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On the properties of the solution set of nonconvex

evolution inclusions of the subdifferential type
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Abstract. In this paper we consider nonconvex evolution inclusions driven by time depen-
dent convex subdifferentials. First we establish the existence of a continuous selection for
the solution multifunction and then we use that selection to show that the solution set is
path connected. Two examples are also presented.
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1. Introduction.

Recently Cellina-Ornelas [5] considered the multivalued Cauchy problem ẋ(t) ∈
F (t, x(t)) a.e., x(0) = ξ, with F (t, x) measurable in t, Hausdorff Lipschitz in x
and with a nonempty solution set S(ξ) ⊆ AC(T, Rn). Given w ∈ S(ξ0) and K
a compact subset containing ξ0, they proved that we can find a continuous map
u : K → AC(T, Rn) s.t. u(ξ) ∈ S(ξ) for all ξ ∈ K and u(ξ0) = w; i.e. a continuous

selector u(·) of the solution multifunction S : K → 2AC(T,Rn) \ {∅} passing through
the prescribed value w. The result of Cellina-Ornelas [5] was extended to differen-
tial inclusions in Banach spaces by Colombo-Fryszkowski-Rzezuchowski-Staicu [7].
However their formulation precludes the applicability of their work to partial dif-
ferential equations with multivalued terms (evolution inclusions), which arise often
in applications, like obstacle problems, free boundary problems and optimal con-
trol of distributed parameter systems. For further details on these applications we
refer to Ahmed [1], Chang [6] and Papageorgiou [18]. Very recently Staicu [25] and
Papageorgiou [22] considered evolution inclusions and established the existence of
a globally continuous selector of the solution multifunction ξ → S(ξ), which how-
ever does not pass from a prescribed value. This then limits the usefulness of their
result in the study of the topological structure of the solution set S(ξ).

In this paper, we consider a large class of nonlinear evolution inclusions driven
by time dependent subdifferential operators and prove for their solution multifunc-
tion S(ξ), a continuous selection theorem analogous to that of Cellina-Ornelas [5]
mentioned earlier. So our work here can be viewed as a complement to that of
Staicu [25] and Papageorgiou [22]. Having established the existence of a continuous
selector for the multifunction ξ → S(ξ), we then show that for every ξ ∈ dom ϕ(0, ·),
the solution set S(ξ) is path connected. This result extends the work of Staicu-
Wu [26], who considered differential inclusions in Banach spaces, with no unbounded
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operators present. It should be mentioned that very recently DeBlasi-Pianigiani [8]
showed that under certain continuity hypotheses on the orientor field (multivalued
vector field), the solution set of a class of nonconvex differential inclusions in R

n is
in fact contractible, hence a fortiori path connected. Their approach made use of
Choquet’s theory on the extremal structure of compact convex sets.

In the last section we present two examples illustrating the applicability of our
work.

2. Preliminaries.

Let (Ω, Σ) be measurable space and X a separable Banach space. We will be
using the following notation:

Pf(c)(X) = {A ⊆ X : nonempty, closed (and convex)}

and P(w)k(c)(X) = {A ⊆ X : nonempty, (weakly-) compact (and convex)}.

A multifunction (set-valued function) F : Ω → Pf (X) is said to be measurable
if and only if ω → d(x, F (ω)) = inf{‖x − z‖ : z ∈ F (ω)} is measurable. Let µ(·)
be a finite measure on (Ω, Σ). By S

p
F , 1 ≤ p ≤ ∞, we will denote the set of

measurable selectors of F (·) that belong in the Lebesgue-Bochner space Lp(Ω, X);
i.e. Sp

F = {f ∈ Lp(Ω, X) : f(ω) ∈ F (ω)µ-a.e.}. This set may be empty. An easy
application of Aumann’s selection theorem (see Wagner [28, Theorem 5.10]) shows
that for a measurable function F : Ω → Pf (X), Sp

F is nonempty if and only if

ω → inf{‖x‖ : x ∈ F (ω)} ∈  Lp
+ with Lp

+ being the positive cone of the Lebesgue
space Lp(Ω, R).

On Pf (X) we can define a generalized metric, known as the Hausdorff metric,
by setting for A, B ∈ Pf (X),

h(A, B) = max

[
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

]

where d(a, B) = inf{‖a − b‖ : b ∈ B} and d(b, A) = inf{‖b − a‖ : a ∈ A}. It is well
known that (Pf (X), h) is a complete metric space.

Let ϕ : X → R = R∪{+∞}. We will say that ϕ(·) is proper if it is not identically
+∞. Assume that ϕ(·) is proper, convex and l.s.c. (usually this family of R-valued
functions is denoted by Γ0(X)). By dom ϕ, we will denote the effective domain of
ϕ(·); i.e. dom ϕ = {x ∈ X : ϕ(x) < +∞}. The subdifferential of ϕ(·) at x is the
set ∂ϕ(x) = {x∗ ∈ X∗ : (x∗, y − x) ≤ ϕ(y) − ϕ(x) for all y ∈ dom ϕ}, where (·, ·)
denotes the duality brackets for the pair (X, X∗). If ϕ(·) is Gâteaux differentiable
at x, then ∂ϕ(x) = {ϕ′(x)}. We say that ϕ(·) is of compact type, if for every
λ ∈ R+, the level set {x ∈ X : ‖x‖2 + ϕ(x) ≤ λ} is compact.

Finally, recall that if Y is a Hausdorff topological space and {Uα}α∈I is a family
of open sets covering Y , a “subcover” is any subfamily {Uβ}β∈J , J ⊆ I, also
covering Y . If J is finite, then we say that the subcover is finite.
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3. Selection theorem.

Let T = [0, b] and H a separable Hilbert space. Using the Riesz-Fréchet theorem,
we identify H with its dual (pivot space). The multivalued Cauchy problem under
consideration is the following:

(1)

{
−ẋ(t) ∈ ∂ϕ(t, x(t)) + F (t, x(t)) a.e.

x(0) = ξ.

}

We will need the following hypotheses on the data of (1).

H(ϕ) : ϕ : T × H → R = R ∪ {+∞} is a function s.t.

(1) for every t ∈ T , ϕ(t, ·) is proper, convex, l.s.c. (i.e. ϕ(t, ·) ∈ Γ0(H)) and of
compact type,

(2) there exists 0 ≤ α ≤ 1 such that for any positive integer r, there exist
a constant Kr > 0, an absolutely continuous function gr : T → R with

ġr ∈ L2(T ) if α ∈ [0, 12 ] and ġr ∈ L
1

1−α (T ) if α ∈ [12 , 1], and a function
hr : T → R of bounded variation such that if t ∈ T , x ∈ dom ϕ(t, ·) with
‖x‖ ≤ r and s ∈ [t, b], there exists x̂ ∈ dom ϕ(s, ·) satisfying

‖x̂ − x‖ ≤ |gr(s) − gr(t)| (ϕ(t, x) + Kr)α

and ϕ(s, x̂) ≤ ϕ(t, x) + |hr(s) − hr(t)| (ϕ(t, x) + Kr).

Remark. This hypothesis, which clearly puts very mild restrictions on the t-
dependence of ϕ(t, x) is due to Yotsutani [31] and is more general than the ones used
in the earlier important works of Watanabe [29], Kenmochi [15] and Yamada [30].

H(F ) : F : T × H → Pf (H) is a multifunction s.t.

(1) t → F (t, x) is measurable,
(2) h(F (t, x), F (t, y)) ≤ k(t)‖x − y‖ a.e. with k(·) ∈ L1+,

(3) |F (t, x)| = sup{‖v‖ : v ∈ F (t, x)} ≤ α(t) + β(t)‖x‖ a.e. with α, β ∈ L2+.

By a strong solution of (1), we mean a function x ∈ C(T, H) such that x(·)
is strongly absolutely continuous on (0, b), x(t) ∈ dom ϕ(t, ·) a.e. and satisfies
−ẋ(t) ∈ ∂ϕ(t, x(t)) + f(t) a.e., x(0) = ξ with f ∈ S2

F (·,x(·)). Recall that since

H is a Hilbert space, a strongly absolutely continuous function from (0, b) into H is
almost everywhere differentiable (see for example Diestel-Uhl [10, p. 217]). We will
denote the set of strong solutions of (1) by S(ξ) ⊆ C(T, H). Under the hypotheses

H(ϕ) and H(F ) above, for every ξ ∈ dom ϕ(0, ·), S(ξ) is a nonempty subset of
C(T, H) (see Papageorgiou [17, Theorem 3.1] or for an even more general result
concerning extremal solutions, see Papageorgiou [20]).

In the proof of our selection theorem, we will need the following simple lemma
(see also the proposition in Cellina-Ornelas [5]).

Lemma 3.1. If {vk}
N
k=0 ⊆ L1(T, H) and {Tk(ξ)}N

k=0 is a partition of T into a fi-
nite number of subintervals whose endpoints depend continuously on ξ ∈ H and
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K ⊆ H compact, then there exists η(·) ∈ L1+ such that for every ε > 0, there

exists a δ > 0 and a set C ⊆ T with λ(C) < ε s.t. ‖ξ′ − ξ‖ < δ, ξ′, ξ ∈ K im-

plies ‖
∑N

k=0 χTk(ξ′)
(t)vk(t) −

∑N
k=0 χTk(ξ)

(t)vk(t)‖ ≤ χC(t)η(t), (here λ(·) is the

Lebesgue measure on T ).

Proof: We have (with χTk(ξ)(·) being the indicator function of the subinterval

Tk(ξ) in the partition):

∥∥∥
N∑

k=0

χTk(ξ′)(t)vk(t) −
N∑

k=0

χTk(ξ)(t)vk(t)
∥∥∥ ≤

N∑

k=0

|χTk(ξ′)(t) − χTk(ξ)(t)| · ‖vk(t)‖

=
N∑

k=0

χTk(ξ′)∆Tk(ξ)
(t) · ‖vk(t)‖.

Let η(t) =
∑N

k=0 ‖vk(t)‖ ∈ L1+. Since by hypothesis the endpoints of the subin-
tervals in the partition depend continuously on ξ ∈ K and K is compact, given
ε > 0, we can find δ > 0 such that for ‖ξ′−ξ‖ < δ we have χTk(ξ′)∆Tk(ξ)(t) ≤ χC(t)

for all k ∈ {0, 1, 2, . . . , N}, with λ(C) < ε. Hence for ‖ξ′ − ξ‖ < δ, we have:

∥∥∥
N∑

k=0

χTk(ξ′)(t)vk(t) −
N∑

k=0

χTk(ξ)(t)vk(t)
∥∥∥ ≤ χC(t)

N∑

k=0

‖vk(t)‖ = χC(t)η(t).

�

Now we can state and prove our selection theorem.

Theorem 3.1. If hypotheses H(ϕ), H(F ) hold, K ⊆ dom ϕ(0, ·) is a nonempty
compact set, ξ0 ∈ K and w ∈ S(ξ0), then there exists a continuous map u : K →
C(T, H) such that u(ξ0) = w and for all ξ ∈ K, u(ξ) ∈ S(ξ).

Proof: Let ξ ∈ K and let pξ : L2(T, H) → C(T, H) be the map that to each g ∈

L2(H) assigns the unique solution of the Cauchy problem −ẏ(t) ∈ ∂ϕ(t, y(t)) + g(t)
a.e., y(0) = ξ (see Yotsutani [31]). Since w ∈ S(ξ0), by definition there exists
f ∈ S2

F (·,w(·)) s.t. w = pξ0(f). Set z0(ξ) = pξ(f). A straightforward application of

Aumann’s selection theorem gives us r0(ξ) ∈ L2(T, H) such that

r0(ξ)(t) ∈ F (t, z0(ξ)(t)) a.e.

and ‖f(t) − r0(ξ)(t)‖ = d(f(t), F (t, z0(ξ)(t)))

≤ k(t)‖w(t) − z0(ξ)(t)‖

≤ k(t)‖pξ0(f)(t) − pξ(f)(t)‖ ≤ k(t)‖ξ0 − ξ‖ a.e.

Fix θ > 0 and define

δ(ξ) =

{
min

(
2−3θ,

‖ξ−ξ0‖
2

)
if ξ 6= ξ0

2−3θ if ξ = ξ0.
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Let
◦
B(ξ, δ(ξ)) = {h ∈ H : ‖ξ − h‖ < δ(ξ)}. Clearly {

◦
B(ξ, δ(ξ))}ξ∈K is an open

cover of K and from the definition of δ(ξ), we have that ξ0 belongs in
◦
B(ξ0, δ(ξ0))

only. Since by hypothesis K is compact, we can find {ξk}
N
k=0 s.t. {

◦
B(ξk, δ(ξk))}N

k=0

is a finite subcover of K. Let {γk}
N
k=0 be a locally Lipschitz partition of unity

subordinate to this subcover. Set

T0(ξ) = [0, γ0(ξ)b]

and Tk(ξ) = [(
∑k−1

i=0 γi(ξ))b, (
∑k

i=0 γi(ξ))b] for k ∈ {1, 2, . . . , N}.
Consider the following evolution equation:






−ẏ(t) ∈ ∂ϕ(t, y(t)) +

N∑

k=0

χTk(ξ)(t)r0(ξk)(t) a.e.

y(0) = ξ ∈ K.






From Yotsutani [31], we know that this problem has a unique solution z1(ξ)(·) ∈

C(T, H). Let µ0(ξ)(t) =
∑N

k=0 χTk(ξ)(t)r0(ξk)(t). Then since z1(ξ) = pξ(µ0(ξ))

and z1(ξ
′) = pξ′(µ0(ξ

′)) and by exploiting the monotonicity of the subdifferential
operator, we have:

(−ż1(ξ)(t) + ż1(ξ
′)(t), z1(ξ

′)(t) − z1(ξ)(t))

≤ (µ0(ξ)(t) − µ0(ξ
′)(t), z1(ξ

′)(t) − z1(ξ)(t)) a.e.

⇒
1

2

d

dt
‖z1(ξ

′)(t) − z1(ξ)(t)‖2 ≤ (µ0(ξ)(t) − µ0(ξ
′)(t), z1(ξ

′)(t) − z1(ξ)(t)) a.e.

⇒
1

2
‖z1(ξ

′)(t) − z1(ξ)(t)‖2 ≤
1

2
‖ξ′ − ξ‖2

+

∫ t

0
‖µ0(ξ)(s) − µ0(ξ

′)(s)‖ · ‖z1(ξ
′)(s) − z1(ξ)(s)‖ ds.

Invoking Lemma A. 5, p. 157 of Brezis [4], we get

‖z1(ξ
′)(t) − z1(ξ)(t)‖ ≤ ‖ξ′ − ξ‖ +

∫ t

0
‖µ0(ξ)(s) − µ0(ξ

′)(s)‖ ds.

Let η(t) =
∑N

k=0 ‖r0(ξk)(t)‖, as in the lemma. Given ε > 0, we can find δ1 > 0
such that

∫
C η(t) dt < ε

2 for all C ⊆ T measurable with λ(C) < δ1. Also from the
lemma we know that corresponding to this δ1 > 0 we can find 0 < δ < ε

2 such

that ‖ξ′ − ξ‖ < δ implies that ‖µ0(ξ)(t) − µ0(ξ
′)(t)‖ ≤ χ bC(t)η(t) for some Ĉ ⊆ T

measurable, with λ(Ĉ) < δ1. Hence finally, if ‖ξ′ − ξ‖ < δ, ξ′, ξ ∈ K, we have

‖z1(ξ
′)(t) − z1(ξ)(t)‖ ≤

ε

2
+

∫ bC η(s) ds <
ε

2
+

ε

2
= ε for all t ∈ T

⇒ ξ → z1(ξ) is continuous from K into C(T, H).
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Also note that

d(µ0(ξ)(t), F (t, z1(ξ)(t)))

≤ d(µ0(ξ)(t), F (t, z0(ξ)(t))) + h(F (t, z0(ξ)(t)), F (t, z1(ξ)(t))).

Observe that if B is the Lebesgue-null set postulated by hypothesis H(F ) (2)
(i.e. on Bc, the h-Lipschitz condition is valid), then for t ∈ Tk(ξ) \ B we have

d(µ0(ξ)(t), F (t, z0(ξ)(t)))

= d(r0(ξk)(t), F (t, z0(ξ)(t))) ≤ h(F (t, z0(ξk)(t))F (t, z0(ξ)(t)))

≤ k(t)‖ξk − ξ‖ ≤ k(t)
θ

23

and this estimate is independent of k, hence valid for all t ∈ T \ B.
In addition we have

h(F (t, z0(ξ)(t)), F (t, z1(ξ)(t)))

≤ k(t)‖z0(ξ)(t) − z1(ξ)(t)‖ ≤ k(t)

∫ t

0
‖f(s) − µ0(ξ)(s)‖ ds

(the second inequality following as before from the monotonicity of the subdiffer-
ential)

≤ k(t)

∫ t

0

N∑

k=0

χTk
(s)‖f(s) − r0(ξk)(s)‖ ds

≤ k(t)

∫ t

0

N∑

k=0

χTk(ξ)(s)k(s)‖ξ0 − ξk‖ ds ≤ σk(t)v(t)

with σ = diam K (the diameter of K; i.e. σ = sup{‖ξ − ξ′‖ : ξ, ξ′ ∈ K}) and

v(t) =
∫ t
0 k(s) ds.

So finally we have

d(µ0(ξ)(t), F (t, z1(ξ)(t))) ≤ σk(t)v(t) +
θ

23
k(t) a.e.

Now we will show by induction that we can have two sequences {zn(ξ)(·)}n≥0 ⊆

C(T, H) and {µn(ξ)(·)}n≥0 ⊆ L2(T, H) satisfying the following four properties:

(i) zn(ξ)(·) = pξ(µn−1(ξ))(·) for n ≥ 1, ξ ∈ K,

(ii) d(µn−1(ξ)(t), F (t, zn(ξ)(t))) ≤ σk(t)
vn(t)

n! + θ
2n+1

k(t)
∑n

k=0
(2v(t))k

k! for
ξ ∈ K,

(iii) ‖zn(ξ)(t) − zn−1(ξ)(t)‖ ≤ σ
vn(t)

n! + θ
2n+1

∑n
k=1

(2v(t))k

k! + θ
2n+2

,

(iv) there exists ηn ∈ L1(T ) such that for every ε > 0, there exists δ > 0
and C ⊆ T with λ(C) < ε such that ‖ξ′ − ξ‖ < δ, ξ′, ξ ∈ K, implies
‖µn−1(ξ

′)(t) − µn−1(ξ)(t)‖ ≤ χC(t)ηn(t).
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From what we did in the first part of the proof, the above four properties are
satisfied for n = 1 (i.e. for z0(ξ)(·), z1(ξ)(·), µ0(ξ)(·)). Assume (for the induction

hypothesis) that we have obtained {zm(ξ)(·)}n
m=0 and {µm(ξ)(·)}n−1

m=0 satisfying
(i) → (iv) above. Via Aumann’s selection theorem, we can find rn(ξ) : T → H
measurable s.t. rn(ξ)(t) ∈ F (t, zn(ξ)(t)) and

‖rn(ξ)(t) − µn−1(ξ)(t)‖ = d(µn−1(ξ)(t), F (t, zn(ξ)(t)))

≤ σk(t)
vn(t)

n!
+

θ

2n+1
k(t)

n∑

k=0

(2v(t))k

k!
(by (ii) and the induction hypothesis).

Because of (iv) and the induction hypothesis, we know that there exists δn > 0
s.t. ‖ξ′ − ξ‖ < δn, ξ′, ξ ∈ K, implies that ‖µn−1(ξ

′)(t) − µn−1(ξ)(t)‖ ≤ χC(t)ηn(t)

for some C ⊆ T measurable such that
∫
C ηn(t) dt ≤ θ

2n+4
.

Let δn(ξ) = min(δn, θ
2n+4

,
‖ξ−ξ0‖
2 ) if ξ 6= ξ0 and δn(ξ0) = min(δn, θ

2n+4
). As

before, note that {
◦
B(ξ, δn(ξ))}ξ∈K is an open cover for K and K is by hypoth-

esis, compact. So we can find ξn
k ∈ K, k = 0, 1, . . . , Nn, ξn

0 = ξ0 such that

{
◦
B(ξn

k , δn(ξn
k ))}Nn

k=0 is a finite subcover of K. Let {γn
k (·)}Nm

k=0 be a continuous
partition of unity subordinate to this subcover. Define T n

0 (ξ) = [0, γn
0 (ξ)b] and

Y n
k (ξ) = [(

∑k−1
i=0 γn

i (ξ))b (
∑k

i=0 γn
i (ξ))b] for k = 1, 2, . . . , Nn. Let µn(ξ)(t) =

∑Nn

k=0 χT n

k
(ξ)(t)rn(ξn

k )(t) ∈ L2(T, H) (see the hypothesis H(F ) (2)). From Lem-

ma 3.1 we know that ξ → µn(ξ)(·) is continuous from K into L1(T, H). Set
zn+1(ξ)(·) = pξ(µn(ξ))(·) ∈ C(T, H). Again because of the monotonicity of the

subdifferential, for ξ′, ξ ∈ K we have

‖zn+1(ξ
′)(t) − zn+1(ξ)(t)‖ ≤ ‖ξ′ − ξ‖ +

∫ t

0
‖µn(ξ′)(s) − µn(ξ)(s)‖ ds,

which shows that ξ → zn+1(ξ)(·) is continuous from K into C(T, H).
Once more exploiting the monotonicity of the subdifferential, we get

‖zn+1(ξ)(t) − zn(ξ)(t)‖ ≤

∫ t

0
‖µn(ξ)(s) − µn−1(ξ)(s)‖ ds

=

∫ t

0

Nn∑

k=0

χT n

k
(ξ)(s)‖rn(ξn

k )(s) − µn−1(ξ
n
k )(s)‖ ds

+

∫ t

0

Nn∑

k=0

χT n

k
(ξ)(s)‖µn−1(ξ

n
k )(s) − µn−1(ξ)(s)‖ ds

≤

∫ t

0

Nn∑

k=0

χT n

k
(ξ)(s)d(µn−1(ξ

n
k )(s), F (s, zn(ξn

k )(s))) ds

+

∫ t

0

Nn∑

k=0

χT n

k
(ξ)(s)χC (s)ηn(s) ds
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≤

∫ t

0

(
σk(s)

vn(s)

n!
+

θ

2n+1 k(s)

n∑

k=0

(2v(s))k

k!

)
ds +

θ

2n+4

= σ
vn+1(t)

(n + 1)!
+

θ

2n+2

n+1∑

k=1

(2v(t))k

k!
+

θ

2n+4 .

Also note that for t ∈ T n
k (ξ) \ B, we have

d(µn(ξ)(t), F (t, zn(ξ)(t))) = d(rn(ξn
k )(t), F (t, zn(ξ)(t)))

≤ h(F (t, zn(ξn
k )(t)), F (t, zn(ξ)(t))) ≤ k(t)‖zn(ξn

k )(t) − zn(ξ)(t)‖

≤ k(t)‖ξn
k − ξ‖ +

∫ t

0
‖µn−1(ξ

n
k )(s) − µn−1(ξ)(s)‖ ds

≤ k(t)
( θ

2n+4
+

θ

2n+4

)
=

k(t)θ

2n+3

and this estimate is independent of k ∈ {0, 1, . . . , Nn}, thus valid for all t ∈ T \ B.
Hence we get

d(µn(ξ)(t), F (t, zn+1(ξ)(t)))

≤ d(µn(ξ)(t), F (t, zn(ξ)(t))) + h(F (t, zn(ξ)(t)), F (t, zn+1(ξ)(t)))

≤
k(t)θ

2n+3
+ k(t)‖zn(ξ)(t) − zn+1(ξ)(t)‖

≤
k(t)θ

2n+3
+ k(t)σ

vn+1(t)

(n + 1)!
+

k(t)θ

2n+2

n+1∑

k=1

(2v(t))k

k!
+

k(t)θ

2n+4

≤ k(t)σ
vn+1(t)

(n + 1)!
+

k(t)θ

2n+2

n+1∑

k=0

(2v(t))k

k!
.

So our induction is complete and we established the two sequences {zn(ξ)(·)}n≥0

and {µn(ξ)(·)}n≥0 satisfying (i) → (iv). Note that from these estimates we have

that these sequences are Cauchy in C(T, H) and L1(T, H) respectively, uniformly
on ξ ∈ K. Thus we may assume that zn(ξ) → u(ξ) in C(T, H) and µn(ξ) → µ(ξ)
in L1(T, H) and both limits are continuous in ξ ∈ K. Also note that because of
hypothesis H(F ) (2), µ(ξ)(·) ∈ L2(T, H). Furthermore, since T0(ξ0) = [0, b], we
have zn(ξ0) = 2 and so u(ξ0) = w. Set w(ξ) = pξ(µ(ξ)). Then as before due to the
monotonicity of the subdifferential, we have

‖zn(ξ)(t) −w(ξ)(t)‖ ≤

∫ t

0
‖µn(ξ)(s) − µ(ξ)(s)‖ ds → 0 as n → ∞ ⇒ u(ξ) = w(ξ).
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Finally we need to show that µ(ξ)(t) ∈ F (t, u(ξ)(t)) a.e. Indeed recall that

d(µn(ξ)(t), F (t, zn(ξ)(t))) ≤
k(t)θ

2n+3
a.e.

⇒ d(µn(ξ), S1F (·,zn(ξ)(·))
) ≤

‖k‖1θ

2n+3

⇒ d(µ(ξ), S1F (·,u(ξ)(·))) = 0, ξ ∈ K

⇒ µ(ξ) ∈ S1F (·,u(ξ)(·)), ξ ∈ K

⇒ µ(ξ)(t) ∈ F (t, u(ξ)(t)) a.e.

and the exceptional Lebesgue-null set is independent of ξ ∈ K since both ξ → u(ξ)
and ξ → µ(ξ) are continuous. So u(ξ)(·) is the desired continuous selector of S(ξ).

�

4. Path connectedness of the solution set.

In this section we use Theorem 3.1 to establish the path connectedness of the
solution set S(ξ) for every ξ ∈ H . In the past the problem of connectedness of the
solution set of differential inclusions in R

n and in Banach spaces was studied by
several authors. We refer to the works of Himmelberg-Van Vleck [13], Tolstono-
gov [27], Papageorgiou [19], Deimling-Rao [9] and Hu-Papageorgiou [14]. However,
all these works considered convex valued orientor fields, and when done in an infi-
nite dimensional context, they do not allow the presence of unbounded operators.
Very recently Papageorgiou [21] extended the above mentioned works to a class of
convex evolution inclusions, for which he proved, using Galerkin approximations,
that the solution set is connected in C(T, H).

The question of connectedness of the solution set of nonconvex differential inclu-
sions was addressed very recently by DeBlasi-Pianigiani [8] for differential inclusions
in R

n and by Staicu-Wu [26] for differential inclusions in a separable Banach space.
As we already mentioned in the introduction DeBlasi-Pianigiani [8] succeeded in
proving more, namely that the solution set is contractible.

Here we establish the path connectedness of the solution set S(ξ) of (1) for the

autonomous version of (1).
So our multivalued Cauchy problem is now the following

(1)′

{
−ẋ(t) ∈ ∂ϕ(x(t)) + F (x(t)) a.e.

x(0) = ξ.

}

The hypotheses on the date are now simplified as follows:

H(ϕ)1 ϕ : H → R = R ∪ {+∞} is a proper, convex, l.s.c. function

(i.e. ϕ ∈ Γ(H)) which is of compact type.

H(F )1 : FH → Pf (H) is a multifunction s.t.

(1) h(F (x), F (y)) ≤ ‖x − y‖ with k > 0.
(2) |F (x)| = sup{‖v‖ : v ∈ F (x)} ≤ m1 + m2‖x‖ with m1, m2 > 0.
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Theorem 4.1. If hypotheses H(ϕ)1, H(F )1 hold, then for every ξ ∈ dom ϕ, S(ξ)
is path connected in C(T, H).

Proof: Let x, y ∈ S(ξ) and set K = y(T ) ⊆ dom ϕ, a compact subset of H . From
Theorem 3.1 we know that there exists u : K → C(T, H) a continuous map s.t.
u(ξ) = x and u(ξ′) ∈ S(ξ′) for all ξ′ ∈ K. Note that λ → u(y(λb)) is continuous
from [0, 1] into C(T, H) and u(y(λb)) ∈ S(y(λb)). As in Himmelberg-Van Vleck [13],
we define

ηλ(t) =

{
y(t) if t ∈ [0, λb]

u(y(λb))(t − λb) if t ∈ [λb, b].

Observe that for λ = 0, η0 = u(y(0)) = u(ξ) = x, and for λ = 1, η1 = y.
So to finish the proof that S(ξ) is path connected, we need to show that λ → ηλ

is continuous from [0, 1] into C(T, H). To this end let λn → λ in [0, 1]. We consider
two distinct cases:

Case 1. λn ≤ λ for all n ≥ n0 ≥ 1.

(i) t < λb ⇒ t < λnb for all n ≥ n1 ≥ n0. Hence by definition we have

ηλn
(t) = ηλ(t) = y(t) for all n ≥ n1 ≥ n0

⇒ sup
t<λb

‖ηλn
(t) − ηλ(t)‖ = 0.

(ii) t ≥ λb ⇒ t ≥ λn for all n ≥ n0. So by definition we have

‖ηλn
(t) − ηλ(t)‖ = ‖u(y(λnb))(t − λnb) − u(y(λb))(t − λb)‖ .

Note that

‖u(y(λnb))(t − λnb) − u(y(λb))(t − λb)‖

≤ ‖u(y(λnb))(t − λnb) − u(y(λb))(t − λnb)‖

+ ‖u(y(λb))(t − λnb) − u(y(λb))(t − λb)‖

≤ ‖u(y(λnb)) − u(y(λb))‖C(T,H) + ‖u(y(λb))(t − λnb) − u(y(λb))(t − λb)‖.

Recall that u(y(λnb)) → u(y(λb)) in C(T, H) and that u(y(λb))(·) is uniformly
continuous on T . So we get

sup
t≥λb

‖ηλn
(t) − ηλ(t)‖ → 0 as n → ∞.

Therefore from 1 (i) and (ii) above we get that

ηλn
→ ηλ in C(T, H).
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Case 2. λn ≥ λ for all n ≥ n0 ≥ 1.

(i) t > λb ⇒ t > λnb for all n ≥ n1 ≥ n0. So by definition we have

‖ηλn
(t) − ηλ(t)‖ = ‖u(y(λnb))(t − λnb) − u(y(λb))(t − λb)‖.

As in Case 1 (ii) above we get that

sup
t>λb

‖ηλn
(t) − ηλ(t)‖ → 0 as n → ∞.

(ii) t ≤ λb ⇒ t ≤ λnb for n ≥ n0. So by definition we have

sup
t≥λb

‖ηλn
(t) − ηλ(t)‖ = 0.

Thus from 2 (i) and (ii) we deduce that

ηλn
→ ηλ in C(T, H).

Finally for any sequence λn → λ in [0, 1] oscillating around limit λ, there exist
subsequences satisfying Case 1 or Case 2. Thus every subsequence of {ηλn

}n≥1 has
a further subsequence converging to ηλ in C(T, H). Hence ηλn

→ ηλ in C(T, H) ⇒
λ → ηλ is continuous from [0, 1] into C(T, H) ⇒ S(ξ) is path connected in C(T, H).

�

Remark. This theorem fails under the weaker hypothesis that F (·) is only Haus-
dorff continuous (i.e. continuous from H into the metric space (Pf (H), h)). In
fact Pugh [24] produced an example of a single valued differential equation whose
solution set is not path connected.

5. Applications.

Let T = [0, b] and Z ⊆ R
N a bounded domain, with boundary Γ = ∂Z. Let

Di = ∂
∂zi

, i = 1, 2, . . . , N . Also in what follows for the simplicity, we will write

L2(Z) for L2(Z, R). Consider the following parabolic control system:

(2)






∂x

∂t
−

N∑

k=1

Dk

(
a(z)|Dkx|p−2Dkx

)
+ x|x|p−2

= f(z, x(t, z))u(t, z) a.e. on T × Z

x | T×Γ= 0, x(0, z) = x0(z), u(t, ·) ∈ U a.e., u(·, ·) measurable, p ≥ 2.






The hypotheses on the data of (2) are the following:

H(a) : a ∈ L∞(Z), with a(z) ≥ c > 0 for all z ∈ C.

H(f) : f : Z × R → R is a function s.t.

(1) z → f(z, x) is measurable,
(2) |f(z, x) − f(z, x′)| ≤ k(z)|x − x′| a.e. with k ∈ L2+(Z),

(3) |f(z, x)| ≤ m1(z) + m2(z)|x| a.e. with m1, m2 ∈ L2+(Z).
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H(U) : U is a nonempty, closed and bounded subset of L2(Z).

H0 : x0(·) ∈ W 1,p
0 (Z).

By R(t) we denote the reachable set at time t ∈ T , of system (2). So R(t) =

{x(t, ·) ∈ L2(Z) : x ∈ C(T, L2(Z)) solves (2)} ⊆ L2(Z).

Theorem 5.1. If hypotheses H(a), H(f), H(U) and H0 hold, then for all t ∈ T ,
R(t) is path connected in L2(Z).

Proof: Let H = L2(Z) and define ϕ : H → R = R ∪ {+∞} by

ϕ(x) =

{
1
p

∑N
k=1

∫
Z a(z)|Dkx|p dz + 1

p

∫
Z |x|p dz if x ∈ W

1,p
0 (Z)

+∞ otherwise.

It is easy to see from the above definition that ϕ(·) is proper, convex and l.s.c.
on H = L2(Z) (i.e. ϕ(·) ∈ Γ0(H)). Also for every λ > 0, the set

Lλ = {x ∈ L2(Z) = H : ‖x‖2 + ϕ(x) ≤ λ}

is clearly bounded in W 1,p
0 (Z). But from the Sobolev embedding theorem we know

that W 1,p
0 (Z) embeds compactly in L2(Z). So Lλ is compact in L2(Z), and so we

conclude that ϕ(·) is of compact type.
Hence we see that ϕ(x) satisfies the hypothesis H(ϕ)1. As in Barbu [3] (see

Proposition 2.9, p. 63), by using Green’s identity, we can show that

∂ϕ(x) = −Lp(x)

where Lp(x) =
∑N

k=1Dk(a(z)|Dkx|p−2Dkx) − x|x|p−2 and x ∈ D(Lp(·)) = {x ∈

W
1,p
0 (Z) : Lp(x) ∈ L2(Z)}.
Next let F : H → Pf (H) be defined by

F (x) = f̂(x)U

with f̂(x) being the Nemitsky (superposition) operator corresponding to f(z, x);

i.e. f̂(x)(·) = f(·, x(·)) ∈ L2(Z) (see the hypothesis H(f)).
Note that from the definition of F and the hypotheses H(f) and H(U) we have:

h(F (x), F (y)) ≤ M‖f̂(x) − f̂(y)‖2 ≤ k̂‖x − y‖2

where k̂ = M‖k(·)‖2.
Finally note that

|F (x)| = sup{‖g‖2 : g ∈ F (x)} ≤ m̂1 + m̂2‖x‖2 a.e.

with m̂1, m̂2 > 0 (see the hypotheses H(f) (3) and H(U)).
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Because of Aumann’s selection theorem, system (2) is equivalent to the following

evolution inclusion (deparametrized (i.e. control free) system):

(2)′

{
−ẋ(t) ∈ ∂ϕ(x(t)) + F (x(t)) a.e.

x(0) = x0.

}

We have checked that all hypotheses of Theorem 4.1 are satisfied. So the solution
set S(x0) ⊆ C(T, L2(Z)) is path connected. Let et : C(T, L2(Z)) → L2(Z) be
the evaluation at t ∈ T map. It is well-known that this is continuous (see for
example Dugundji [11]). Since continuous images of path connected sets are path
connected (topological invariance of path connectedness), we get that et(S(x0)) is
path connected in L2(Z). But et(S(x0)) = R(t). �

Another important class of systems incorporated in the problem (1) are the

so called “differential variational inequalities”, for which ϕ(t, x) = δK(t)(x) with

δK(t)(·) being the indicator function of the set K(t) (i.e. δK(t)(x) = 0 if x ∈ K(t)

and +∞ if x /∈ K(t)). Recalling that δK(t)(x) = NK(t)(x) (the normal cone to K(t)

at x), we see that differential variational inequalities have the following form:

(3)

{
−ẋ(t) ∈ NK(t)(x(t)) + F (x(t)) a.e.

x(0) = ξ.

}

Problems of this form arise in applications like theoretical mechanics (see Moreau
[16]) and mathematical economics (see Aubin-Cellina [2] and Henry [12]). A detailed
study of such inclusions can be found in Papageorgiou [23].

We assume the following about (3):

H(K) : K : T → Pf(c)(R
n) is a multifunction s.t. for 0 ≤ t ≤ t′ ≤ b we have

h(K(t), K(t′)) ≤

∫ t′

t
m(s) ds

with m(·) ∈ L1+.
Set ϕ(t, x) = δK(t)(x). It is easy to check that hypothesis H(ϕ) is satisfied.

So using Theorem 3.1 (with H = R
n) we get the following result concerning the

solution set S(ξ) ⊆ C(T, Rn) of (3):

Theorem 5.2. If hypothesesH(K) andH(F ) (withH = R
n) hold, V is a nonempty

compact subset of K(0), ξ0 ∈ V and w ∈ S(ξ0), then there exists a continuous map

u : V → C(T, RN ) such that u(ξ0) = w and for all ξ ∈ Kv(ξ) = S(ξ).

Also for the autonomous system we have a structural result concerning its solu-
tion set. So the multivalued Cauchy problem under consideration is the following:

(3)′

{
−ẋ(x) ∈ NK(t)(x(t)) + F (x(t)) a.e.

x(0) = ξ.

}
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It is well-known (see for example Aubin-Cellina [2]), that (3)′ is equivalent to the

“projected” differential inclusion ẋ(t) = proj (−F (x(t)); TK(x(t))) a.e., x(0) = ξ.
Here proj (·, TK(x)) denotes the metric projection on the tangent cone TK(x). In
many systems, with systems constraints, in describing the effect of the constraint on
the dynamics, it can be assumed that the velocity ẋ(t) is projected at each instant
on the set of allowed directions toward Tk(x(t)). This is true for electrical networks
with diode nonlinearities, for unilateral problems in mechanics and in mathematical
economics, in the study of resource allocation mechanisms. The resulting system is
a projected differential inclusion, which is equivalent to (3)′.

Theorem 5.3. If K ∈ Pf(c)(R
n) and hypothesis H(F )1 (with H = R

n) holds,

then for every ξ ∈ K, S(ξ) is path connected in C(T, Rn).
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