇀ u weak-∗ in W 1,∞(Ω), uj |∂Ω= u |∂Ω and

lim
j→∞

∫

Ω
|H(x, uj , Duj)| dx = 0.

In our earlier papers [CZ1] and [CZ2] we discussed a result of this nature for the
eikonal equation, which arises from computer vision and for a system of two equa-
tions from photometric stereo.
For the eikonal equation

u2x1 + u
2
x2 = E(x) in Ω,

with E ∈ C(Ω̄), E(x) ≥ 0 and E(x) 6≡ 0 on Ω, we showed that if u ∈ C1(Ω̄) and
|Du(x)|2 ≤ E(x) on Ω, then there exists a sequence {uj}, with uj |∂Ω= u |∂Ω and

such that uj ⇀ u weak-∗ in W 1,∞(Ω) and

lim
j→∞

∫

Ω

∣∣Duj(x)|
2 − E(x)

∣∣ dx = 0.
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with E ∈ C(Ω̄), E(x) ≥ 0 and E(x) 6≡ 0 on Ω, we showed that if u ∈ C1(Ω̄) and
|Du(x)|2 ≤ E(x) on Ω, then there exists a sequence {uj}, with uj |∂Ω= u |∂Ω and

such that uj ⇀ u weak-∗ in W 1,∞(Ω) and

lim
j→∞

∫

Ω

∣∣Duj(x)|
2 − E(x)

∣∣ dx = 0.

For the system of two equations arising from a photometric stereo

pi
1ux1 + p

i
2ux2 − pi

3

|pi|
√
u2x1 + u

2
x2 + 1

= Ei(x) in Ω,

i = 1, 2, where pi = (pi
1, p

i
2, p

i
3), i = 1, 2, are linearly independent vectors and

Ei ∈ C(Ω̄), i = 1, 2, we proved in [CZ2] that if u1 and u2 are two distinct solutions
of this system and u = λu1+(1−λ)u2, with 0 < λ < 1, then there exists a sequence
{uj} in W

1,∞(Ω) such that uj |∂Ω= u |∂Ω, uj ⇀ u weak-∗ in W 1,∞(Ω) and

lim
j→

∫

Ω

(∣∣f1(Duj)− E(x)
∣∣+

∣∣f2(Du)− E2(x)
∣∣) dx = 0.

Here we have used the notation

fi(P ) =
P1p

i
1 + P2p

i
2 − pi

3

|pi|
√
|P |2 + 1

,

and for this system we identify two solutions which differ by a constant.
Motivated by these results, we construct in this paper a minimizing sequence

for the functional (1) corresponding to the Hamilton-Jacobi equation (∗) (see The-
orem 2). As an immediate consequence we obtain the result from our earlier pa-
per [CZ1]. The construction of a minimizing sequence for (1) which is presented
in this paper is simpler than in the case of the eikonal equation [CZ1]. We point
out here that a function which is a limit of a minimizing sequence must be a sub-
solution of the equation (∗). This is the result of the convexity condition imposed
on H(x, u, P ). In our construction of a minimizing sequence, we essentially use the
assumption that the level sets Hx,u = {P ; H(x, u, P ) ≤ 0} are bounded uniformly
in (x, u). Therefore, we can call the problem (1) a variational problem of elliptic
type. In Section 3 we discuss the same problem for the equation

(∗∗) ux1ux2 = E(x) in Ω

and in Section 4 for the equation

(∗ ∗ ∗) u2x2 − ux1 = E(x) in Ω.

For the equation (∗∗) the corresponding function H(x, p, q) = pq − E(x) is not
convex. We show that every C1(Ω̄)-function is a candidate for a minimizer. In case
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of the equation (∗ ∗ ∗) the function H(x, p, q) = q2 − p − E(x) is convex and the
situation is similar to that from Section 2, however, the level sets {(p, q) : q2 − p−
E(x) ≤ 0} are unbounded. Therefore, the construction of a minimizing sequence
must be treated separately. Due to the nature of level sets of the function H(x, p, q)
for the equations (∗∗) and (∗ ∗ ∗) we call the variational problems associated with
these equations, respectively, hyperbolic and parabolic.
To obtain some information on the structure of minimizing sequences we use

Young measures. We point here that the use of Young measures is not an essen-
tial tool of this paper, however, they help to localize the oscillations of minimizing
sequences which is a main focus in our construction. All three constructions de-
scribed in this work follow the same pattern. For a given u ∈ C1(Ω̄) we look for
a minimizing sequence in the form un(x) = u(x) + φn(x), where φn ⇀ 0 weak-∗ in
W 1,∞(Ω). Using Young measures we localize sets where oscillations of un should
occur and then we construct φn in such a way that Du(x)+Dφn(x) belongs to that
set for sufficiently large number of values of x. We point out here that to construct
φn we have used some ideas from [KS].
We emphasize that a good application of Theorem 2 is the variational problem

for the eikonal equation. This equation and the equation (∗∗) are examples of image
irradiance equations arising from computer vision. It is known that both equations
may not have classical solutions. Therefore, our variational approach suggest that,
especially in case of the eikonal equation, any sub-solution is a good candidate for
a solution of the shape from shading problem (see [BCK1], [BCK2], [BU] and [DS]).

1. Preliminaries.

Let Ω be a bounded domain in R2 with a Lipschitz boundary ∂Ω. By W
1,p(Ω),

1 ≤ p <∞, we denote usual Sobolev spaces [AD]. Since ∂Ω is Lipschitz, the elements
of W 1,p(Ω) have traces on ∂Ω. For x ∈ R2 we write x = (x1, x2). By |A| we denote
the Lebesgue measure of a set A ⊂ Rn. Throughout this paper the gradient of
a C1-function f : Ω→ R is denoted by Df .
For a given Banach space X , the weak convergence is denoted by “⇀” and the

strong convergence by “→”.
To examine the structure of minimizing sequences, in particular the nature of

oscillations, we need the following result on Young measures (see [BA], [BL], [EV]
or [TA]).

Theorem 1. Let {zj} be bounded sequence in L
1(Ω,Rs). Then there exist a sub-

sequence {zν} of {zj} and a family {νx}, x ∈ Ω, of probability measures on Rs,

such that for any measurable subset A ⊂ R2

f(·, zν)⇀ 〈νx, f(x, ·)〉 in L
1(A)

for every Carathéodory function f : Ω × Rs → R such that f(·, zν) is sequentially
relatively compact in L1(A).

Here 〈νx, f(x, ·)〉 denotes the expected value of f(x, ·). We recall that a func-
tion f : Ω × Rs → R satisfies the Carathéodory condition if f(x, ·) : Rs → R is
continuous on Rs for a.e. x ∈ Ω and f(·, p) : Ω → R is measurable on Ω for every
p ∈ Rs.
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2. Minimizing sequences for the Hamilton-Jacobi functional.

Throughout this section we assume that the function H(x, u, P ) : Ω̄××R2 → R

is continuous, convex in P ∈ R2 and coercive, that is,

(2) H(x, u, P ) ≥ |P |q − C

for all (x, u, P ) ∈ Ω̄× R × R2 and for some constants 1 ≤ q <∞ and C > 0.
Further, we assume that

Hx,u = {P ∈ R2; H(x, u, P ) < 0} 6= ∅

for every (x, u) ∈ Ω× R and moreover, we assume that all sets Hx,u are contained
in a disc B(0, R).
We now define a functional I : W 1,∞(Ω)→ R by

I(u) =

∫

Ω
|H(x, u(x), Du(x))| dx.

We commence with the following observation on minimizing sequences for the func-
tional I.

Proposition 1. Suppose that there exists a sequence {uj} in W
1,∞(Ω) such that

uj = u1 on ∂Ω for all j ≥ 1 and that

lim
j→∞

I(uj) = 0.

Then up to a subsequence uj ⇀ u in W 1,q(Ω) and

H(x, u(x), Du(x)) ≤ 0 a.e. on Ω.

Proof: It follows from (2) that {uj} is bounded inW
1,q(Ω). Therefore, there exists

a subsequence, which we take as {uj} itself, such that uj ⇀ u in W 1,q(Ω) and by

the compactness of the imbedding W 1,2(Ω)→ Lq(Ω) uj → u a.e. on Ω. We denote
by CH(x, u, P ) a lower convex envelope of |H(x, u, P )| for each (x, u) ∈ Ω×R, that
is

CH(x, u, P ) =

{
H(x, u, P ) if H(x, u, P ) ≥ 0,

0 if H(x, u, P ) < 0.

Then a minimizing sequence for I is also minimizing sequence for a functional IC
given by (see [ET])

IC(u) =

∫

Ω
CH(x, u(x), Du(x)) dx

and we have

0 = lim
j→∞

∫

Ω
|H(x, uj , Duj)| dx = lim

j→∞

∫

Ω
CH(x, uj , Duj) dx

=

∫

Ω
CH(x, u(x), Du(x)) dx.
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According to Theorem 1 there exists a family of Young measures {νx}, x ∈ Ω, such
that

lim
j→∞

∫

Ω
|H(x, uj , Duj)| dx =

∫

Ω
〈νx(·), |H(x, u(x), ·)|〉 dx,

so

0 =

∫

Ω
〈νx(·), |H(x, u(x), ·)|〉 dx =

∫

Ω
CH(x, u(x), Du(x)) dx.

This implies that supp νx ⊂ ∂Hx,u(x) and since CH(x, u, P ) > 0 on R2 − H̄x,u(x),

we have H(x, u(x), Du(x)) ≤ 0 a.e. on Ω. �

Remark. It is clear from the proof of Proposition 1, that the assumption (2) is
only needed to obtain the boundedness in W 1,q(Ω) of a minimizing sequence. If we
drop this assumption, then we must assume that a minimizing sequence is bounded,
for example in W 1,∞(Ω), and that H(x, u, P ) is positive for some (x, u, P ). This
will be required in Theorem 2. Such a situation occurs in problems discussed in
Sections 3 and 4, where the corresponding functions H(x, u, P ) are not coercive.
We point out here that the assumption (2) is not needed in the construction of
a minimizing sequence for a given sub-solution (see Theorem 2 below).
The preceding result gives some information on the nature of minimizing se-

quences. Let φj = uj − u, then φj ⇀ 0 in W
1,q(Ω) and φj(x) → 0 a.e. on Ω. If

{ν̄x}, x ∈ Ω, is a family of Young measures corresponding to {Dφj}, then

0 = lim
j→∞

I(uj) =

∫

Ω
〈ν̄x, |H(x, u(x), Du(x) + λ)|〉 dx

and
supp ν̄x ⊂ {λ; |H(x, u(x), Du(x) + λ)| = 0}.

This means that Du(x) + λ ∈ ∂Hx,u(x). Hence, we shall construct a minimizing

sequence {φj} in such a way that Du(x) + Dφj(x) ∈ ∂Hx,u(x) for large number

of x.

We are now in a position to establish the main result of this section.

Theorem 2. Let u ∈ C1(Ω̄) and suppose that H(x, u(x), Du(x)) ≤ 0 on Ω. Then
there exists a sequence {un} in W

1,∞(Ω) such that un ⇀ u weak-∗ in W 1,∞(Ω),
un |∂Ω= u |∂Ω and limn→∞ I(un) = 0.

Proof: Let
M = max

(
max
Ω

|u(x)|,max
Ω

|Du(x)|
)

and
K = max {| H(x, p, P ) |;x ∈ Ω, |p| ≤M + 1, |P | ≤M + 2R} .

We look for a minimizing sequence {un} of the form un = u + φn, with φn ∈
◦

W 1,∞(Ω), φn ⇀ 0 weak-∗ in W 1,∞(Ω). We commence by approximating Ω by
a sequence of unions of squares

Hj =

Ij⋃

k=1

D
j
k
with Hj ⊂ Ω and lim

j→∞

|Ω−Hj | = 0.
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We assume that the edges of Dj
k
with the length d(Dj

k
) = 1

2j
are parallel to the

coordinate axes.
For each integer n ≥ 1 we can find an integer jn such that

|Ω−Hjn
| ≤

1

4Kn
,(4)

|u(x)− u(xjn

k
)| ≤

1

jn
and |Du(x)−Du(xjn

k
)| ≤

1

jn
(5)

for all x ∈ D
jn

k
, k = 1, . . . , jn, where x

jn

k
denotes the center of the square Djn

k
.

We may also assume, due to the uniform continuity of |H(x, p, P )| on Ω̄ × (|p| ≤
M + 1)× (|P | ≤M + 2R), that

(6)
∣∣|H(x, p, P )| − |H(x

jn

k
, p̄, P̄ )|

∣∣ ≤ 1

20n|Ω|

for all x ∈ D
jn

k
, k = 1, . . . , jn, |p− p̄| ≤ 1

jn
and |P − P̄ | ≤ 1

jn
, with |p|, |p̄| ≤M + 1

and |P |, |P̄ | ≤M + 2R.

We now proceed to the construction of the sequence φn locally on D
jn

k . We distin-
guish three cases:

(a) H(xjn

k
, u(xjn

k
), Du(xjn

k
)) < 0 and Du(xjn

k
) 6= 0,

(b) H(xjn

k
, u(xjn

k
), Du(xjn

k
)) < 0 and Du(xjn

k
) = 0,

(c) H(x
jn

k
, u(x

jn

k
), Du(x

jn

k
)) = 0.

Case (a).

Let ℓ
D(xjn

k
)
be a straight line passing throughDu(x

jn

k
) and orthogonal toDu(x

jn

k
).

Since Du(xjn

k
) ∈ Int H

x
jn
k

,u(xjn
k
)
and H

x
jn
k

,u(xjn
k
)
is convex and bounded, ℓ

Du(xjn
k
)

intersects ∂H
x

jn
k

,u(xjn
k
)
at two opposite points Pk,jn

and P ′

k,jn
. Let us set

|Pk,jn
−Du(x

jn

k )|

|Pk,jn
− P ′

k,jn
|
= λ,

then
|P ′

k,jn
−Du(xjn

k
)|

|Pk,jn
− P ′

k,jn
|
= 1− λ

and
|Pk,jn

−Du(x
jn

k
)|+ |P ′

k,jn
−Du(x

jn

k
)| = |Pk,jn

− P ′

k,jn
|.



On variational approach to the Hamilton-Jacobi PDE 619

Using these notations we can write Pk,jn
and P ′

k,jn
as

Pk,jn
= λ

(
ux2(x

jn

k
),−ux1(x

jn

k
)
)

|Du(x
jn

k
)|

|Pk,jn
− P ′

k,jn
|+Du(xjn

k
)

P ′

k,jn
= −(1− λ)

(
ux2(x

jn

k
),−ux1(x

jn

k
)
)

|Du(x
jn

k )|
|Pk,jn

− P ′

k,jn
|+Du(xjn

k
).

To simplify our notations we set

−→n =

(
ux2(x

jn

k
),−ux1(x

jn

k
)
)

|Du(xjn

k
)|

|Pk,jn
− P ′

k,jn
|

and define a function ψjn

k
by

ψ
jn

k
(x) =

{
λ−→n x for 0 ≤ −→n x ≤ 1− λ,

−(1− λ)(−→n x− 1) for 1− λ ≤ −→n x ≤ 1.

We see that ψjn

k
(x) = 0 on the lines −→n x = 0 and −→n x = 1. We extend ψjn

k

periodically into R2 and this extended function is denoted again by ψ
jn

k
. We now

set for every integer m ≥ 1

ψ
jn

k,m
(x) =

1

m
ψ

jn

k
(mx)

and denote by g
jn

k,m
the restriction of ψ

jn

k,m
to the square D

jn

k
, that is,

g
jn

k,m
(x) = ψjn

k,m
(x) |

D
jn
k

.

One verifies easily that

(7) |g
jn

k,m
(x)| ≤

1

m
and |Dg

jn

k,m
(x)| ≤ 2R

for all x ∈ D
jn

k
. We assume that m is sufficiently large to ensure that

(8)
1

2jn
− 2‖g

jn

k,mn
‖
L∞(Djn

k
)
> 0

for fixed n. Let Ejn

k,m
be a square contained in Djn

k
, with edges parallel to the

coordinate axes and of length

1

2jn
− 2‖gjn

h,m
‖
L∞(Djn

k
)
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and such that

dist
(
∂D

jn

k
, E

jn

k,m

)
= ‖g

jn

k,m
‖
L∞(Djn

k
)
.

In the next step we define a function hjn

k,m
on ∂Djn

k
∪ Ejn

k,m
by

h
jn

k,m
(x) =

{
0 for x ∈ ∂D

jn

k ,

g
jn

k,m
(x) for x ∈ E

jn

k,m
.

The function h
jn

k,m
is Lipschitz on its domain of definition and its Lipschitz constant

does not exceed max(1, 2R). Let φjn

k,m
be a Lipschitz extension of hjn

k,m
into D̄jn

k

and define φ
jn

k,m
to be 0 outside D

jn

k
. We now choose mn such that mn > n and

mn > 2
jn+1 and

(9) |Djn

k
− E

jn

k,mn
| ≤

1

20Kn|Ω|
.

According to (7) the choice mn > 2
jn+1 ensures that (8) holds.

Case (b).

In this case 0 = Du(xjn

k
) ∈ Int H

x
jn
k

,u(xjn
k
)
and we choose a line passing through 0.

This line intersects ∂H
x

jn
k

,u(xjn
k
)
at two opposite points Pk,jn

and P ′

k,jn
. Setting

λ =
|Pk,jn

|

|P ′

k,jn
− Pk,jn

|
and 1− λ =

|P ′

k,jn
|

|P ′

k,jn
− Pk,jn

|
,

we then have

Pk,jn
= λ|P ′

k,jn
− Pk,jn

|
Pk,jn

|Pk,jn
|
,

P ′

k,jn
= −(1− λ)|P ′

k,jn
− Pk,jn

|
Pk,jn

|Pk,jn
|
.

Let
−→n1 = |P ′

k,jn
− Pk,jn

|
Pk, jn

|Pk,jn
|

and set

ξk,jn
(x) =

{
λ−→n1x for 0 ≤ −→n1x ≤ 1− λ,

−(1− λ)(−→n1x− 1) for 1− λ ≤ −→n1x ≤ 1.

For this function we repeat the preceding construction leading to a function φ̄
jn

k,mn

vanishing on R2 −D
jn

k
and for which the pair

(
D

jn

k
, E

jn

k,mn

)
satisfies (9).
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Case (c).

We set

φ
jn

k
(x) = 0 on Djn

k

and extend it by 0 outside D
jn

k
.

We can now define a minimizing sequence {un} by un(x) = u(x) + φn(x), where

φn(x) =

Ijn∑

k=1

βn
k (x)

with

βn
k (x) =





φ
jn

k,mn
(x) if (a) holds,

φ̄
jn

k,mn
(x) if (b) holds,

0 if (c) holds.

To show that limn→∞ I(un) = 0 we decompose Hjn
into the union Hjn

= H1jn
∪

H2jn
∪ H3jn

, where H1jn
, H2jn

and H3jn
are the unions of squares Djn

k
with centers

x
jn

k
satisfying (a), (b) and (c), respectively. We then have using (9)

I(un) =

∫

Hjn

| H(x, un, Dun) | dx+

∫

Ω−Hjn

| H(x, un, Dun) | dx

≤
1

4n
+

3∑

i=1

∫

Hi
jn

| H(x, un, Dun) | dx =
1

4n
+ J1 + J2 + J3.

To estimate J1 we write

J1 =

∑

D
jn
k

∈H1jn

[∫

D
jn
k

−E
jn
k,mn

|H(x, un, Dun)| dx +

∫

E
jn
k,mn

|H(x, un, Dun)| dx

]

= J11 + J
2
1 .

According to (9) we have

(10) |J11 | ≤
1

20n
.
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Since Du(xjn

k
) +Dφn(x) ∈ ∂H

x
jn
k

,u(xjn
k
)
we have

J21 =
∑

D
jn
k

∈H1jn

∫

E
jn
k,mn

|H(x, un, Dun)| dx

=
∑

D
jn
k

∈H1jn

{∫

E
jn
k,mn

[
|H(x, u(x) + φn(x), Du(x) +Dφn(x))|

− |H(xjn

k
, u(x) + φn(x), Du(x) +Dφn(x))|

]
dx

+

∫

E
jn
k,mn

[
|H(x

jn

k
, u(x) + φn(x), Du(x) +Dφn(x))|

− |H(xjn

k
, u(xjn

k
) + φn(x), Du(x) +Dφn(x))|

]
dx

+

∫

E
jn
k,mn

[
|H(x

jn

k
, u(x

jn

k
) + φn(x), Du(x)φn(x))|

− |H(xjn

k
, u(xjn

k
) + φn(x), Du(x

jn

k
) +Dφn(x))|

]
dx

+

∫

E
jn
k,mn

[
|H(x

jn

k
, u(x

jn

k
) + φn(x), Du(x

jn

k
) +Dφn(x))|

− |H(x
jn

k , u(x
jn

k ), Du(x
jn

k ) +Dφn(x))|

]
dx

}
= H1 +H2 +H3 +H4.

By virtue of (5) and (6) we have

(11) | Hi |≤
| H1jn

|

20n|Ω|
≤
1

20n
, i = 1, 2, 3.

Since |φn(x)| ≤
1
jn
, we find by (5) and (6) that

(12) |H4| ≤
1

20n
.

Combining (10)–(12) we obtain J1 ≤
1
4n . In a similar way we deduce the estimates

Ji ≤
1
4n , i = 2, 3. Consequently, we have

I(un) ≤
1

n
.

It follows from our construction of φn that

‖φn‖L∞(Ω) ≤
1

n
and ‖Dφn‖L∞(Ω) ≤ 2R.

Therefore, we may assume that φ ⇀ 0 weak-∗ in
◦

W 1,∞(Ω) and this completes the
proof. �
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3. A variational approach to the hyperbolic problem.

In Section 2 the minimizing sequence has been constructed for a function u ∈
C1(Ω̄) subject to some constraint, namely, u must be a sub-solution of the equa-
tion (∗). This is the result of the convexity assumption. In this section we show
that for the equation (∗∗) (see Introduction) any function in C1(Ω̄) is limit of a min-
imizing sequence. In this case H(x, u, P ) = P1P2 and the condition (2) does not
hold. The equation (∗∗) is one of the image irradiance equations arising from the
computer vision (see [BR]).

With the equation (∗∗) we associate a functional J :W 1,∞(Ω)→ R given by

J(u) =

∫

Ω
|ux1ux2 − E(x)| dx.

To get some insight into the structure of minimizing sequences, let us consider
a sequence {uj} such that

lim
j→∞

J(uj) = 0.

If {νx}, x ∈ Ω, is a family of probability measures (Young measures) corresponding
to {Duj}, then up to a subsequence we have

0 = lim
j→∞

J(uj) =

∫

Ω
〈νx, |λ1λ2 − E(x)|〉 dx,

which means that supp νx ⊂ Kx, where Kx = {(p, q); pq = E(x)}. We now observe
that the lower convex envelope of |λ1λ2 − E(x)| is identically equal to 0. These
two observations suggest that it is possible to construct a minimizing sequence with
oscillations occurring on Kx and convergent to given function from C1(Ω̄) which is
not subject to any additional conditions.

Theorem 3. Let u ∈ C1(Ω̄). Then there exists a sequence {uj} in W
1,∞(Ω) such

that uj ⇀ u weak-∗ in W 1,∞(Ω), uj |∂Ω= u |∂Ω and limj→∞ J(uj) = 0.

Proof: We approximate Ω by a sequence of unions of squares

Hjn
=

Ijn⋃

k=1

D
jn

k

with the properties described in Theorem 2. The center of D
jn

k
is denoted again

by xjn

k
.

Let

M = max
(
‖ux1‖L∞(Ω), ‖ux2‖L∞(Ω), ‖E‖L∞(Ω)

)

and set

M1 =M
2 + 2M diam Ω+

(
diam Ω

)2
+M.
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For each integer n ≥ 1 we can find an integer jn such that

(14)

|ux1(x)ux2(x)− ux1(x
jn

k
)ux2(x

jn

k
)| ≤

1

39n[|Ω|(1 + 2 diam Ω)]
,

|uxi(x)− uxi(x
jn

k
)| ≤

1

39n[|Ω|(1 + 2 diam Ω)]
, i = 1, 2,

(15) | E(x)− E(xjn

k
) |≤

1

39n|Ω|

for each x ∈ D
jn

k
and

(16) | Ω−Hjn
|≤

1

13nM1
.

In order to construct a minimizing sequence we distinguish the following cases:

(i) E(xjn

k
) > 0,

(ii) E(x
jn

k
) < 0,

(iii) E(xjn

k
) = 0 and ux1(x

jn

k
)ux2(x

jn

k
) = 0,

and

(iv) E(xjn

k
) = 0 and ux1(x

jn

k
)ux2(x

jn

k
) 6= 0.

Case (i).
We decompose R2 in the following way:

R2 = {(p, q); pq > E(x
jn

k
), p < 0, q < 0} ∪ {(p, q); pq > E(x

jn

k
), p > 0, q > 0}

∪ {(p, q); pq < E(x
jn

k
)} ∪ {(p, q); pq = E(x

jn

k
)}

= A1
x

jn
k

∪A2
x

jn
k

∪A2
x

jn
k

∪K+
x

jn
k

.

To construct our minimizing sequence on Djn

k
we first consider the case xjn

k
∈ A1

x
jn
k

.

Let ℓ
Du(xjn

k
)
be a straight line passing through Du(xjn

k
) of the form

x1 + x2 = ux1(x
jn

k
) + ux2(x

jn

k
).

The line ℓ
Du(xjn

k
)
intersects the branch of the hyperbola K+

x
jn
k

lying in the third

quadrant at two points

x̄1 =
1

2

[
ux1(x

jn

k ) + ux2(x
jn

k ) +

√
D(x

jn

k )

]
,

x̄2 =
1

2

[
ux1(x

jn

k
) + ux2(x

jn

k
)−

√
D(xjn

k
)

]



On variational approach to the Hamilton-Jacobi PDE 625

and

x̃1 =
1

2

[
ux1(x

jn

k
) + ux2(x

jn

k
)−

√
D(x

jn

k
)

]
,

x̃2 =
1

2

[
ux1(x

jn

k
) + ux2(x

jn

k
) +

√
D(xjn

k
)

]
,

where
D(xjn

k
) =

(
ux1(x

jn

k
) + ux2(x

jn

k
)
)2

− 4E(xjn

k
).

We now define two vectors −→n 1 and
−→n 2 pointing into the opposite directions and

lying on ℓ
Du(xjn

k
)
by

−→n 1 =
(
x̄1, x̄2

)
−Du(x

jn

k
) and −→n 2 =

(
x̃1, x̃2

)
−Du(x

jn

k
).

The vectors −→n 1 and
−→n 2 can be written as

−→n 1 = α
−→e and −→n 2 = −β−→e ,

where −→e is a unit vector and α > 0 and β > 0 are constants. We now define

a function φ
jn

k by

φ
jn

k (x) =

{
α−→e x for 0 ≤ −→e x ≤ β,

β(α+ β −−→e x) for β ≤ −→e x ≤ α+ β.

The function φ
jn

k vanishes on the lines −→e x = 0 and −→e x = α + β. We extend

φ
jn

k
periodically into R2 and denote the extended function again by φ

jn

k
. For every

integer m ≥ 1 we set

φ
jn

k,m
(x) =

1

m
φ

jn

k
(mx)

and let
h

jn

k,m
(x) = φ

jn

k,m
(x) |

D
jn
k

.

It is obvious that

(17) ‖h
jn

k,m
‖
L∞(Djn

k
)
≤
β(α + β)

m
and ‖Dh

jn

k,m
‖
L∞(Djn

k
)
≤ max(α, β).

We now proceed as in the proof of Theorem 2. First, we assume thatm is sufficiently
large to ensure that

1

2jn
− 2‖hjn

k,m
‖
L∞(Djn

k
)
> 0

for fixed m. The integer m will be chosen later. Let E
jn

k,m
be a square contained in

D
jn

k
, with edges parallel to the coordinate axes and of length

1

2jn
− 2‖hjn

k,m
‖
L∞(Djn

k
)
> 0
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and such that dist
(
∂D

jn

k
, E

jn

k,m

)
= ‖hjn

k,m
‖
L∞(Djn

k
)
. Finally, we define a function

g
jn

k,m on ∂D
jn

k ∪ E
jn

k,m by

g
jn

k,m
(x) =

{
0 for x ∈ D

jn

k ,

h
jn

k,m
(x) for x ∈ E

jn

k,m
.

The function g
jn

k,m
is Lipschitz and its Lipschitz constant does not exceed max(1,

α, β). Let ϕjn

k,m
be a Lipschitz extension of gjn

k,m
into Djn

k
and we extend ϕjn

k,m
to

all of R2, by setting ϕ
jn

k,m(x) = 0 in R2 −D
jn

k . We now choose mn such that

mn >
n

α1
and mn ≥ 2jn+1α1,

where α1 = max(αβ, β(α + β)) and such that

(18) | Djn

k
− E

jn

k,mn
|≤

1

39n|Ω|M1
.

The function ϕjn

k,mn
corresponding to the pair (Djn

k
, E

jn

k,mn
) will be denoted by F 1k,n,

that is,

F 1k,n(x) = ϕ
jn

k,mn
(x).

A similar construction can be carried out if xjn

k
∈ A2

x
jn
k

and as a result we ob-

tain a function F 2k,n(x) vanishing outside D
jn

k
and with the corresponding pair

(Djn

k
, E

jn

k,mn
) satisfying (18).

If x
jn

k ∈ A3
x

jn
k

we take the straight line ℓ
Du(xjn

k
)
of the form

x2 − x1 = ux2(x
jn

k
)− ux1(x

jn

k
).

The line ℓ
Du(xjn

k
)
intersects both branches of the hyperbola K+

x
jn
k

at the points

x̄1 =
1

2

[
ux1(x

jn

k
)− ux2(x

jn

k
) +

√
D1(x

jn

k
)

]
,

x̄2 =
1

2

[
ux2(x

jn

k
)− ux1(x

jn

k
) +

√
D1(x

jn

k
)

]

and

x̃1 =
1

2

[
ux1(x

jn

k )− ux2(x
jn

k )−

√
D1(x

jn

k )

]
,

x̃2 =
1

2

[
ux2(x

jn

k
)− ux1(x

jn

k
)−

√
D1(x

jn

k
)

]
,
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where D1(x
jn

k
) = (ux2(x

jn

k
) − ux1(x

jn

k
))2 + 4E(xjn

k
). Repeating the construction

from the preceding step, we obtain a function F 3k,n(x) vanishing outside D
jn

k
and

with (D
jn

k
, E

jn

k,mn
) satisfying (18).

If xjn

k
∈ K+

x
jn
k

we set F 4k,n(x) ≡ 0 on Ω̄.

Case (ii).
The construction follows that of Case (i) with one difference: in the present case

we decompose R2 as

R2 = {pq < E(xjn

k
), p < 0, q > 0} ∪ {pq < E(xjn

k
), p > 0, q < 0}

∪ {pq > E(xjn

k
)} ∪ {pq = E(xjn

k
)} = B1

x
jn
k

∪B2
x

jn
k

∪B3
x

jn
k

∪K−

x
jn
k

.

If x
jn

k belongs to one of the sets B1
x

jn
k

, B2
x

jn
k

and B3
x

jn
k

, then as in Case (i) we

define functions G1k,n, G
2
k,n and G

3
k,n, respectively, vanishing outside D

jn

k and with

(D
jn

k , E
jn

k,mn
) satisfying (18).

If x
jn

k
∈ K−

x
jn
k

we set G4k,n(x) ≡ 0 on Ω̄.

Case (iii).
In this case we define Kk,n(x) ≡ 0 on Ω̄.

Case (iv).
We split this case into four subcases:

(a) ux1(x
jn

k
) > 0, ux2(x

jn

k
) > 0,

(b) ux1(x
jn

k ) < 0, ux2(x
jn

k ) > 0,

(c) ux1(x
jn

k
) < 0, ux2(x

jn

k
) < 0,

(d) ux1(x
jn

k
) > 0, ux2(x

jn

k
) < 0.

Since all these cases can be treated in a similar way, we only consider the case (a).
The straight line

x1 + x2 = ux1(x
jn

k ) + ux2(x
jn

k )

intersects the coordinate axes at the points

(
ux1(x

jn

k
) + ux2(x

jn

k
), 0

)
and

(
0, ux1(x

jn

k
) + ux2(x

jn

k
)
)
,

respectively. We now define two vectors −→n 1 and
−→n 2 lying on this line and pointing

into opposite directions

−→n 1 =
(
ux1(x

jn

k
) + ux2(x

jn

k
), 0

)
−Du(xjn

k
) =

(
ux2(x

jn

k
),−ux2(x

jn

k
)
)

and

−→n 2 =
(
0, ux1(x

jn

k
) + ux2(x

jn

k
)
)
−Du(x

jn

k
) =

(
−ux1(x

jn

k
), ux1(x

jn

k
)
)
.
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We write −→n 1 and
−→n 2 as

−→n 1 = α−→e and −→n 2 = −β−→e , where −→e is a unit vector
and α > 0, β > 0 are constants. Using the vectors −→n 1 and

−→n 2 we define a func-

tion φ
jn

k (x) as in Case (i). Following the construction from Case (i) we arrive at

a function K1k,n(x) vanishing outside D
jn

k
and with (Djn

k
, E

jn

k,mn
) satisfying (18).

In the remaining cases (b), (c) and (d) we repeat the above construction, always

with a straight line passing through Du(x
jn

k
) and intersecting coordinate axes. As

a result we obtain functions K2
x

jn
k

(x), K3k,n(x) and K
4
k,n(x) vanishing outside D

jn

k

and with (Djn

k
, E

jn

k,mn
) satisfying (18).

To define the minimizing sequence we decompose Hjn
as

Hjn
=

4⋃

s=1

H+s,jn
∪

4⋃

s=1

H−

s,jn
∪H◦

jn
∪

4⋃

s=1

H̃s,jn
,

where

H+s,jn
is a collection of rectangles D

jn

k
with centers belonging to As

x
jn
k

(s =

1, 2, 3),

H+4,jn
is a collection of rectangles Djn

k
with centers belonging to K+

x
jn
k

,

H−

s,jn
is a collection of rectangles D

jn

k
with centers belonging to K−

x
jn
k

,

H◦

jn
is a collection of rectangles D

jn

k with centers x
jn

k satisfying E(x
jn

k ) = 0

and ux1(x
jn

k
)ux2(x

jn

k
) = 0 (Case (iii)),

and

H̃s,jn
(s = 1, 2, 3, 4) is a collection of rectangles D

jn

k with centers x
jn

k satis-
fying (a), (b), (c) and (d), respectively (Case (iv)).

It follows from our construction that

(19) Du(xjn

k
) +DF s

k,n(x) ∈ K+
x

jn
k

for s = 1, 2, 3 and x
jn

k
∈ As

x
jn
k

,

(20) Du(x
jn

k
) +DGs

k,n(x) ∈ K−

x
jn
k

for s = 1, 2, 3 and x
jn

k
∈ Bs

x
jn
k

,

and for x
jn

k
∈ H̃s,jn

, s = 1, 2, 3, 4 we have

(21)

(
ux1(x

jn

k
) +

∂Ks
k,n(x)

∂x1

)(
ux2(x

jn

k
) +

∂Ks
k,n(x)

∂x2

)
= 0, s = 1, 2, 3, 4.

We are now in a convenient position to define the minimizing sequence

un(x) = u(x) + φn(x),
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where

φn(x) =

Ijn∑

k=1

βn
k (x)

and

βn
k (x) =






F s
k,n(x) if D

jn

k
∈ H+s,jn

, s = 1, 2, 3,

Gs
k,n(x) if D

jn

k ∈ H−

s,jn
, s = 1, 2, 3,

Ks
k,n(x) if D

jn

k ∈ H̃s,jn
, s = 1, 2, 3, 4,

0 if Djn

k
∈ H◦

jn
∪H+4,jn

∪H−

4,jn
.

To show that limn→∞ J(un) = 0 we write

J(un) =

∫

Ω−Hjn

∣∣
(
ux1(x) +

∂φn(x)

∂x1

)(
ux2(x) +

∂φn(x)

∂x2

)
− E(x)

∣∣ dx

+

∫

Hjn

∣∣
(
ux1(x) +

∂φn(x)

∂x1

)(
ux2(x) +

∂φn(x)

∂x2

)
− E(x)

∣∣ dx = I1 + I2.

It follows from (16) that

(22) |I1| ≤
1

13n
.

Setting

Un(x) =

(
ux1(x) +

∂φn(x)

∂x1

)(
ux2(x) +

∂φn(x)

∂x2

)

we write for I2

(23)

I2 =
3∑

s=1

∫

H+s,jn

|Un(x)− E(x)| dx +
3∑

s=1

∫

H−

jn

|Un(x) − E(x)| dx

+

4∑

s=1

∫ eHs,jn

|Un(x)− E(x)| dx +

∫

H◦

jn

|ux1(x)ux2(x)− E(x)| dx

+

∫

H+
4,jn

|ux1(x)ux2(x)− E(x)| dx +

∫

H−

4,jn

|ux1(x)ux2(x)− E(x)| dx

=
3∑

s=1

I+s +
3∑

s=1

I−s +
4∑

s=1

Ĩs + I
◦ + I+4 + I

−

4 .
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First we estimate
∑3

s=1 I
+
s as follows

3∑

s=1

I+s ≤

3∑

s=1

∑

D
jn
k

∈H+s,jn

[∫

D
jn
k

−E
jn
k,mn

|Un(x) − E(x)| dx +

∫

E
jn
k,mn

∣∣Un(x)

−

(
ux1(x

jn

k
) +

∂φn(x)

∂x1

)(
ux2(x

jn

k
) +

∂φn(x)

∂x2

)∣∣ dx

+

∫

E
jn
k,mn

∣∣
(
ux1(x

jn

k
) +

∂φn(x)

∂x1

)(
ux2(x

jn

k
) +

∂φn(x)

∂x2

)
− E(x

jn

k
)
∣∣ dx

+

∫

E
jn
k,mn

| E(x
jn

k )− E(x) | dx

]
= i1 + i2 + i3 + i4.

By (18) we have

i1 ≤
|Hjn

|M1

39n|Ω|M1
<
1

39n
.

It follows from (14) and (15) that

ik ≤
1

39n
, k = 2, 4.

We note that by (19) i3 = 0 and consequently

(24)

3∑

s=1

I+s ≤
1

13n
.

Similarly, using (14), (15), (18) and (20) we obtain

(25)

3∑

s=1

I−s ≤
1

13n
.

To estimate
∑4

s=1 Ĩs we split the integration over D
jn

k
∈ H̃s,jn

in the same way as

for
∑3

s=1 I
+
s and arrive, using (14), (15), (18) and (21) at the estimate

4∑

s=1

Ĩs ≤
1

13n
.

To estimate I◦ we observe that

(26) I◦ =

∫

H◦

jn

|ux1(x)ux2(x) − E(x)| dx

=
∑

D
jn
k

∈H◦

jn

[∫

D
jn
k

−E
jn
k,mn

|ux1(x)ux2(x)− E(x)| dx

+

∫

E
jn
k,mn

|ux1(x)ux2(x) − E(x)| dx

]
<
1

39n
+ j,
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now using the fact that E(xjn

k
) = 0 and ux1(x

jn

k
)ux2(x

jn

k
) = 0 we get by (14)

and (15)

(27)

j =
∑

D
jn
k

∈H◦

jn

[∫

E
jn
k,mn

|ux1(x)ux2(x) − ux1(x
jn

k
)ux2(x

jn

k
)| dx

+

∫

E
jn
k,mn

|E(x
jn

k
)− E(x)| dx

]
≤
2

39n
.

Analogously, since Du(x
jn

k ) ∈ K+
x

jn
k

∪ K−

x
jn
k

for D
jn

k ∈ H+4,jn
∪ H−

4,jn
we arrive at

the estimate

(28) I+4 ≤
1

13n
and I−4 ≤

1

13n
.

Combining (22)-(28) we get J(un) ≤
1
n . It is clear that the sequence {un} has also

the remaining properties asserted in our theorem. �

4. The parabolic variational problem.

In this section we briefly discuss, for completeness, the parabolic case, that is the
equation (∗ ∗ ∗). Setting for a fixed x ∈ Ω H(x, p, q) = q2 − p− E(x), we see that
the lower envelope CH(x, p, q) of | H(x, p, q) | in (p, q) is given by

CH(x, p, q) =

{
0 for q2 − p− E(x) < 0

q2 − p− E(x) for q2 − p− E(x) ≥ 0.

Let us define a functional F : W 1,∞(Ω)→ R by

F (u) =

∫

Ω
|u2x2 − ux1 − E(x)| dx.

We shall show that any candidate u for a minimizer of the problem

(29) inf
u∈W 2,∞(Ω)

F (u) = 0

must be a sub-solution of the equation (∗ ∗ ∗), that is,

(30) ux2(x)
2 − ux1(x)− E(x) ≤ 0 on Ω.

This is due to the fact that H(x, p, q) is convex. Indeed, suppose that {uj} is

a bounded and minimizing sequence in W 1,∞(Ω) for the problem (30). We may
assume that uj ⇀ u in W 1,∞(Ω) and we have

0 = lim
j→∞

F (uj) =

∫

Ω
CH(x, ux1 , ux2) dx.
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Since CH(x, ux1 , ux2) > 0 on {x; ux1(x)
2 − ux1(x) > 0} we get (30). The inequal-

ity (30) is obviously necessary condition for u to be a minimizer of the problem (29).
We now set uj(x) = u(x)+φj(x), where φj ⇀ 0 inW

1,∞(Ω). Denoting by {νx},
x ∈ Ω, a family of Young measures associated with {Dφj} we get

0 =

∫

Ω
〈νx(·), |

(
ux1(x) + λ2

)2
−

(
ux1(x) + λ1

)
− E(x)|〉 dx

and consequently

supp ⊂
{
(λ1λ2);

(
ux1(x) − λ2

)2
−

(
ux1(x) + λ1

)
− E(x) = 0

}
,

that is, Du(x)+λ belongs to the parabola {(p, q); q2−p−E(x) = 0}. Consequently,
we shall construct a minimizing sequence converging to u satisfying (30) in such
a way that

Du(x) +Dφj(x) ∈ {(p, q); q2 − p− E(x) = 0}

for sufficiently large number of values of x.

Theorem 4. Let u be a function in C1(Ω̄) satisfying (30). Then there exists
a sequence {uj} in W

1,∞(Ω) such that uj |∂Ω= u |∂Ω, uj ⇀ u weak-∗ in W 1,∞(Ω)
and limj→∞ F (uj) = 0.

Proof: We construct a minimizing sequence in the form un = u + φn, where

φn ⇀ 0 weak-∗ in W 1,∞(Ω) and φn ∈
◦

W 1,∞(Ω). The construction is similar to
that given in the proofs of Theorems 2 and 3 and is even simpler.

Let {Hjn
} be a sequence of unions of squares Djn

k
, with centers at xjn

k
, approximat-

ing Ω. We localize our construction to D
jn

k
. The integer jn is obviously determined

by the uniform continuity of ux1 , ux2 and E. We distinguish two cases:

(a) ux2(x
jn

k
)2 − ux1(x

jn

k
)− E(xjn

k
) < 0

and

(b) ux2(x
jn

k
)2 − ux1(x

jn

k
)− E(x

jn

k
) = 0.

Case (a).
First, we find a vector −→n = (n1, n2) such that

(
ux2(x

jn

k
)± n2

)2
−

(
ux1(x

jn

k
)± n1

)
= E(xjn

k
).

This equation is satisfied by a vector −→n with coordinates given by

n1 = 2ux2(x
jn

k
)

√
E(x

jn

k
)− ux2(x

jn

k
)2 + ux1(x

jn

k
),

and

n2 =

√
E(xjn

k
)− ux2(x

jn

k
)2 + ux1(x

jn

k
).
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We now define a function φjn

k
(x) by

φ
jn

k
(x) =

{ −→n x for 0 ≤ −→n x ≤ 1
2 ,

1−−→n x for 12 ≤ −→n x ≤ 1,

which vanishes on the lines −→n x = 0 and −→n x = 1. We now repeat the construction

from Theorems 2 and 3 leading to a function φ
jn

kmn
(x) vanishing on ∂D

jn

k
and with

dist (D
jn

k
, E

jn

k,mn
) sufficiently small.

Case (b).

We set φjn

k
(x) ≡ 0 on Ω. We omit further details since the rest of the proof is

now routine. �
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