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Copies of I! and ¢, in Musielak-Orlicz sequence spaces

GHASSAN ALHERK, HENRYK HUDZIK

Abstract. Criteria in order that a Musielak-Orlicz sequence space [® contains an iso-
morphic as well as an isomorphically isometric copy of ! are given. Moreover, it is
proved that if ® = (®;), where ®; are defined on a Banach space, X does not satisfy
the 69-condition, then the Musielak-Orlicz sequence space 1® (X) of X-valued sequences
contains an almost isometric copy of ¢,. In the case of X = R it is proved also that if
1% contains an isomorphic copy of ¢, then ® does not satisfy the 09-condition. These
results extend some results of [A] and [H2] to Musielak-Orlicz sequence spaces.
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0. Introduction

Two Banach spaces X,Y are said to be (1 + ¢)-isometric provided there exists
onto

a linear isomorphism P : X 2= Y such that ||P| [P~ < 1+e¢. It is easy to
see that P is a (1 + ¢)-isometry if

lzllx < [Pzlly < (1 +e)llzlx

for any x € X. We say a Banach space X contains an almost isometric (isomor-
phic) copy of Y if for any ¢ > 0 (for some € > 0) there exists a subspace Z in
X such that Z,Y are (1 + ¢)-isomorphic. We say a Banach space X contains an
isomorphically isometric (shortly isometric) copy of YV if there exist a subspace Z
of X and a linear isomorphism P from Z onto Y such ||Pz|y = ||z||x for any
T € L.

In the sequel X denotes a real Banach space and N, R, R} and RS stand for
the set of natural numbers, the set of reals, the set of nonnegative reals, and for
R4 U 400, respectively. A map ® : X — RS is said to be an Orlicz function if
it is convex, even, vanishing and continuous at 0, lower semicontinuous on the
whole X and

(*) inf{(I)(x) : ||I|| = T} — 00 as r — 0.

We define a Musielak-Orlicz function ® to be a sequence (®;) of Orlicz functions
(we write then ® = (®;)). Given a Banach space X, we denote by {°(X) the real
space of all X-valued sequences x = (zy,). We write shortly {° instead of [°(R).
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Given an arbitrary Musielak-Orlicz function ® = (®;) we define a functional
Iy : 1°(X) — RS by

Ip(z) =) @i(w),
=1

which is even and convex, I (0) = 0 and for any « € [°(X) the condition Iy (Azx) =
0 for any A > 0 yields = 0.

Musielak-Orlicz space 1®(X) generated by a Musielak-Orlicz function ® is de-
fined as the set of all z € I°(X) such that Ig(Az) < oo for some A > 0 (cf. [T]
and in the scalar case also [KR], [L], [M] and [RR]).

The subspace h®(X) of I®(X) is defined to be the closure in {®(X) of the
space h(X) of all z in [°(X) which have only finite number of coordinates different
from 0. The space [®(X) can be equipped with the norm

|z]le = inf{e > 0: Ig(x/e) <1},
called the Luxemburg norm (cf. [M] and in the case of Orlicz spaces also [KR],
[L] and [RR]). The space h®(X) will be considered with the norm || |¢ induced
from [®(X). 1®(X) and h®(X) equipped with the norm || || are Banach spaces

(cf. [T)).
We say that a Musielak-Orlicz function ® = (®;) satisfies the 09-condition (we
write ® € 0%) if there are positive constants k and a, a sequence (c;) with ¢; € RS

[e.°]
such that 3" ¢; < oo for some j € N and

i=
’ ®;(22) < @4(x) + ¢
for any i € N and z € X satisfying ®;(z) < a.

If & = (®;) satisfies the d§-condition with j = 1 we say that ® satisfies the
d9-condition. Of course, for any Musielak-Orlicz function ® = (®;) with finite-
valued ®; for any i € N the do-condition is equivalent to the d9 - condition (cf.
[DH] and [K]).

Let us define for any Musielak-Orlicz function ® = (®;) the sequence A = (\;)
in R4, where

A =sup{u € Ry : ®; is linear on [0, u] and ®;(u) < 1}
fori=1,2,....

1. Results
We start with the following theorem:

Theorem 1. Let ® = (®;) be a Musielak-Orlicz function with finite-valued ®;
defined on R for any i € N. Then I® = (I%,]| ||) contains an isometric copy of
I1 if and only if:

(i) @ does not satisfy the do-condition.

(i) i_'i‘l B;(\) = ox.
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ProOF: Sufficiency. Under our assumptions concerning ®, the conditions d2 and
09 are equivalent. Therefore, if ® satisfies condition (i), then ® ¢ §9. This yields
that I® contains an isometric copy of 1% (cf. [K]) and so also an isometric copy
of I1.

Assume now that @ satisfies the condition (ii). Define i1 to be the largest
natural number satisfying

(51
D i) < 1.
i=1

Then

There is a number «; € [0, \;) such that

11
D> @i(N) + iy 1) = 1.
i=1

We have
o
D ®i(h) = oo
i=iy+2
Define i9 > i1 + 2 to be the largest natural number such that
12
> ®i(h) <L

1=11+2

Then
i2+1
> ®i(h) > 1
1=i1+2
There is a number ag € [0, Aj,41) such that
i2
> ®i(Ni) + Pigpa(ag) = 1.
i=i1+2

Proceeding in such a way by induction we find sequences (i) of natural numbers
and (oy) of numbers from the intervals [0, \;, +-1) such that

i
> i)+ Tyqalag) =1
1=t _1+2

11
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for k =1,2,..., where i, = —1 by definition. Denote

Ak:{ik_1+1,...,ik,ik+l}, k=1,2,....

o0
The sets Ay, are pairwise disjoint and |J Aj = N. Define a new sequence d = (d;)

k=1
by
d_{)\i if i€ A\ {ix+1}
v ag if i=1ap+1
for k=1,2,.... Define now

fo=Y die;,

1€EAL

where e; is the i-th unit vector, i.e. ¢; = (0,...,0,1,0,...) with 1 on the i-th
place. We have
Iq;(fk)ZI for k:1,2,....

We have also f;, L f; (i.e. the sequences f;, and f; have disjoint supports) if k # .
Moreover, the coordinates of fi(k = 1,2,...) belong to the intervals on which
the respective Orlicz functions ®; are linear. Define an operator P from ! into
I? by the formula

Pz = Z:Ekfk (Vo= (x) €lb).

k=1

It is obvious that P is linear. Moreover
P.’L‘ > xkfk
fo (||x| ) =21 (||x| 1
1 k=1 1
,; E 2 Hwnll
Pz

[l

This means that P is an isometry between I! and a closed subspace P(I1) of I®.

Hence

lo =1 ie. ||[Pz]o = ||

[e.e]
Necessity. Assume that @ satisfies the da-condition and Y (};) < +o0o0. Then
i=1

[e.°]

there is n € N, n > 2, such that Y ®;(\;) < n. We will prove that 1 is non-I},
i=1

i.e. for any elements z!,..., 2™ from the unit sphere S(I®) of I® there holds

1
=t +a?+- - +2") <1
n
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for some choice of signs, which yields that I! can not be isometrically embedded
into [%.

Take arbitrary z!,...,2" € S(I®). Then Ip(z!) = --- = Ig(aF) = 1 for
1 =1,2,...,n. Define the set

A={ieN: Z@ ) > @;(\) )

k=1
We will prove that for any i € A

(1) 3 (%) Z(I)

for some choice of signs +1, dividing the proof into two cases.

I. max{|:v | :k=1,....,n} < X and i € A. Then at least two numbers
among ®;(x} ) k=1,...,n, must be positive. Assume that this is not true, i.e.
that there is only one positive number ®;(z]) among these numbers. Then

n

> @i(af) = 0(a]) < i(N),

which contradicts the fact that i« € A. Therefore,
n
max{®;(z¥) : k=1,...,n} < Z ®;(F)
k=1

It is evident that
(2) |z} + -+ a?| <max{|zF|:k=1,...,}

for some choice of signs +1, whence

D, (%(z%i-ui )) <c1>(1m]?x|x |)

= — max ®;(
n

3|’—‘

This means that inequality (1) holds true in case I.

II. i€ Aand max{|zF| : k = 1,...,n} > X\;. Applying (2), we get for
a choice of signs £1

1, 1 1
D, (—(a:Z :|::|:I2n)> < 9 (nm]?x|x |) < n<I> (m]?x|x b
n

1 1
= — <I> )< — <I>
nm]?x _n; ¢
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Combining both cases I and II we get inequality (1) for some choice of signs +1.
For the remaining 2”1 — 1 choices of signs 1, we have by the convexity of @,

) 0 (St tat)) < 1 S aieh) (vieA)
k=1

Combining (1) and (3), we get

2n—1 n

3o (l(x}i---ixy))< S @) (vieA).
+1 " "ok

=1

Summing up both-side of the last inequality over i € A, we have

ZI 1(:101 +..-£2") < 2! i[ (zFx 1)
~ (] n XA n — P XA)s

where x 4 denotes the characteristic function of A.
Hence it follows that

1
2"t =N "I (—(xl i-~~j:a:")>
n
+1

n

2n—1 k 1 1 n
== S I =Y I ~(at k")
k=1 +1
-1 n
> 2 > Ia(aFya) =D I l(xlj:---j::v") >0
= [ XA [ n XA )
k=1 +1
i.e. )
> Is (—(wl j:---ﬂ::v")) <ont,
+1 "
Therefore

1
I (—(xlj:-~~j::1:")> <1
n

for at least one choice of signs +1. Since ®; are finite-valued by the assumption
and ® € d2, we get

for at least one choice of signs (cf. [DH] and [K]), i.e. {® is non-IL. This means
that 1 cannot be embedded isometrically into [®, and the proof is finished. [
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Theorem 2. Let ® = (®;) be an arbitrary Musielak-Orlicz function defined on
R. Then I® = (I1%,|| |l@) contains an isomorphic copy of I* if and only if ® or ®*
(= the complementary function to ® in the sense of Young) does not satisfy the
0§-condition, i.e. if and only if 1% is not reflexive.

ProoF: Sufficiency. If ® ¢ 69, then [? contains an isometric copy of I°° (cf. [K])
and so of /! as well. Assume now that ® € 0§ but ®* ¢ §9. Then the dual of 2
is isomorphically isometric to {?” equipped with the Orlicz norm || [|$. (cf. [M]
and in the case of Orlicz spaces also [KR], [L] and [RR]). Therefore [®" contains
an isomorphic copy of 1% (cf. again [K]), whence it follows that [® contains an
isomorphic copy of 1.

Necessity. Assume that both functions ® and ®* satisfy the 09-condition.
Then [® is reflexive and so I} can not be embedded isomorphically into 12 as
a nonreflexive space. O

Theorem 3. Let X be an arbitrary Banach space and ® = (®;) be a Musielak-
Orlicz function defined on X. Then:
(i) if ® does not satisfy the 63-condition, then h®(X) = (h®(X),|| | o) con-
tains an almost isometric copy of cy;
(i) if X =R and (h® = h®,|| ||) contains an isomorphic copy of ¢, then ®
does not satisfy the 65-condition.

PrOOF: (i). Let
cf’a = sup{®;((1 + e)z) — 281®;(z) : ®;(x) < 27F "1} (Vi,k e N,e > 0).

We have that ® € 69 if and only if there exists ¢ > 0 and m,k € N such that
o0
S " < oo (cf. [DH] and [H1)).

=m
Define

M = sup{®;((14+e)z) : @;(z) <27%1 and  &®;((1+e)2)—2"F1d;(x) > 0.

@

Since ®;(0) = 0 < 27¥71 50 0 belongs to the set of these z over which the
k,e

()

®((1+¢)0) — 28718,(0) = 0.

supremum in the definition of ¢;*" is taken. Moreover,

Hence it follows that c?’e > 0. Therefore, we can restrict ourselves in the definition
of cf’s to these « for which ®;((1+4¢)z) —28+1®;(z) > 0. Hence we get c?’e < d?’e
for every i,k € N and € > 0. We have by the assumption that ® ¢ §9. Hence it
follows that

o
S dif = (YmkeNe>0),

i=m

15
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[ee)

so we have among others > df’a = 00. Define i as the largest natural number
i=1

such that

(51
S <t
=1
k.e . k.e
whenever d;"" <1 and i1 = 0 whenever d;”" > 1. Then
i1+1

> de > 1.
i—1

Define in the first step N7 = {1,...,4; + 1}. Define iy as the largest natural

number such that '
ia
> s

i=11+2
fd . <landig=i;+2ifd>S. >1
i1+2 = 2=1 i+2 <~
Then
i2+1
Z df’e > 1.
i=11+2

Put Ny = {i1 +2,...,i2+1}. Proceeding in such a way by induction we can find
a sequence (i) of nonnegative integers such that the sequence of pairwise disjoint
sets (V) in N defined by

Np={ig_1+2,..ig+1}ici=—1 (k=12,...)

satisfies
(4) Soodt<,
€N\ {ip+1}
(5) S a1
1EN},

In view of the definition of df’a and inequality (5), it follows that for any € > 0
and k € N there are z; € X(x € Ni) such that

(6) > Bi((L+e)m) > 1,

1EN
(1) ®i(w) <27F1 and  ®((1+e)wy) > 26T 0i(ay) (Vi€ Ng).
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Applying (6) and (7) we get

®) Y @iz <27Ft N et lcoThtl okl ook
i€ENg i€EN\{ip+1}

Define y;, = > z;e;. Then y; have pairwise disjoint supports. In virtue of (6)

i=Ny
and (8) we have

9) Io(ye) = Y @iz) <277 (YkeN),
i€ENg

(10) Io((L+e)yp) = > ((1+e)z) >1  (YkeN).
1€Ny

Define now an operator Py : ¢, — h®(X) by
oo
Piu= Z ugyry (Yu= (ug) € co).

It is obvious that Py is linear. We will prove now that Piu € h®(X) for any
u € co. We need to prove that there is a sequence (y') in 1°(X) such that ¢’ has
only finite number of coordinates different from zero and ||Pyu — || — 0 as
l — o0, i.e.

(11) Is(A(Pru—y') =0 as l—oo (YA>0).

o0
Take arbitrary \,e > 0 and choose ko, € N such that > 27% < . Define
k=ko

l
:Zukyk (l=1,2,...).
k=1

Obviously any ' has only finite number of coordinates different from zero. Let
lo > ko be such that |ug|A < 1 for any k > l,. Such a number [, exists because
u = (ug) € co. We have for any | > I,

o o
Ig(A(Pru —ul)) = I@( > )\Ukyk) < I<1>( > yk)
k=l+1 k=l+1

e}

Yo el < Y 27M<e

k=l4+1 k=l+1

17
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i.e. condition (11) holds. This means that Piu € h® for any u € ¢o. Applying
(9), we get for any u € co,

Io(Pru/||ulloc) = > Ta(upyr/|ulloo)

hE

B
Il
—

<

hE

o
Ip(yr) <D 2% =1,
k=1

e
Il
—

whence it follows that
(12) [Prulle < llulloc (V€ co).
Let ko € N be such that |uy,_ | = ||u||co. Then, in view of (10), we get
Ig (1 + &) |lulls Pru) = I (1 + &) |ull 5 um, y,)
=Ip((1+e)yr,) > 1,

whence it follows that

1
[ Prulle > T lulloo  (Vu € co).

€
Defining now
Pu=(1+¢)Pu (Vu € ¢o),
we get a linear operator from ¢, into h®(X) satisfying
[ulloo < [[Pulle < (1+¢)llufloc (Vu € co),

which means that P is a (1 + €)-isometry. Since ¢ > 0 is arbitrary this means

that ¢, is embedded almost isometrically into h® and the proof of statement (i)
is finished.

(ii). Assume that ® € 3 and X = R. Then h® =1® and [? is the dual space
of h®", where ®* is the Orlicz function complementary in the sense of Young to
® (cf. [HY]). Assume that h® contains an isomorphic copy of ¢,. Then it contains
(as a dual space) a copy of I°° (cf. [BP]). But this contradicts the fact that the
norm || || is order continuous in A®. This contradiction finishes the proof of
statement (ii) and so of Theorem 3 as well. O

Recall that a Banach lattice F is said to be a KB-space whenever every in-
creasing bounded in the norm sequence of nonnegative elements in E is norm
convergent to an element of E (cf. [AB] and [KA]).

Remark. It is known (cf. [AB, p. 227]) that if E is a Banach lattice that is
not KB-space, then ¢, is embeddable in E and conversely. The space h® is
a Banach lattice that is KB-space if and only if ® € 5. Therefore, h® contains
an isomorphic copy of ¢, if and only if ® ¢ 65. It is worth to notice that if X is
an arbitrary Banach space, then h®(X) need not be a Banach lattice. However,
in one direction an analogous result (cf. Theorem 3) still holds true.
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