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On the conditional intensity of a random measure

Pierre Jacob, Paulo Eduardo Oliveira*

Abstract. We prove the existence of the conditional intensity of a random measure that
is absolutely continuous with respect to its mean; when there exists an Lp-intensity,
p > 1, the conditional intensity is obtained at the same time almost surely and in the
mean.
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1. Introduction

Let X be a locally compact Hausdorff space with a countable topological basis,
and d a distance such that the space (X , d) is Polish. Further, we denote by B
the ring of relatively compact Borel subsets of X , and by M the space of Borel
non negative measures that are finite on B, that is, the space of Radon measures,
endowed with the vague topology. A random measure ξ is a measurable function
defined on a probability space (Ω,F ,P) taking values on M endowed with the
Borel σ-algebra associated with the vague topology. Finally, if B ∈ B, we denote
by Bξ the random measure on B induced by ξ: (Bξ)(A) = ξ(A ∩ B), for every
A ∈ B.
Take a sequence {Πn}, of B-measurable partitions of X such that, for every

C ∈ B and n ≥ 1, the number of elements of the set {I ∈ Πn : I ∩ C 6= ∅} is
finite, and maxI∈Πn

diam (I) −→ 0 as n −→ ∞. Further, suppose that Πn+1 is
a refinement of Πn, for every n ∈ N.
Let K ∈ I =

⋃∞
n=1 Πn be such that E(ξ(K)) < ∞. For every n ≥ 1 define

ζn(K) =
∑

I∈Πn∩K

E (ξ(I)|Icξ) ,

where Ic represents the complementary set of I. In [6], it is shown that ζn(K)
converges almost surely and in mean to ζ(K), where ζ is a random measure, when
ξ is a simple point process with finite second order moment. Moreover, Papangelou
[6], [7] has given conditions for ζ to be almost surely diffuse and independent of
the choice of the sequence of partitions. Kallenberg extended these results with
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a proof which enables a more accurate study of the limit random measure ζ, [2].
In the book [4, p. 160], it is remarked that this property may be generalized to
any discrete random measure. In fact, the proofs depend essentially on the fact
that the random measure ξ is discrete, as the following property is fundamental
in that proof:

∀I,J∈I, J⊂I , P {·|Jcξ} =
P {·, ξ(I \ J) = 0|Icξ}

P {ξ(I \ J) = 0|Icξ}

with P {ξ(I \ J) = 0|Icξ} > 0 a.s. on {ξ(I \ J) = 0}.
In this paper we propose a quite different proof of the above mentioned con-

vergences adapted to the case of a random measure almost surely absolutely
continuous with respect to its mean measure (which excludes most discrete point
processes!). In fact, to prove the almost sure convergence, we explicitly use Kallen-
berg’s condition of absolute continuity: let p > 1 and ‖ · ‖p be the norm of
Lp(Ω,F ,P), and define the set function ‖ξ‖p by

‖ξ‖p(K) = lim
n→∞

∑

I∈Πn∩K

‖ξ(I)‖p

for every K ∈ I (see [3] or [4, p. 23]). Suppose that, for every K ∈ B, ‖ξ‖p(K) <
∞. If we put µ = Eξ then, ξ ≪ µ a.s. and ‖ξ‖p is a measure verifying ‖ξ‖p =

‖Xµ‖p = ‖X‖pµ, where X = dξ
dµ .

However, to prove the mean convergence, we follow an argument which is close
to the proof of Theorem 1 in [7]. In what regards the mean convergence our result
is somewhat weaker than the result proved by Papangelou [7], as the assumption
of almost sure absolute continuity with respect to the mean measure implies the
absolute continuity of the Campbell measure with respect to µ⊗P on the product
σ-field which is stronger than the absolute continuity imposed by Papangelou in
his theorem.
The results obtained are essentially convergence theorems, as there is no con-

struction on our reasoning. Nevertheless, if ξ ≪ µ a.s. and µ is diffuse, it is
known that the conditional intensity measure is the same as the original random
measure ξ. This is already known in the more general case of ξ being a.s. diffuse,
cf. [8].

2. Mean convergence

(a) Let K ∈ B be fixed. The restriction µK of µ to BK = {B ∈ B : B ⊂ K} is
a finite measure. Without loss of generality we may suppose that µK(K) = 1 in or-
der to enable us to use martingale theory. For example, if Ω0 = {ω ∈ Ω : ξω ≪ µ}
and ω ∈ Ω0, the sequence

Xn(ω) =
∑

I∈Πn∩K

ξω(I)

E(ξ(I))
II , n ≥ 1
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converges µK -almost everywhere on K to X(ω). As remarked by [4, p. 24], the
sequence {Xn} converges then to X P⊗µK -almost everywhere on Ω×K, so we
may suppose X measurable on (Ω× K,F ⊗ BK).
For every I ∈ I ∩ K and t ∈ I, put

νI
t (A) =

∫

A
X(·, t) dP, A ∈ σ(Icξ),

where σ(Icξ) is the σ-algebra induced by the restriction of ξ to Ic. As the spaceM
endowed with the vague topology is Polish, σ(Icξ) admits a countable base. From
a theorem of Doob ([5, p. 64]), there exists a σ(Icξ) ⊗ BK -measurable function

uI(ω, t) on Ω× K such that, for every t ∈ K

uI(·, t) =
dνI

t

dP
.

As E(X |Icξ) = uI(·, ·), we derive that

Yn =
∑

I∈Πn∩K

E(X |Icξ)II

is an F ⊗ BK -measurable function.
Define

Zn =
∑

I∈Πn∩K

E

(

ξ(I)

E(ξ(I))
|Icξ

)

II ,

then

∫

|Zn − Yn| dP⊗ µk =

=

∫

K
E

∣

∣

∣

∣

∣

∣

∑

I∈Πn∩K

E

(

ξ(I)

E(ξ(I))
|Icξ

)

II −
∑

I∈Πn∩K

E (X |Icξ) II

∣

∣

∣

∣

∣

∣

dµ =

=

∫

K

∑

I∈Π∩K

E

∣

∣

∣

∣

E

(

ξ(I)

E(ξ(I))
− X |Icξ

)∣

∣

∣

∣

II dµ ≤

≤

∫

K

∑

I∈Πn∩K

E

(

E

(
∣

∣

∣

∣

ξ(I)

E(ξ(I))
− X

∣

∣

∣

∣

|Icξ

))

II dµ =

=

∫

K

∑

I∈Πn∩K

E

∣

∣

∣

∣

ξ(I)

E(ξ(I))
− X

∣

∣

∣

∣

II dµ =

=

∫

K
E

∣

∣

∣

∣

∣

∣

∑

I∈Πn∩K

ξ(I)

E(ξ(I))
II − X

∣

∣

∣

∣

∣

∣

dµ =

∫

|Xn − X | dP⊗ µK .
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We may now apply Scheffé’s lemma ([1, p. 184]). In fact,

• P⊗ µK is a finite measure;

•

∫

Xn dP⊗ µK =

∫

X dP⊗ µK = E(ξ(K)) < ∞;

• Xn ≥ 0, n ∈ N, X ≥ 0;
• Xn −→ X P⊗ µK -almost everywhere.

Consequently

lim
n→∞

∫

|Zn − Yn| dP⊗ µK = 0.

(b) For every x ∈ K, let In(x) be the element of Πn that contains x and
σn(x) = σ(ξ(A), A ∈ Ic

n(x)). The sequence of σ-algebras {σn(x)}, for fixed x, is
increasing and σ(x) = σ (

⋃∞
n=1 σn(x)) = σ({x}cξ) = σ(ξ(A), x /∈ A). In fact, if

A ∈ B and x /∈ A, ξ(A) = limn→∞ ξ (A ∩ Ic
n(x)).

On the other hand, E(ξ(K)) =

∫

K
E(X) dµ < ∞, so E(X) < ∞ µK -almost

everywhere. Put K0 = {x ∈ K : E(X(·, x)) < ∞}. If x ∈ K0, we have

E (X(·, x)|Ic
nξ) −→ E (X(·, x)|{x}cξ) a.s. .

The set D = {(ω, x) : Yn(ω, x) does not converge} is F ⊗ BK-measurable, and,
for every x ∈ K, the set Dx = {ω : Yn(ω, x) does not converge} is F -measurable.
As P(Dx) = 0 for x ∈ K0, and µ(K \ K0) = 0, it follows P ⊗ µK(D) = 0. We
may then suppose that Y = E(X |{·}cξ) is F ⊗ BK -measurable and Yn −→ Y
P⊗ µK -almost everywhere. Also Yn ≥ 0, Y ≥ 0 and

∫

K
E(Yn) dµ =

∫

K

∑

I∈Πn

E (E(X |Icξ)) II dµ =

∫

K
E(X) dµ = E(ξ(K))

∫

K
E(Y ) dµ =

∫

K
E(X) dµ = E(ξ(K)).

Applying Scheffé’s lemma as above, it follows

∫

|Yn − Y | dP⊗ µK −→ 0.

(c) From (a) and (b)

E

∣

∣

∣

∣

ζn(K)−

∫

K
E(X |{·}cξ) dµ

∣

∣

∣

∣

= E

∣

∣

∣

∣

∫

K
Zn − Y dµ

∣

∣

∣

∣

≤

∫

|Zn−Y | dP⊗µK −→ 0.

Taking account of the F ⊗BK -measurability of E(X |{·}cξ), we may define a ran-
dom measure on K by

∀B∈B∩K ζ(B) =

∫

B
E(X |{·}cξ) dµ,

which is easily extended to the whole space X .
Remark that if µ is diffuse, then Xn is σ({x}c)-measurable, from what follows

that X is σ({x}c)-measurable, so the conditional intensity measure coincides with
the original random measure ξ.
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3. Almost sure convergence

(a) Using the same notations as in Section 2, put, for every m ∈ N

Um = inf
n≥m

Xn Vm = sup
n≥m

Xn

and suppose that ‖ξ‖p(K) < ∞. Let q > 0 be such that 1p +
1
q = 1, then, from

[4, 2.19, p. 24],

E

(

sup
n

∫

K
X
1+ 1

q

n dµ

)

< ∞.

So, for almost every ω

sup
n

∫

K
X
1+ 1

q

n (ω) dµ < ∞

which means that the martingale {Xn(ω)} is bounded in L
1+ 1

q (K,BK , µK). Then,
from [5, p. 55]

‖ sup
n

Xn(ω)‖1+ 1
q

≤ (q + 1) sup
n

‖Xn(ω)‖1+ 1
q

,

from which follows

E

(
∫

K
sup
n

X
1+ 1

q

n dµ

)

≤ (q + 1)
1+ 1

qE

(

sup
n

∫

K
X
1+ 1

q

n dµ

)

< ∞.

Then

(1)

∫

sup
n

Xn dP⊗ µK < ∞,

from which we derive, using the dominated convergence theorem,
∫

Vm − Um dP⊗ µK −→ 0.

We remark that it is the condition (1) that is essential for the rest of the proof.

(b) The proof follows now the proof of a theorem by Hunt ([6, p. 66]): for
n ≥ m

∑

I∈Πn∩K

E(Um|Icξ)II ≤
∑

I∈Πn∩K

E

(

ξ(I)

E(ξ(I))
|Icξ

)

II ≤
∑

I∈Πn∩K

E(Vm|Icξ)II .

Analogously to (b) of Section 2, noting that, according to (a), Um(x) and Vm(x)
are, for µK -almost all x, P-integrable, it follows that P⊗ µK -almost everywhere

∑

I∈Πn∩K

E(Um|Icξ)II −→ E(Um|{·}cξ)

∑

I∈Πn∩K

E(Vm|Icξ)II −→ E(Vm|{·}cξ)
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as n −→ ∞. So, P⊗ µK -almost everywhere

E(Um|{·}cξ) ≤ lim inf Zn ≤ lim sup Zn ≤ E(Vm|{·}cξ).

From Fatou’s lemma
∫

K
E(Um|{·}cξ) dµ ≤ lim inf ζn(K).

On the other hand, as Vm is P ⊗ µK -integrable, E(Vm|{·}cξ) is almost surely
µK -integrable, so from Fatou-Lebesgue’s theorem

lim sup ζn(K) ≤

∫

K
E(Vm|{·}cξ) dµ, P-a.s. .

Finally, E

(
∫

k
E (Vm − Um|{·}cξ) dµ

)

=

∫

Vm −Um dP⊗µK , for every m ∈ N,

so it follows
lim inf ζn(K) = lim sup ζn(K) P-a.s. .

4. Conclusion

(a) The simple procedure used is unfortunately specific to the case ξ ≪ Eξ
a.s. and the following counterexample shows that it is not applicable to point
processes: put ξ = δu where u is a uniform random variable on [0, 1], then

Xn −→ 0 P ⊗ µ-almost everywhere,

∫

Xn dP ⊗ µ = 1 for every n ∈ N and
∫

supn Xn dP⊗ µ =∞, so

∑

I∈Πn

E(ξ(I)|Icξ) = 1 P-a.s. .

(b) We remark that the result does not change if we take the σ-algebras
σ (ξ(J) : J ∈ Πn, J 6= I) in place of σ(Icξ). In fact, it would be interesting to
know if this substitution is possible when ξ is a point process.
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µ being diffuse and in what regards the mean convergence.

References

[1] Billingsley P., Probability and Measure, Wiley, 1979.
[2] Kallenberg O., On conditional intensities of point processes, Z. Wahrsch. Verw. Geb. 41
(1978), 205–220.

[3] , Lp intensities of random measures, stochastic processes and their applications,
Stoch. Proc. and Appl. 9 (1979), 155–161.

[4] , Random Measures, Academic Press, 1983.



On the conditional intensity of a random measure 109

[5] Kopp P.E, Martingales and Stochastic Integrals, Cambridge University Press, 1984.
[6] Papangelou F., The conditional intensity of general point processes and an application to
line processes, Z. Wahrsch. Verw. Geb. 28 (1974), 207–226.

[7] , Point processes on spaces of flats and other homogeneous spaces, Math. Proc.
Cambridge Phil. Soc. 80 (1976), 297–314.

[8] Varsei A., Ph.D. thesis, 1978.

Univ. Sciences et Techniques de Lille, UFR Math. Pures et Appliquées, Bat. M2,

59655 Villeneuve D’Ascq, France
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