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Commutative neutrix convolution products of functions

BRrIAN FISHER, ADEM KILIGMAN

Abstract. The commutative neutrix convolution product of the functions z"e*® and

xse’frx is evaluated for r,s = 0,1,2,... and all A\, u. Further commutative neutrix con-

volution products are then deduced.
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In the following we let D be the space of infinitely differentiable functions with
compact support and let D’ be the space of distributions defined on D. The
convolution product f*g of two distributions f and g in D’ is then usually defined

by the equation
((fxg) (@), 0) = (f(y), (g9(x), d(z + 1))

for arbitrary ¢ in D, provided f and g satisfy either of the conditions
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side,
see Gel'fand and Shilov [7].

Note that if f and g are locally summable functions satisfying either of the
above conditions then

o o0
1) (Fio)a) = [~ f0g(o—vyde= [ fta=tgtt)ar
—o —0o0
It follows that if the convolution product f*g exists by this definition then

(2) fxg = g+f,
(3) (f*9) = fxg' = f'xg.

This definition of the convolution product is rather restrictive and so the non-
commutative neutrix convolution product was introduced in [2]. A commutative
neutrix convolution product was given more recently in [4]. In order to define the
neutrix convolution product we first of all let 7 be a function in D satisfying the
following properties:

() ) = (),

0<7(x) <1,
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The function 7, is now defined by

1, |z| < n,
m(z) = { 7(n"x —n"t1), T >n,
r(n"x + 0", < —n,
forn=1,2,....
Definition 1. Let f and g be distributions in D' and let f, = fm, and g, = g™
for n = 1,2,... . Then the commutative neutrix convolution product f & g is

defined as the neutrix limit of the sequence {fn*gn}, provided that the limit h
exists in the sense that

%:gom<fn*gna ¢> = <h7 ¢>7

for all ¢ in D, where N is the neutrix, see van der Corput [1], having domain
N’ ={1,2,...,n,...} and range N" the real numbers, with negligible functions
finite linear sums of the functions

" n, In"n A>0,r=1,2,...)
and all functions which converge to zero in the usual sense as n tends to infinity.

Note that in this definition the convolution product fr*gy, is defined in Gel’fand
and Shilov’s sense, the distributions f, and g, both having bounded support.
Note also that the non-commutative neutrix convolution, denoted by f &) g, was
defined as the limit of the sequence { fy*g}.

The following theorem was proved in [4], showing that the neutrix convolution
product is a generalization of the convolution product.

Theorem 1. Let f and g be distributions in D’ satisfying either condition (a)
or condition (b) of Gel’fand and Shilov’s definition. Then the neutrix convolution
product f & g exists and

fH g =fxg.

A number of neutrix convolution products have been evaluated. For example,
) & ! see [4], 2 & :c’_;__A see [5] and Inz_ & ', see [6].

In order to define further neutrix convolution products, we increase our set of
negligible functions given in Definition 1 to also include finite linear sums of the
functions N

n*e!™  (u>0).
We now define the locally summable functions ef‘i_w and e by

ej\rx:{e/\w’ x>0, eix:{o’ x>0,
0, x <0, M <.
It follows that
eim + eim _ eAm’ xreix _ I:_eim’ Ire)\x _ (_1)7" r im
forr=20,1,2,....
We now prove
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Theorem 2. The neutrix convolution product (z"e**) & (z%€l") exists and

nx Az
Az pw €4 ted
4 eMelt = — ——
el + AT

(Ire)_\m) Iﬂ (xseix) = DK‘DZTM

S - ) €T
s\ (r+ s —d)latel

(5) = (z) (()\ _ lu)r-zs—i—:-l +

=0

"\ (1) (r 4 s — i) late®
+ Z 7 ()\ _ )r+s—i+1 ’
i=0 H

where Dy = 0/0X and Dy, = 0/0p, for X # pand r,s = 0,1,2,... ; these neutrix
convolution products existing as convolution products if A > p and
(6) (2" e & (xsei‘_m) = —B(r+1,s+1)sgnz.a st

where B denotes the Beta function, for all A and r,s =0,1,2,... .

PROOF: We put (e**),, = e’ 7, (z) for n = 1,2,... and suppose first of all that
A # . Since (e*?),, and (e i ¥}y, are summable functions with compact support,

the convolution product (efx)n*(eix)n is defined by equation (1) and so

xay oy [y ety g [ e J
(e2®)p (e+ In 3 (e_)n(e+ Yn dt eNn( )el Tn(z — t) dt.

—n—m—"n

Thus if —n <z <0,

(e = [N [T g et o —

(7) o
e _ ppz—(A—p)n — —O—pn
= Y- +0(n e ).
When n >z > 0,
(8)
0 r—n
(@)l = [ Nere0 e [ Moy (1) (2 — 1) dt
r—n r—n—n-—"

- ?:L(A_M)n +O(n"em ),
It now follows from equations (7) and (8) that for arbitrary ¢ in D
(A" ) (e In, $(2)) = (A = ) T + €27, o))+
= (A=) e AT 4 e (a)) + O(n e O
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and so
N— () (e)n, 6(2)) = (A — ) "Ll + X, g(a)),

the usual limit existing if A > p. Equation (4) follows.
We now put (z"e*), = 27e 7, (z) and (z%el)n = a%elm (). Then as
above, we have

0
(xreiw)n*(xse’f)n = / M () (z — t)sei(w_t)m(x — t) dt.

Thus if —n <z <0,

€T
(xre)‘x)n*(xseim)n = / M (z — )M =) gy

—-n

+ /_ M () (@ — £)5 e T D (2 — t) dt

) = DyD;, e /x A=t gt 1 O(n=HrFse=(A—mn)
—n
e)\x A\
= D\D;, o+ " P(n) - e~ A-mny

+ O(n—n—l—r—i-se—()\—u)n)

3

on using equation (7), where P denotes a polynomial.
When n >z > 0,

0
(xre)‘x)n*(xseiw)n = / "M (z — )M =) qiy
r—n

+ / ) M () (@ — £)* e T D (2 — 1) dt

_n_n*?’b

(10) S L UT 0 (A=p)t —n4r+s, —(A—p)n
zDAD“e”/ eV At + O(n e wm)

r—n

— D' DS eh” Az p —(A—p)n
=D\Diis—, + e P(n)e +

+ O(n—n—l—r—i-se—()\—u)n) ,

on using equation (8).
It now follows as above from equations (9) and (10) that for arbitrary ¢ in D

N—lim((a"eX")n#(2¢}")n, d()) = DEDLA — ) ~Hel + X, o),

n—oo
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the usual limit existing if A > p. Thus

nx Az
el 4 e’
(z"eM) B (a®eh") = Dgpgﬁ

and equation (5) follows.
Now suppose that A = u. Then as above, we have

0
(xreix)n*(:zsei‘_m)n = / M () (z — t)sei(x_t)Tn(:E —t) dt.
_n_n*’fl
Thus if —n <z <0,
(2" eAT) 1 (25 ), =
x —n
= eM/ " (x —t)% dt + e”/ () (2 — )57 (x — t) di
-n —n—n-"
N (8 ;[ i r+i +r+
— x _1 (2 S—Zt’f‘ Zdt O —N-+r-s
Ay (v [ et o)

ixr—i-s—i-l _ (_n)r+i+1xs—i
r+i1+1

+ O(n—n—l—r—i-S)

(_l)rxs—inr—i-i—l—l

1 s
r+s+1 -1 i tr—i—i dt Az s
S )/0 | rrivl

=0

Il
a
>
8
[~]-
7N
. . W .
~ N~
T
—_

+ O(n—n—i-r-‘,-S)

s . .
1) sl r+i+1
B(r+1,s+1)a"HA 4 A0y (S.>( for W
=\ r+i+1
+ O(n—n—i-r—l—S)

where B denotes the Beta function.
When z > 0,

0 T—n
- e)‘x/ (@ —t)° dt + e)‘x/ {7 (@ — )57 (1) dt
r— r—n—m-—"
s

n
e s (_l)i-i-lxs—i(x _ n)r-i-i—i-l N O(n—n+7’+8)
r+i+1

and it follows that

r_A\x s _Ax r+s+1_Az ¢ s (_1)i+1
N—-Ilim(z"e?)*x(z°¢ ==x e | —
(12) n—00 ( (@€ )n §<z)r+z+l

= —B(r+1,s+ a"TstleA
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when x > 0.
It now follows as above from equations (11) and (12) that for arbitrary ¢ in D

N—lim((xreix)n*(:vsej‘_x), P(x)) = B(r+1,s+ 1)(a" 5T — xr+5+1ej‘_x, o(x))

n—oo
and equation (6) follows.

Corollary. The neutrix convolution products (z"e®) & (z%ei") and (z"eM)
(z%el™) exist and

(13) (2" W (z%eh”) = iDQD;;i—mM,

(14) (z"e M) B (2%eMT) = 0,

for \#£ pand r,s =0,1,2,... and

(15) (z"eM) B (2%e4) = £B(r + 1,5 + 1)a" 5 TLed”,

(16) (2" M)V E (2%eM) = —B(r + 1,54 1) sgna.a" 75T,

forall X andr,s =0,1,2,....
ProoF: We will suppose first of all that A # p. It was proved in [3] that

Ao _ i

(17) (z" 3" )x(2°eH”) = DL DS efia
+ L 1

Ao _ e

(18) (2" A7) = DY DR =

— — )=\, W b\ .

It follows that

Az
A A A €
(z"e) B (2%el) = (a"ef” + a"el”) B (2%el) = DKDZH,
on using equations (5) and (17) and noting that the neutrix convolution product
is distributive with respect to addition.
Similarly,
T
(") B (a%el) = (@7 el” +a"eX") B (%) = —DiDy .,

on using equations (5) and (18). Equations (13) are proved.
We now have

(ZCTG)\:C) bd (x%el?) = (wre)‘x) = (:Cse’_f_x +2%e!") =0,
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on using equations (13), proving equation (14).
Now suppose that A = u. It was proved in [3] that in this case

(19) (2"l x(z%e)) = B(r 4 1,5 + 1)’ TsH1elT,

(20) (2" )k (2°e) = —B(r + 1,5 + 1)a" 51,

It follows that

(21) (") & (xsei‘_m) (a:ref‘,_x +2"e M) & (a:sef,‘_m) = B(r+1,s+1)a" st

on using equations (5) and (19).
Similarly,

(22) (2"eM)H (2°eM) = (2" )‘x—f—xr AP (25eM) = —B(r+1, s—i—l)xr"'s"'lei‘_x,
on using equations (5) and (20) and then
(;Ere)\x)@ (xse)\m) (:Cre)\x)@( s Am+xseAm) _ —B(T—l—l, S+1) Sgn$.$r+s+16)‘m,

on using equations (21) and (22). Equations (15) and (16) are now proved.

The non-commutative neutrix convolution product (z"e**)® (* ') was eval-

uated in [3]. Note that

(27 XY B (2%€lf7) = (a7 M) @ (2%l

for A # p, but
(A B (#76) £ (27X @ (e,
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