Copies of l^1 and c_0 in Musielak-Orlicz sequence spaces

GHASSAN ALHERK, HENRYK HUDZIK

Abstract. Criteria in order that a Musielak-Orlicz sequence space l^{Φ} contains an isomorphic as well as an isomorphically isometric copy of l^1 are given. Moreover, it is proved that if $\Phi = (\Phi_i)$, where Φ_i are defined on a Banach space, X does not satisfy the δ_2^o -condition, then the Musielak-Orlicz sequence space $l^{\Phi}(X)$ of X-valued sequences contains an almost isometric copy of c_o . In the case of $X = \mathbb{R}$ it is proved also that if l^{Φ} contains an isomorphic copy of c_o , then Φ does not satisfy the δ_2^o -condition. These results extend some results of [A] and [H2] to Musielak-Orlicz sequence spaces.

Keywords: Musielak-Orlicz sequence space, copy of l^1 , copy of c_o Classification: 46B20, 46B25, 46E30

0. Introduction

Two Banach spaces X, Y are said to be $(1 + \varepsilon)$ -isometric provided there exists a linear isomorphism $P: X \xrightarrow{\text{onto}} Y$ such that $||P|| ||P^{-1}|| \le 1 + \varepsilon$. It is easy to see that P is a $(1 + \varepsilon)$ -isometry if

$$\|x\|_X \le \|Px\|_Y \le (1+\varepsilon)\|x\|_X$$

for any $x \in X$. We say a Banach space X contains an almost isometric (isomorphic) copy of Y if for any $\varepsilon > 0$ (for some $\varepsilon > 0$) there exists a subspace Z in X such that Z, Y are $(1 + \varepsilon)$ -isomorphic. We say a Banach space X contains an isomorphically isometric (shortly isometric) copy of Y if there exist a subspace Z of X and a linear isomorphism P from Z onto Y such $||Px||_Y = ||x||_X$ for any $x \in Z$.

In the sequel X denotes a real Banach space and $\mathbb{N}, \mathbb{R}, \mathbb{R}_+$ and \mathbb{R}^e_+ stand for the set of natural numbers, the set of reals, the set of nonnegative reals, and for $\mathbb{R}_+ \cup +\infty$, respectively. A map $\Phi : X \to \mathbb{R}^e_+$ is said to be an <u>Orlicz function</u> if it is convex, even, vanishing and continuous at 0, lower semicontinuous on the whole X and

(*)
$$\inf \{ \Phi(x) : \|x\| = r \} \to \infty \quad \text{as} \quad r \to \infty.$$

We define a Musielak-Orlicz function Φ to be a sequence (Φ_i) of Orlicz functions (we write then $\Phi = (\Phi_i)$). Given a Banach space X, we denote by $l^o(X)$ the real space of all X-valued sequences $x = (x_n)$. We write shortly l^o instead of $l^o(\mathbb{R})$. Given an arbitrary Musielak-Orlicz function $\Phi = (\Phi_i)$ we define a functional $I_{\Phi} : l^o(X) \to \mathbb{R}^e_+$ by

$$I_{\Phi}(x) = \sum_{i=1}^{\infty} \Phi_i(x_i),$$

which is even and convex, $I_{\Phi}(0) = 0$ and for any $x \in l^o(X)$ the condition $I_{\Phi}(\lambda x) = 0$ for any $\lambda > 0$ yields x = 0.

Musielak-Orlicz space $l^{\Phi}(X)$ generated by a Musielak-Orlicz function Φ is defined as the set of all $x \in l^{o}(X)$ such that $I_{\Phi}(\lambda x) < \infty$ for some $\lambda > 0$ (cf. [T] and in the scalar case also [KR], [L], [M] and [RR]).

The subspace $h^{\Phi}(X)$ of $l^{\Phi}(X)$ is defined to be the closure in $l^{\Phi}(X)$ of the space h(X) of all x in $l^{o}(X)$ which have only finite number of coordinates different from 0. The space $l^{\Phi}(X)$ can be equipped with the norm

$$||x||_{\Phi} = \inf\{\varepsilon > 0 : I_{\Phi}(x/\varepsilon) \le 1\},\$$

called the Luxemburg norm (cf. [M] and in the case of Orlicz spaces also [KR], [L] and [RR]). The space $h^{\Phi}(X)$ will be considered with the norm $\| \|_{\Phi}$ induced from $l^{\Phi}(X)$. $l^{\Phi}(X)$ and $h^{\Phi}(X)$ equipped with the norm $\| \|_{\Phi}$ are Banach spaces (cf. [T]).

We say that a Musielak-Orlicz function $\Phi = (\Phi_i)$ satisfies the δ_2^o -condition (we write $\Phi \in \delta_2^o$) if there are positive constants k and a, a sequence (c_i) with $c_i \in \mathbb{R}^e_+$ such that $\sum_{i=j}^{\infty} c_i < \infty$ for some $j \in \mathbb{N}$ and

$$\Phi_i(2x) \le \Phi_i(x) + c_i$$

for any $i \in N$ and $x \in X$ satisfying $\Phi_i(x) \leq a$.

If $\Phi = (\Phi_i)$ satisfies the δ_2^o -condition with j = 1 we say that Φ satisfies the δ_2 -condition. Of course, for any Musielak-Orlicz function $\Phi = (\Phi_i)$ with finite-valued Φ_i for any $i \in \mathbb{N}$ the δ_2 -condition is equivalent to the δ_2^o - condition (cf. [DH] and [K]).

Let us define for any Musielak-Orlicz function $\Phi = (\Phi_i)$ the sequence $\lambda = (\lambda_i)$ in \mathbb{R}_+ , where

 $\lambda_i = \sup\{u \in \mathbb{R}_+ : \Phi_i \text{ is linear on } [0, u] \text{ and } \Phi_i(u) \le 1\}$

for i = 1, 2, ...

1. Results

We start with the following theorem:

Theorem 1. Let $\Phi = (\Phi_i)$ be a Musielak-Orlicz function with finite-valued Φ_i defined on \mathbb{R} for any $i \in \mathbb{N}$. Then $l^{\Phi} = (l^{\Phi}, \| \|_{\Phi})$ contains an isometric copy of l^1 if and only if:

(i) Φ does not satisfy the δ_2 -condition.

(ii)
$$\sum_{i=1}^{\infty} \Phi_i(\lambda_i) = \infty.$$

PROOF: Sufficiency. Under our assumptions concerning Φ , the conditions δ_2 and δ_2^o are equivalent. Therefore, if Φ satisfies condition (i), then $\Phi \notin \delta_2^o$. This yields that l^{Φ} contains an isometric copy of l^{∞} (cf. [K]) and so also an isometric copy of l^1 .

Assume now that Φ satisfies the condition (ii). Define i_1 to be the largest natural number satisfying

$$\sum_{i=1}^{i_1} \Phi_i(\lambda_i) \le 1.$$

Then

$$\sum_{i=1}^{i_1+1} \Phi_i(\lambda_i) > 1.$$

There is a number $\alpha_i \in [0, \lambda_i)$ such that

$$\sum_{i=1}^{i_1} \Phi_i(\lambda_i) + \Phi_{i_1+1}(\alpha_1) = 1.$$

We have

$$\sum_{i=i_1+2}^{\infty} \Phi_i(\lambda_i) = \infty.$$

Define $i_2 \ge i_1 + 2$ to be the largest natural number such that

$$\sum_{i=i_1+2}^{i_2} \Phi_i(\lambda_i) \le 1.$$

Then

$$\sum_{i=i_1+2}^{i_2+1} \Phi_i(\lambda_i) > 1.$$

There is a number $\alpha_2 \in [0, \lambda_{i_2+1})$ such that

$$\sum_{i=i_1+2}^{i_2} \Phi_i(\lambda_i) + \Phi_{i_2+1}(\alpha_2) = 1.$$

Proceeding in such a way by induction we find sequences (i_k) of natural numbers and (α_k) of numbers from the intervals $[0, \lambda_{i_k+1})$ such that

$$\sum_{i=i_{k-1}+2}^{i_k} \Phi_i(\lambda_i) + \Phi_{i_k+1}(\alpha_k) = 1$$

for $k = 1, 2, \ldots$, where $i_o = -1$ by definition. Denote

$$A_k = \{i_{k-1} + 1, \dots, i_k, i_k + 1\}, \quad k = 1, 2, \dots$$

The sets A_k are pairwise disjoint and $\bigcup_{k=1}^{\infty} A_k = \mathbb{N}$. Define a new sequence $d = (d_i)$ by

$$d_i = \begin{cases} \lambda_i & \text{if } i \in A_k \setminus \{i_k + 1\} \\ \alpha_k & \text{if } i = i_k + 1 \end{cases}$$

for $k = 1, 2, \ldots$. Define now

$$f_k = \sum_{i \in A_k} d_i e_i,$$

where e_i is the *i*-th unit vector, i.e. $e_i = (0, \ldots, 0, 1, 0, \ldots)$ with 1 on the *i*-th place. We have

$$I_{\Phi}(f_k) = 1$$
 for $k = 1, 2, \dots$.

We have also $f_k \perp f_l$ (i.e. the sequences f_k and f_l have disjoint supports) if $k \neq l$. Moreover, the coordinates of $f_k(k = 1, 2, ...)$ belong to the intervals on which the respective Orlicz functions Φ_i are linear. Define an operator P from l^1 into l^{Φ} by the formula

$$Px = \sum_{k=1}^{\infty} x_k f_k \qquad (\forall x = (x_k) \in l^1).$$

It is obvious that P is linear. Moreover

$$I_{\Phi}\left(\frac{Px}{\|x\|_{l^{1}}}\right) = \sum_{k=1}^{\infty} I_{\Phi}\left(\frac{x_{k}f_{k}}{\|x\|_{l^{1}}}\right)$$
$$= \sum_{k=1}^{\infty} \frac{|x_{k}|}{\|x\|_{l^{1}}} I_{\Phi}(f_{k}) = \sum_{k=1}^{\infty} \frac{|x_{k}|}{\|x\|_{l^{1}}} = 1.$$

Hence

$$\left\|\frac{Px}{\|x\|_{l^1}}\right\|_{\Phi} = 1$$
, i.e. $\|Px\|_{\Phi} = \|x\|_{l^1}$.

This means that P is an isometry between l^1 and a closed subspace $P(l^1)$ of l^{Φ} .

Necessity. Assume that Φ satisfies the δ_2 -condition and $\sum_{i=1}^{\infty} (\lambda_i) < +\infty$. Then there is $n \in \mathbb{N}$, $n \ge 2$, such that $\sum_{i=1}^{\infty} \Phi_i(\lambda_i) \le n$. We will prove that l^{Φ} is non- l_n^1 , i.e. for any elements x^1, \ldots, x^n from the unit sphere $\mathcal{S}(l^{\Phi})$ of l^{Φ} there holds

$$\|\frac{1}{n}(x^1 \pm x^2 \pm \dots \pm x^n)\| < 1$$

for some choice of signs, which yields that l^1 can not be isometrically embedded into l^{Φ} .

Take arbitrary $x^1, \ldots, x^n \in \mathcal{S}(l^{\Phi})$. Then $I_{\Phi}(x^1) = \cdots = I_{\Phi}(x^k) = 1$ for $i = 1, 2, \ldots, n$. Define the set

$$A = \{i \in \mathbb{N} : \sum_{k=1}^{n} \Phi_i(x_i^k) > \Phi_i(\lambda_i)\}.$$

We will prove that for any $i \in A$

(1)
$$\Phi_i\left(\frac{(x_i^1 \pm \dots \pm x_i^n)}{n}\right) < \frac{1}{n}\sum_{k=1}^n \Phi_i(x_i^k)$$

for some choice of signs ± 1 , dividing the proof into two cases.

I. $\max\{|x_i^k|: k = 1, ..., n\} \leq \lambda_i \text{ and } i \in A$. Then at least two numbers among $\Phi_i(x_i^k), k = 1, ..., n$, must be positive. Assume that this is not true, i.e. that there is only one positive number $\Phi_i(x_i^j)$ among these numbers. Then

$$\sum_{k=1}^{n} \Phi_i(x_i^k) = \Phi(x_i^j) \le \Phi_i(\lambda_i),$$

which contradicts the fact that $i \in A$. Therefore,

$$\max\{\Phi_i(x_i^k): k = 1, \dots, n\} < \sum_{k=1}^n \Phi_i(x_i^k).$$

It is evident that

(2)
$$|x_i^1 \pm \dots \pm x_i^n| \le \max\{|x_i^k| : k = 1, \dots, \}$$

for some choice of signs ± 1 , whence

$$\begin{split} \Phi_i \left(\frac{1}{n} (x_i^1 \pm \dots \pm x_i^n) \right) &\leq \Phi \left(\frac{1}{n} \max_k |x_i^k| \right) \\ &= \frac{1}{n} \max \Phi_i(x_i^k) < \frac{1}{n} \sum_{k=1}^n \Phi_i(x_i^k). \end{split}$$

This means that inequality (1) holds true in case I.

II. $i \in A$ and $\max\{|x_i^k| : k = 1, ..., n\} > \lambda_i$. Applying (2), we get for a choice of signs ± 1

$$\begin{split} \Phi_i\left(\frac{1}{n}(x_i^1\pm\cdots\pm x_i^n)\right) &\leq \Phi_i\left(\frac{1}{n}\max_k|x_i^k|\right) < \frac{1}{n}\Phi_i(\max_k|x_i^k|) \\ &= \frac{1}{n}\max_k\Phi_i(x_i^k) \le \frac{1}{n}\sum_{k=1}^n\Phi_i(x_i^k). \end{split}$$

Combining both cases I and II we get inequality (1) for some choice of signs ± 1 . For the remaining $2^{n-1} - 1$ choices of signs ± 1 , we have by the convexity of Φ ,

(3)
$$\Phi_i\left(\frac{1}{n}(x_i^1\pm\cdots\pm x_i^n)\right) \le \frac{1}{n}\sum_{k=1}^n \Phi_i(x_i^k) \quad (\forall i \in A).$$

Combining (1) and (3), we get

$$\sum_{\pm 1} \Phi_i \left(\frac{1}{n} (x_i^1 \pm \dots \pm x_i^n) \right) < \frac{2^{n-1}}{n} \sum_{k=1}^n \Phi_i(x_i^k) \quad (\forall i \in A).$$

Summing up both-side of the last inequality over $i \in A$, we have

$$\sum_{\pm 1} I_{\Phi}\left(\frac{1}{n}(x^1 \pm \dots \pm x^n)\chi_A\right) < \frac{2^{n-1}}{n}\sum_{k=1}^n I_{\Phi}(x^k\chi_A),$$

where χ_A denotes the characteristic function of A. Hence it follows that

$$2^{n-1} - \sum_{\pm 1} I_{\Phi} \left(\frac{1}{n} (x^{1} \pm \dots \pm x^{n}) \right)$$

= $\frac{2^{n-1}}{n} \sum_{k=1}^{n} I_{\Phi} (x^{k}) - \sum_{\pm 1} I_{\Phi} \left(\frac{1}{n} (x^{1} \pm \dots \pm x^{n}) \right)$
 $\geq \frac{2^{n-1}}{n} \sum_{k=1}^{n} I_{\Phi} (x^{k} \chi_{A}) - \sum_{\pm 1} I_{\Phi} \left(\frac{1}{n} (x^{1} \pm \dots \pm x^{n}) \chi_{A} \right) > 0,$

i.e.

$$\sum_{\pm 1} I_{\Phi}\left(\frac{1}{n}(x^1 \pm \dots \pm x^n)\right) < 2^{n-1}.$$

Therefore

$$I_{\Phi}\left(\frac{1}{n}(x^1\pm\cdots\pm x^n)\right)<1$$

for at least one choice of signs ± 1 . Since Φ_i are finite-valued by the assumption and $\Phi \in \delta_2$, we get

$$\left\|\frac{1}{n}(x^1\pm\cdots\pm x^n)\right\|<1$$

for at least one choice of signs (cf. [DH] and [K]), i.e. l^{Φ} is non- l_n^1 . This means that l^1 cannot be embedded isometrically into l^{Φ} , and the proof is finished. \Box

Theorem 2. Let $\Phi = (\Phi_i)$ be an arbitrary Musielak-Orlicz function defined on \mathbb{R} . Then $l^{\Phi} = (l^{\Phi}, \| \|_{\Phi})$ contains an isomorphic copy of l^1 if and only if Φ or Φ^* (= the complementary function to Φ in the sense of Young) does not satisfy the δ_2^{0} -condition, i.e. if and only if l^{Φ} is not reflexive.

PROOF: Sufficiency. If $\Phi \notin \delta_2^o$, then l^{Φ} contains an isometric copy of l^{∞} (cf. [K]) and so of l^1 as well. Assume now that $\Phi \in \delta_2^o$ but $\Phi^* \notin \delta_2^o$. Then the dual of l^{Φ} is isomorphically isometric to l^{Φ^*} equipped with the Orlicz norm $\| \|_{\Phi^*}^o$ (cf. [M] and in the case of Orlicz spaces also [KR], [L] and [RR]). Therefore l^{Φ^*} contains an isomorphic copy of l^{∞} (cf. again [K]), whence it follows that l^{Φ} contains an isomorphic copy of l^1 .

Necessity. Assume that both functions Φ and Φ^* satisfy the δ_2^o -condition. Then l^{Φ} is reflexive and so l^1 can not be embedded isomorphically into l^{Φ} as a nonreflexive space.

Theorem 3. Let X be an arbitrary Banach space and $\Phi = (\Phi_i)$ be a Musielak-Orlicz function defined on X. Then:

- (i) if Φ does not satisfy the δ_2^o -condition, then $h^{\Phi}(X) = (h^{\Phi}(X), \| \|_{\Phi})$ contains an almost isometric copy of c_o ;
- (ii) if $X = \mathbb{R}$ and $(h^{\Phi} = h^{\Phi}, \| \|_{\Phi})$ contains an isomorphic copy of c_o , then Φ does not satisfy the δ_2^o -condition.

PROOF: (i). Let

$$c_i^{k,\varepsilon} = \sup\{\Phi_i((1+\varepsilon)x) - 2^{k+1}\Phi_i(x) : \Phi_i(x) \le 2^{-k-1}\} (\forall i, k \in \mathbb{N}, \varepsilon > 0).$$

We have that $\Phi \in \delta_2^o$ if and only if there exists $\varepsilon > 0$ and $m, k \in \mathbb{N}$ such that $\sum_{i=m}^{\infty} c_i^{k,\varepsilon} < \infty$ (cf. [DH] and [H1]). Define

$$\alpha_i^{k,\varepsilon} = \sup\{\Phi_i((1+\varepsilon)x) : \Phi_i(x) \le 2^{-k-1} \quad \text{and} \quad \Phi_i((1+\varepsilon)x) - 2^{-k-1}\Phi_i(x) \ge 0\}$$

Since $\Phi_i(0) = 0 < 2^{-k-1}$, so 0 belongs to the set of these x over which the supremum in the definition of $c_i^{k,\varepsilon}$ is taken. Moreover,

$$\Phi((1+\varepsilon)0) - 2^{k+1}\Phi_i(0) = 0.$$

Hence it follows that $c_i^{k,\varepsilon} \ge 0$. Therefore, we can restrict ourselves in the definition of $c_i^{k,\varepsilon}$ to these x for which $\Phi_i((1+\varepsilon)x) - 2^{k+1}\Phi_i(x) \ge 0$. Hence we get $c_i^{k,\varepsilon} \le d_i^{k,\varepsilon}$ for every $i, k \in \mathbb{N}$ and $\varepsilon > 0$. We have by the assumption that $\Phi \notin \delta_2^o$. Hence it follows that

$$\sum_{i=m}^{\infty} d_i^{k,\varepsilon} = \infty \qquad (\forall \, m,k\in\mathbb{N},\varepsilon>0),$$

so we have among others $\sum_{i=1}^{\infty} d_i^{k,\varepsilon} = \infty$. Define i_1 as the largest natural number such that

$$\sum_{i=1}^{i_1} d_i^{k,\varepsilon} \le 1,$$

whenever $d_1^{k,\varepsilon} \leq 1$ and $i_1 = 0$ whenever $d_1^{k,\varepsilon} > 1$. Then

$$\sum_{i=1}^{i_1+1} d_i^{k,\varepsilon} > 1.$$

Define in the first step $N_1 = \{1, \ldots, i_1 + 1\}$. Define i_2 as the largest natural number such that

$$\sum_{i=i_1+2}^{i_2} d_i^{k,\varepsilon} \le 1$$

 $\begin{array}{l} \text{if } d_{i_1+2}^{k,\varepsilon} \leq 1 \text{ and } i_2 = i_1+2 \text{ if } d_{i_1+2}^{k,\varepsilon} > 1. \\ \text{Then} \\ \\ \sum_{i=i_1+2}^{i_2+1} d_i^{k,\varepsilon} > 1. \end{array}$

Put $N_2 = \{i_1 + 2, \dots, i_2 + 1\}$. Proceeding in such a way by induction we can find a sequence (i_k) of nonnegative integers such that the sequence of pairwise disjoint sets (N_k) in \mathbb{N} defined by

$$N_k = \{i_{k-1} + 2, \dots, i_k + 1\}, i_o := -1 \quad (k = 1, 2, \dots)$$

satisfies

(4)
$$\sum_{i \in N_k \setminus \{i_k+1\}} d_i^{k,\varepsilon} \le 1,$$

(5)
$$\sum_{i \in N_k} d_i^{k,\varepsilon} > 1.$$

In view of the definition of $d_i^{k,\varepsilon}$ and inequality (5), it follows that for any $\varepsilon > 0$ and $k \in \mathbb{N}$ there are $x_i \in X(x \in N_k)$ such that

(6)
$$\sum_{i \in N_k} \Phi_i((1+\varepsilon)x_i) > 1,$$

(7)
$$\Phi_i(x_i) \le 2^{-k-1}$$
 and $\Phi_i((1+\varepsilon)x_i) \ge 2^{k+1}\Phi_i(x_i) \quad (\forall i \in N_k).$

Applying (6) and (7) we get

(8)
$$\sum_{i \in N_k} \Phi_i(x_i) \le 2^{-k-1} \sum_{i \in N_k \setminus \{i_k+1\}} d_i^{k,\varepsilon} + 2^{-k-1} \le 2^{-k-1} + 2^{-k-1} = 2^{-k}.$$

Define $y_k = \sum_{i=N_k} x_i e_i$. Then y_k have pairwise disjoint supports. In virtue of (6) and (8) we have

(9)
$$I_{\Phi}(y_k) = \sum_{i \in N_k} \Phi_i(x_i) \le 2^{-k} \qquad (\forall k \in \mathbb{N}),$$

(10)
$$I_{\Phi}((1+\varepsilon)y_k) = \sum_{i \in \mathbb{N}_k} \Phi_i((1+\varepsilon)x_i) > 1 \qquad (\forall k \in \mathbb{N}).$$

Define now an operator $P_1: c_o \to h^{\Phi}(X)$ by

$$P_1 u = \sum_{k=1}^{\infty} u_k y_k \quad (\forall u = (u_k) \in c_o).$$

It is obvious that P_1 is linear. We will prove now that $P_1 u \in h^{\Phi}(X)$ for any $u \in c_0$. We need to prove that there is a sequence (y^l) in $l^o(X)$ such that y^l has only finite number of coordinates different from zero and $||P_1 u - y^l||_{\Phi} \to 0$ as $l \to \infty$, i.e.

(11)
$$I_{\Phi}(\lambda(P_1u - y^l)) \to 0 \quad \text{as} \ l \to \infty \quad (\forall \lambda > 0).$$

Take arbitrary $\lambda, \varepsilon > 0$ and choose $k_o \in \mathbb{N}$ such that $\sum_{k=k_o}^{\infty} 2^{-k} < \varepsilon$. Define

$$y^{l} = \sum_{k=1}^{l} u_{k} y_{k}$$
 $(l = 1, 2, ...).$

Obviously any y^l has only finite number of coordinates different from zero. Let $l_o \geq k_o$ be such that $|u_k|\lambda \leq 1$ for any $k \geq l_o$. Such a number l_o exists because $u = (u_k) \in c_o$. We have for any $l \geq l_o$

$$I_{\Phi}(\lambda(P_1u - u^l)) = I_{\Phi}\left(\sum_{k=l+1}^{\infty} \lambda u_k y_k\right) \le I_{\Phi}\left(\sum_{k=l+1}^{\infty} y_k\right)$$
$$= \sum_{k=l+1}^{\infty} I_{\Phi}(y_k) \le \sum_{k=l+1}^{\infty} 2^{-k} < \varepsilon,$$

i.e. condition (11) holds. This means that $P_1 u \in h^{\Phi}$ for any $u \in c_o$. Applying (9), we get for any $u \in c_o$,

$$I_{\Phi}(P_1 u / ||u||_{\infty}) = \sum_{k=1}^{\infty} I_{\Phi}(u_k y_k / ||u||_{\infty})$$
$$\leq \sum_{k=1}^{\infty} I_{\Phi}(y_k) \leq \sum_{k=1}^{\infty} 2^{-k} = 1.$$

whence it follows that

(12) $\|P_1 u\|_{\Phi} \le \|u\|_{\infty} \quad (\forall u \in c_o).$

Let $k_o \in N$ be such that $|u_{k_o}| = ||u||_{\infty}$. Then, in view of (10), we get

$$I_{\Phi}((1+\varepsilon)\|u\|_{\infty}^{-1}P_{1}u) \geq I_{\Phi}((1+\varepsilon)\|u\|_{\infty}^{-1}u_{k_{o}}y_{k_{o}})$$
$$= I_{\Phi}((1+\varepsilon)y_{k_{o}}) > 1,$$

whence it follows that

$$\|P_1 u\|_{\Phi} \ge \frac{1}{1+\varepsilon} \|u\|_{\infty} \qquad (\forall u \in c_o).$$

Defining now

$$Pu = (1 + \varepsilon)P_1u \qquad (\forall u \in c_o),$$

we get a linear operator from c_o into $h^{\Phi}(X)$ satisfying

$$||u||_{\infty} \le ||Pu||_{\Phi} \le (1+\varepsilon)||u||_{\infty} \quad (\forall u \in c_o),$$

which means that P is a $(1 + \varepsilon)$ -isometry. Since $\varepsilon > 0$ is arbitrary this means that c_o is embedded almost isometrically into h^{Φ} and the proof of statement (i) is finished.

(ii). Assume that $\Phi \in \delta_2^o$ and $X = \mathbb{R}$. Then $h^{\Phi} = l^{\Phi}$ and l^{Φ} is the dual space of h^{Φ^*} , where Φ^* is the Orlicz function complementary in the sense of Young to Φ (cf. [HY]). Assume that h^{Φ} contains an isomorphic copy of c_o . Then it contains (as a dual space) a copy of l^{∞} (cf. [BP]). But this contradicts the fact that the norm $\| \|_{\Phi}$ is order continuous in h^{Φ} . This contradiction finishes the proof of statement (ii) and so of Theorem 3 as well.

Recall that a Banach lattice E is said to be a KB-space whenever every increasing bounded in the norm sequence of nonnegative elements in E is norm convergent to an element of E (cf. [AB] and [KA]).

Remark. It is known (cf. [AB, p. 227]) that if E is a Banach lattice that is not KB-space, then c_o is embeddable in E and conversely. The space h^{Φ} is a Banach lattice that is KB-space if and only if $\Phi \in \delta_2^o$. Therefore, h^{Φ} contains an isomorphic copy of c_o if and only if $\Phi \notin \delta_2^o$. It is worth to notice that if X is an arbitrary Banach space, then $h^{\Phi}(X)$ need not be a Banach lattice. However, in one direction an analogous result (cf. Theorem 3) still holds true.

References

- [A] Alherk G., On the non-l_n⁽¹⁾ and locally uniformly non-l_n⁽¹⁾ properties and l¹ copies in Musielak-Orlicz space, Comment. Math. Univ. Carolinae **31** (1990), 435–443.
- [AB] Aliprantis C.D., Burkinshaw O., Positive operators, Pure and Applied Math., Academic Press, Inc., 1985.
- [BP] Bessaga C., Pełczyński A., On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164.
- [DH] Denker M., Hudzik H., Uniformly non-l_n⁽¹⁾ Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. 101 (1991), 71–86.
- [H1] Hudzik H., On some equivalent conditions in Musielak-Orlicz spaces, Comment. Math. (Prace Matem.) 24 (1984), 57-64.
- [H2] _____, Orlicz spaces containing a copy of l^1 , Math. Japonica **34** (1989), 747–759.
- [HY] Hudzik H., Ye Y., Support functionals and smoothness in Musielak-Orlicz sequence spaces endowed with the Luxemburg norm, Comment. Math. Univ. Carolinae 31 (1990), 661–684.
- [K] Kamińska A., Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 30 (1982), 347–352.
- [KA] Kantorovich L.V., Akilov G.P., Functional Analysis (in Russian), Nauka, Moscow, 1977.
- [KR] Krasnoselskii M.A., Rutickii Ya.B., Convex functions and Orlicz spaces, Groningen, 1961 (translation).
- [L] Luxemburg W.A.J., Banach function spaces, Thesis, Delft, 1955.
- [M] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
- [RR] Rao M.M., Ren Z.D., Theory of Orlicz spaces, Pure and Applied Mathematics, Marcel Dekker, 1991.
- [T] Turett B., Fenchel-Orlicz spaces, Dissertationes Math. 181 (1980), 1–60.

UNIVERSITY OF ALEPPO, ALEPPO, SYRIA

Adam Mickiewicz University, Poznań, Poland

(Received February 16, 1993)