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On the existence of weak solutions

of integral equations in Banach spaces

Dariusz Bugajewski

Abstract. In this paper we investigate weakly continuous solutions of some integral equa-
tions in Banach spaces. Moreover, we prove a fixed point theorem which is very useful
in our considerations.
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1. Introduction

The purpose of this paper is to prove an existence theorem for weakly contin-
uous solutions of the Hammerstein integral equation

(1) x(t) = g(t) + λ

∫

I
K(t, s)f(s, x(s)) ds

and a Kneser-type theorem for weakly continuous solutions of the Volterra integral
equation

(2) x(t) = g(t) + λ

∫ t

0
K(t, s)f(s, x(s)) ds,

where “
∫
” denotes the weak Riemann integral.

A similar existence theorem for strongly continuous solutions of (1) was proved
in [8].
In our considerations we apply the following fixed point

Theorem 1. Let D be a closed and convex subset of a Hausdorff locally convex

space such that 0 ∈ D, and let G be a continuous mapping of D into itself. If the

implication

(3) (V = conv G(V ) or V = G(V ) ∪ {0}) =⇒ V is relatively compact

holds for every subset V of D, then G has a fixed point.

Proof: In our proof we use some ideas from the paper of Daneš [3]. Define
a sequence (yn) by the formulas y0 = 0, yn+1 = G(yn) (n = 0, 1, . . . ). Let
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Y = {yn : n = 0, 1, . . . }. Since Y = G(Y ) ∪ {0}, so from (3) it is clear that
the set Y is relatively compact. Denote by Z the set of all limit points of the
sequence (yn). It can be verified that Z = G(Z). Now, let R(X) = conv G(X)
for X ⊂ D and let Ω denote the family of all subsets X of D such that Z ⊂ X

and R(X) ⊂ X . Since D is convex, so conv G(D) ⊂ conv D = D. Moreover,
D is closed, so it contains all limit points of Y . Hence D ∈ Ω. Denote by V

the intersection of all sets of the family Ω. Because Z ⊂ V , so V is nonempty.
Moreover, Z = G(Z) ⊂ R(Z) ⊂ R(V ) andR(V ) ⊂ R(X) ⊂ X for everyX ∈ Ω, so
R(V ) ⊂ V and, consequently, R(V ) ∈ Ω. Hence V = R(V ), i.e. V = conv G(V ).
By (3), this implies that V is a compact subset of D. Applying now the Schauder-
Tychonoff fixed point theorem, we conclude that the mapping G has a fixed point.
The proof is completed. �

Our main condition that guarantees the existence of weak solutions of (1) and
(2) will be formulated in terms of measure of weak noncompactness ω introduced
by De Blasi in [4]. Let us recall that for any nonvoid, bounded subset X of
a Banach space E, ω(X) = inf{t > 0 : there exists a weakly compact set C such
that X ⊂ C + tB}, where B is the norm unit ball.

2. Hammerstein integral equation

Let I = [0, a] be a compact interval in R and let E1, E2 be Banach spaces.
We assume that E1 is weakly sequentially complete and

1◦ g : I → E1 is a weakly continuous function;
2◦ f : I ×E1 → E2 is a weakly-weakly continuous function such that for any

r > 0 there exists mr > 0 such that ‖f(s, x)‖ ≤ mr for all s ∈ I and
‖x‖ ≤ r;

3◦ K is a continuous function from I2 into the spaceL (E2, E1) of continuous
linear functions E2 → E1.

Now we shall prove the following existence theorem for equation (1).

Theorem 2. If 1◦–3◦ hold and there exists M > 0 such that

(4) ω(f(I × X)) ≤ Mω(X)

for each bounded subset X of E1, then there exists ̺ > 0 such that for any λ ∈ R

with |λ| < ̺ the equation (1) has at least one weakly continuous solution (for
simplicity, we denote by the same symbol ω the measures of weak noncompactness

in E1 and E2).

Proof: Let ̺ = min(supr>0
r−c

aLmr
, 1

r(H)
), where c = supt∈I ‖g(t)‖,

L = supt,s∈I ‖K(t, s)‖, and let r(H) be the spectral radius of the integral operator
H defined by

(Hu)(t) =

∫

I
M‖K(t, s)‖u(s) ds (u ∈ C(I, R), t ∈ I).
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Fix λ ∈ R with |λ| < ̺, and choose b > 0 in such a way that c + |λ|aKmb < b.
Denote by Cw(I, E1) the space of weakly continuous functions I → E1, endowed

with the topology of weak uniform convergence, and by B̃ the set of all weakly
continuous functions I → Bb, where Bb = {z ∈ E1 : ‖z‖ ≤ b}. We shall consider

B̃ as a topological subspace of Cw(I, E1). Put G(x)(t) = g(t) + F (x)(t), where

F (x)(t) = λ

∫

I
K(t, s)f(s, x(s)) ds for x ∈ B̃ and t ∈ I.

From the inequalities
‖F (x)(t)− F (x)(τ)‖ ≤ |λ|

∫
I ‖K(t, s)− K(τ, s)‖mb ds

‖F (x)(t)‖ ≤ |λ|aLmb (x ∈ B̃, t, τ ∈ I)

it is clear that G maps B̃ into itself and the set F (B̃) is strongly equicontinuous.
Moreover, by using the Krasnoselskii-type

Lemma 1. Let E be a Banach space. For any φ ∈ E∗, ε > 0 and x ∈ B̃ there

exists a weak neighbourhood U of 0 in E such that |φ(f(t, x(t))− f(t, w(t)))| ≤ ε

for t ∈ I and w ∈ B̃ such that w(s) − x(s) ∈ U for all s ∈ I,

it can be shown that G is continuous. Before passing to further considerations,
we shall quote the following known lemmas:

Lemma 2. Let V ⊂ Cw(I, E1). Put V (t) = {u(t) : u ∈ V } and V (T ) = {u(t) :
u ∈ V, t ∈ T }. If V is strongly equicontinuous and uniformly bounded, then

(i) the function t → ω(V (t)) is continuous on I;

(ii) ω(V (T )) = sup{ω(V (t)) : t ∈ T } for each compact subset T of I.

Lemma 3. For any continuous mapping A : I → L (E2, E1) and for each
bounded subset Z of E2 we have

ω({A(s)z : s ∈ I, z ∈ Z}) ≤ max
s∈I

‖A(s)‖ω(Z)

(cf. [1]).

Now we shall show that G satisfies (3). It is clear that the set B̃ is convex and

closed. Let V be a subset of B̃ such that V ⊂ conv (G(V )∪{0}). PutW = F (V ),
v(t) = ω(V (t)) and w(t) = ω(W (t)) for t ∈ I. Using the properties of ω we get
(5)

v(t) ≤ ω(conv (G(V )(t) ∪ {0})) = ω(G(V )(t)) = ω(F (V )(t)) = w(t) for t ∈ I

and, similarly,

(6) w(V (T )) ≤ w(W (T )) for each subinterval T of I.

AsW is strongly equicontinuous and uniformly bounded, by Lemma 2 the function
s → w(s) is continuous on I. Fix t ∈ I and η > 0. Since I is compact and the



38 D.Bugajewski

functions s → w(s), s → ‖K(t, s)‖ are continuous, so there exists r > 0 such that
‖K(t, s)‖ ≤ r and |λ|Mw(s) ≤ r for s ∈ I. Choose δ > 0 in such a way that

(7)
∣∣‖K(t, s)‖ − ‖K(t, τ)‖

∣∣ ≤ η

2r
and M |λ| |w(s) − w(τ)| ≤

η

2r
for s, τ ∈ I such that |s− τ | ≤ δ. Divide the interval I into n parts 0 = t0 < t1 <

· · · < tn = a in such a way that ti − ti−1 ≤ δ for i = 1, . . . , n. Let Ti = [ti−1, ti],
i = 1, . . . , n. By Lemma 2 there exists τi ∈ Ti such that

(8) ω(W (Ti)) = w(τi), i = 1, . . . , n.

By the mean value theorem we obtain

F (x)(t) =

=

n∑

i=1

λ

∫

Ti

K(t, s)f(s, x(s)) ds ∈ λ

n∑

i=1

(ti − ti−1)conv (K(t, Ti)f(Ti × V (Ti))),

where K(t, Ti)f(Ti × V (Ti)) = {K(t, s)f(s, x(s)) : x ∈ V, s ∈ Ti}.
By (4) and Lemma 3 we have ω(K(t, Ti)f(Ti×V (Ti))) ≤ ‖K(t, si)‖Mω(V (Ti))

for some si ∈ Ti. Hence, by (6) and (8)

w(t) ≤ |λ|
n∑

i=1

(ti − ti−1)ω(conv K(t, Ti)f(Ti × V (Ti)))

≤ |λ|
n∑

i=1

(ti − ti−1)‖K(t, si)‖Mω(V (Ti))

≤ |λ|
n∑

i=1

(ti − ti−1)‖K(t, s)‖Mω(W (Ti))

= |λ|
n∑

i=1

(ti − ti−1)‖K(t, si)‖Mw(τi).

By (7) we obtain

|λ|M(ti − ti−1)‖K(t, si)‖w(τi) ≤ |λ|

∫

Ti

M‖K(t, s)‖w(s) ds+ (ti − ti−1)η.

Thus

w(t) ≤ |λ|

∫

I
M‖K(t, s)‖w(s) ds+ aη.

Since the above inequality holds for every η > 0, so

w(t) ≤ |λ|

∫

I
M‖K(t, s)‖w(s) ds.

As |λ|r(H) < 1, it follows that w(t) = 0 and, consequently, by (5), v(t) = 0 for
t ∈ I. Hence V (t) is relatively compact for t ∈ I and, by Ascoli’s theorem, V is
relatively compact in Cw(I, E1). Applying now Theorem 1, we deduce that there

exists u ∈ B̃ such that u = G(u). This ends the proof of Theorem 2. �
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3. A Kneser-type theorem

In this section we shall consider the equation (2) and we shall prove the fol-
lowing

Theorem 3. If 1◦–3◦ and (4) hold, then there exists an interval J = [0, d] such
that the set S of all weakly continuous solutions of (2), defined on J , is nonempty,

compact and connected in the space Cw(J, E1).

Proof: The proof of this theorem is based on some ideas from [7]. Let ̺ =
supr>0

r−c
Lmr
, where c = supt∈J ‖g(t)‖ and L = supt,s∈J ‖K(t, s)‖. Fix e < ̺

and choose b > 0 in such a way that c + Lmbe < b. Let d = min(a, e) and

J = [0, d]. Denote by B̃ the set of all weakly continuous functions J → Bb,

where Bb = {z ∈ E : ‖z‖ ≤ b}. We will consider B̃ as a topological subspace of
Cw(J, E1). Put G(x)(t) = g(t) + F (x)(t), where

F (x)(t) =

∫ t

0
K(t, s)f(s, x(s)) ds for x ∈ B̃ and t ∈ J.

From the inequalities
‖F (x)(t)− F (x)(τ)‖ ≤

∫ τ
0 ‖K(τ, s)‖mb ds+ (t − τ)Lmb

‖F (x)(t)‖ ≤ Ldmb (x ∈ B̃, 0 ≤ τ ≤ t ≤ d)

it is clear that G(B̃) ⊂ B̃ and the set F (B̃) is strongly equicontinuous. By
Lemma 1 we can prove that G is continuous. For any positive integer n set

Gn(x)(t) =

{
g(t) if 0 ≤ t ≤ d

n ,

g(t) +
∫ t−d/n
0 K(t, s)f(s, x(s)) ds if d

n ≤ t ≤ d.

Analogously as for G, it can be shown that Gn maps continuously B̃ into itself.
Moreover,

(9) ‖Gn(x)(t) − G(x)(t)‖ ≤
d

n
Lmb for x ∈ B̃ and t ∈ J.

Further, it can be easily verified that there exists a unique element xn ∈ B̃ such
that xn = Gn(xn). From the above it is clear that there exists a sequence (un)

such that un ∈ B̃ and

(10) lim
n→∞

sup
t∈J

‖un(t)− G(un)(t)‖ = 0.

Let V = {un : n ∈ N} and let W = F (V ). Arguing similarly as in Section 2, it
can be shown that V is relatively compact in Cw(J, E1). Hence (un) has a limit
point. From (10) and the continuity of G, it follows that u = G(u). This proves
that the set S is nonempty.
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Further, since G is continuous, so S is closed. As S = G(S), so ω(S(t)) =
ω(F (S)(t)) for t ∈ J . Using again similar arguments as in Section 2, we can show
that S is compact in Cw(J, E1).
Now we shall prove that S is connected. Suppose that it is not connected. Thus

there exist nonempty compact sets S0, S1 such that S = S0∪S1 and S0∩S1 = ∅.
Since Cw(J, E1) is a completely regular space, so there exists (cf. [6, § 41, II,
Remark 3]) a continuous function w : Cw(J, E1) → [0, 1] such that w(x) = 0 for
x ∈ S0 and w(x) = 1 for x ∈ S1. Fix u0 ∈ S0, u1 ∈ S1 and a positive integer n.
Set

an(t) = r(u1 − Gn(u1)) + (1− r)(u0 − Gn(u0)) (0 ≤ r ≤ 1).

By (9), we have

(11) ‖an(r)(t)‖ ≤
d

n
Lmb for t ∈ J and 0 ≤ r ≤ 1.

Hence
(12)

‖an(r)(t) +Gn(x)(t)‖ ≤ ‖an(r)(t)‖+ ‖Gn(x)(t)‖ ≤
d

n
Lmb + c+ (d−

d

n
)Lmb < b

for x ∈ B̃, t ∈ J and 0 ≤ r ≤ 1.
Fix r ∈ [0, 1]. Define a sequence of functions xi, i = 1, . . . , n, by the formulas

x1(t) = an(r)(t) + g(t) for 0 ≤ t ≤
d

n

xi(t) =

{
xi(t) for 0 ≤ t ≤ i

nd,

xi(
i
nd) for i

nd ≤ t ≤ d,

xi+1(t) =

{
xi(t) for 0 ≤ t ≤ i

nd,

an(r)(t) +Gn(xi)(t) for i
nd ≤ t ≤ i+1

n d.

Put unr = xn. From the above definitions and (12) it follows that unr ∈ B̃ and
unr = an(r) +Gn(unr).
Now we shall show that unr depends continuously on r. Since

‖an(p)(t)− an(r)(t)‖ = ‖p(u1(t)− Gn(u1)(t)) + (1− p)(u0(t)− Gn(u0)(t))−

− r(u1(t)− Gn(u1)(t)) + (1− r)(u0(t)− Gn(u0)(t))‖ ≤

≤ |p − r|(‖u1(t)− Gn(u1)(t)‖ + ‖u0(t)− Gn(u0)(t)‖) =

= |p − r|(‖G(u1)(t) − Gn(u1)(t)‖ + ‖G(u0)(t)− Gn(u0)(t)‖) ≤

≤ |p − r|
2

n
dLmb for 0 ≤ p ≤ 1 and t ∈ J,

so limp→r unp(t) = unr(t) uniformly on [0,
d
n ]. Thus limp→r unp(t) = unr(t)

uniformly on J . By the continuity of Gn

lim
p→r

φ(Gn(unp)(t)− Gn(unr)(t)) = 0
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uniformly on J , so limp→r φ(unp(t) − unr(t)) = 0 uniformly on [
1
nd, 2nd] and,

consequently, limp→r φ(unp(t) − unr(t)) = 0 uniformly on [0,
2
nd] for φ ∈ E∗

1 .
Repeating this argument, we deduce that

lim
p→r

φ(unp(t)− unr(t)) = 0 uniformly on J

for φ ∈ E∗

1 . Hence unr depends continuously on r and, consequently, the mapping
r → w(unr) is continuous on [0, 1]. Moreover, un0 = u0 and un1 = u1, so
w(un0) = 0 and w(un1) = 1. From this we deduce that there exists rn ∈ [0, 1]
such that

(13) w(unrn
) =
1

2
.

For simplicity put vn = unrn
. As limn→∞ an(r) = 0 uniformly on r, we get

(14) lim
n→∞

(vn − G(vn)) = lim
n→∞

(an(r) +Gn(vn)− G(vn)) = 0.

Using once more similar arguments as in Section 2, we conclude that the sequence
(vn) has a limit point v. In view of (14) and the continuity of G, we infer that
v ∈ S, so w(s) = 0 or w(s) = 1. On the other hand, from (13) it is clear that

w(v) = 12 , which yields a contradiction. �
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