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Sacks forcing collapses ¢ to b

PETR SIMON

Abstract. We shall prove that Sacks algebra is nowhere (b, ¢, ¢)-distributive, which implies
that Sacks forcing collapses ¢ to b.
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A. Rostanowski and S. Shelah recently proved that Sacks forcing S collapses ¢ to
b€ [RS]. The aim of the present note is to prove the theorem from the title. Since
Rostanowski and Shelah showed also the consistency of the inequality b™¢ > b, our
theorem improves that result and answers a question from their paper. To put the
things to the right perspective, let us mention first that PFA implies that Sacks
forcing does not collapse cardinals at all [A]. Next, it is consistent that MA+—-CH
holds (hence b = ¢ > wy) and c is still collapsed to wy [JMS, Theorem 2.1]. Hence
the question, whether S collapses ¢ below b is undecidable.

Let us start with some definitions. A binary tree is a subset of [ J,c,, "2 such
that @ € T and whenever s € T and n € dom s, then s | n € T. There is a natural
partial order of elements of a tree given by C. For a (binary) tree T', a subset V C T
is called a branch, if V is a maximal linearly ordered subset of 7.

A binary tree T is called perfect, if it satisfies the following: For every s € T
there are ¢, € T', ¢ # r both extending s, i.e., s C g, s C r. Notice that in a perfect
tree, all branches are infinite.

A Sacks forcing is a partially ordered set S of all perfect trees ordered by inclusion.
Since every partially ordered set determines uniquely a complete Boolean algebra,
we shall use the same symbol S to denote the complete Boolean algebra, whose
dense subset is isomorphic to the set of all perfect trees.

Let us recall a three-parameter distributivity of Boolean algebras. Suppose that
B is a Boolean algebra, x, A, u are cardinal numbers. B is called to be (x, A, u)-
distributive, if for every collection {P, : o € k} of partitions of 15 with |Py| < A
for all @ € k there is a partition of unity @ such that for every ¢ € @ and for
every o € K, {p € Py : ¢ A p # 0g}| < p. A bit stronger property than just
the negation of being (k, A, u)-distributive, is the following. A Boolean algebra B is
(K, A, pu)-nowhere distributive, if there is some collection {P, : @ € k} of partitions
of 15 with |P,| < A for all a € k such that for every non-zero g € B there is some
a € k such that |[{p € Py : ¢ Ap # 0} > p. It is well-known and easy to prove
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that if Kk < p and B is (k, u, p)-nowhere distributive, then forcing with B changes
the cofinality of p to k. If moreover the density of B does not exceed p, then forcing
with B collapses i to k.

Before stating the Theorem, let us note that the letter ¢ stands for the cardinal
2¢ and the cardinal number b is defined by b = min{|F| : F C “w& F has no
upper bound in the order < mod fin}.

Theorem. The Boolean algebra S is (b, ¢, ¢)-nowhere distributive.

To begin the proof of the theorem, we shall introduce some notation and observe
several easy facts.

If n < m are integers, we shall denote by [n,m) the set of all integers 7 satisfying
n <14 < m. Two infinite sets are called almost disjoint, if their intersection is finite.

If T €S, define a mapping fr € “w by induction as follows. fr(0) = 0. If
fr(n) is known, then fr(n+1) is the minimal k € w such that for every s € T with
dom s = fp(n) there are at least two distinct r, ¢ € T satisfying domr = dom ¢ = k,
sCr,sCq.

If T is a binary tree and if A C w, we shall denote by T[A] the subtree of T
defined by induction on nodes. () € T[A]; if s € T[A] and doms = n, then we
distinguish two cases: If n € A, then r € T[A] for all r € T with domr =n+1 and
r2s. Ifn¢ Aand s70 € T, then s70 € T[A] but s71 ¢ T[A]; if s70 ¢ T, then
s70 ¢ T[A] and s71 € T[A] only if s™1 € T. So s € T[A] branches in T[A] only if
doms € A and s branches in 7T'.

The symbols fp and T[A] will have the meaning just described till the end of
the proof. Let us notice without proofs a few observations concerning the notions
just introduced.

Fact 1. Let T € S and suppose that A € [w]“ satisfies A D [fr(n), fr(n+1)) for
infinitely many n € w. Then T[A] € S.

Fact 2. Let Ty, Ty be binary trees, Ag, Ay subsets of w. Then Ty[Ag] NT1[A1] =
(To N T1)[Ag N Ayl

An immediate consequence of Fact 2 is the next Fact 3. The trivial Fact 4 is
mentioned for the sake of completeness.

Fact 3. If A, B C w are almost disjoint, then for arbitrary binary trees Ty, 71,
To[A]NTy[B] ¢ S.

Fact 4. Let {Ry, : n € w} be a pairwise disjoint family of finite sets. If A, B € [w]¥
are almost disjoint, then so are the sets (J,,c 4 Rn and U, c g Rn.

Let R = {Ry : n € w} be a partition of w. We shall denote by J(R) the set
of all subsets of w, which are large if measured by R, precisely, 7T(R) = {X Cw :
limsupp—oo|X N Ry | = 0o}. Two facts are necessary to be mentioned:

Fact 5. Let X € [w]¥ be arbitrary, let F C “w be a family without an upper
bound consisting of strictly increasing functions. Then there is an f € F such that
X e JH(R) for R = {[f(n), f(n+1)) : n€w}.

Indeed, one may write X = {xg < #1 < -+ < zp < ...} and put g(n) = z,2.
By the assumption, the mapping g does not dominate the family F, so there is
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some f € F with f(n) > g(n) for infinitely many integers n. We may assume that
f(0) =0. If K € w is arbitrary, find n > K with g(n) < f(n). The number of
intervals [f(j), f(j + 1)) covering the interval [0, f(n)) is n, but [0, f(n)) contains
at least n? points of X. So |X N[f(j), f(j +1))| > n > K for some j < n. As all
sets [f(n), f(n+ 1)) are finite, limsup,—oo| X N [f(n), f(n 4+ 1))| = cc.

Fact 6. Let R = {Ry : n € w} be a partition of w. Then there is a family
A C [w]“ such that:

(i) A is almost disjoint;

(i) every A € A is a transversal of R, i.e., |JAN Ry| <1 for each n € w;

(iii) for every X € JT(R), the set {A € A : AC X} is of size .

Fact 6 is a special case of more general Theorem 4.6 from [BS]. This fact is rather
nontrivial; we shall not indicate a proof here.

For the proof of the Theorem, fix a family F C “w such that F has no upper
bound, all mappings in F are strictly increasing, all f € F satisfy f(0) = 0 and
|F| = 6.

We shall assign to every T' € S two mappings from F and a subset of w: By Fact 5,
there is a mapping hy € F such that rng fr € J(R), where R = {[hp(n), hp(n +
1)) : n € w}. Since rng fr € JT(R), we conclude that the set X7 defined by
Xr={necw: |[hp(n),hp(n+1)) Nrng f7| > 2} is infinite. Applying once more
Fact 5, we can find the second mapping gr € F such that X7 € J(Q), where Q
stands now for the partition {[gp(n), gr(n +1)) : n € w}.

In order to prove the Theorem, we need to find the family of partitions witnessing
the (b, ¢, ¢)-nowhere distributivity of S. We shall use as an index set the square
F x F and, instead of a partition of unity, we shall find only a subset of the desired
partition, having the required properties. (It should be clear that this suffices.)
For (h,g) € F x F, denote by S(h, g) the set of all perfect trees T € S satisfying
ht = h,gr = g. Consider a partition R(g) = {[g(n),g(n + 1)) : n € w}. Using
Fact 6, there is an almost disjoint family A satisfying (i), (ii) and (iii). Since
[S(h, g)| < ¢, one may choose for each T' € S(h, g) a subset A(T) C A such that
for each A € A(T), A C Xp, |A(T)| = ¢ and A(T) N A(T') = 0 for T # T,
T,T" € S(h, g).

For A € A let By = U,ealh(n),h(n + 1)). The desired disjoint family P, ;)
will be now the set of all T[B4] for T € S(h,g) and A € A(T).

By Fact 6 (i), by Fact 4 and by Fact 3, P, 4) is pairwise disjoint. By Fact 1, all
members from P g) are perfect trees. Finally, every tree T € S(h, g) contains all
T[B4] for A € A(T), so by Fact 6 (iii), 7 meets ¢ many members from P, o).

To conclude the proof notice that, by Fact 5, for every perfect tree T' there is

a pair (h,g) € F x F with T € S(h, g). O
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