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Notes on approximation in the Musielak-Orlicz
spaces of vector multifunctions
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Abstract. We introduce the spaces M)l,ﬁp, M;),:Z, M{’,gp and Mf’,d,w of multifunctions.

‘We prove that the spaces Mll,’v and M. 30’, d,p are complete. Also, we get some convergence
theorems.
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1. Introduction
In this paper we extend the results of [2] and [3] to the case of the spaces M;, i

]\;[{}’ o and M{}’ d,o of multifunctions. All definitions and theorems connected with
the idea of Musielak-Orlicz space can be found in [4] and [5].

Let I be a bounded interval. Let (I,X,u) be the Lebesgue measure space.
Let X be a real separable Hilbert space with the norm || o ||x. We denote by
L¥#(I, X) the Musielak-Orlicz space of all strongly measurable functions z : I — X
generated by a modular

o(x) = [ro(t lz(t)] x)du,
where ¢ is a p-function with a parameter such that ¢ : I x R — Ry, (t,0) is an
even continuous function, nondecreasing for u > 0, p(¢t,u) = 0 iff u = 0 for every
t € I, (o, u) is measurable for every u € R and uh—{]go o(t,u) = oo for ae. t € I.
The space L?(I, X) is N-complete (see [5, Corollaries 3.3]).
Let N be the set of all positive integers.

2. Completeness

Let Y be a real separable Hilbert space. Let o denote the zero element in Y.
Let
dist (A, B) = max(sup inf |z — ylly, sup inf [z — ylly),
rcAYEB yeBTEA

for all nonempty bounded A, B C Y. Let
My (I)={F :1—2Y : F(s) is nonempty for every s € I, closed
and bounded for a.e. s € I'}.
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For F,G € My (I) we introduce the function d(F, G) by the formula:

0, if F(t) =G(¢t)
d(F,G)(t) = < dist (F(t),G(t)), if F(t),G(t) are bounded
00, it F(t) # G(t) and F(t) or G(¢) is unbounded

for every t € I.

Remark 1. If X is a Banach space, then the space of all nonempty closed and
bounded subsets of X with dist is a complete metric space.

Lemma 1. Let F,, € My (I) for every n € N. If:

(a) there is no > 0 such that d(Fy, Fy,) are measurable for m,n > no,
(b) for every e > 0 and every § > 0 there exists K > n, such that u({t € I :
d(Fy, Fn)(t) > 0}) <e, for allm,n > K,

then there exist a subsequence {Fy, } of the sequence {Fy,} and F' € My (I) such
that d(Fy,, F) — 0 a.e. and d(Fy,, F) are measurable for n > n,.

PRrROOF: Let Fy, € My (I) for every n € N. We have from the assumptions that
there exists N (k) such that u({t € I : d(Fy, Fn)(t) > 27%}) < 27F for all m,n >
N(k). Let ng = N(1), ng = max{N(2), N(1)+1},..., ny, = max{N(m), N(m —

1)+1}. Let € > 0 be arbitrary. So there is i such that 20—l < ¢ Letig <i < j.
Let A; = {t € I : d(Fp,,,, Fn,)(t) > 277}, Tt is easy to see that w(Ui2;, Ai) < e
and for t € I'\ |J;2, A; we have

i=1g

- o0
d(ananz Z Fnk+17Fnk Z Fnk+1=Fnk() €.
k=1 k=1

So for the subsequence {Fy,} we have that for a.e. ¢ € I and for every ¢ > 0
there is K > 0 such that d(F}, , Fy,)(t) < ¢ for all k,l > K. Hence by Remark 1
there is ' € My (I) such that d(Fy,,F) — 0 as k — oo a.e. and d(Fy, F') are
measurable for n > ng because d(Fy,, F) = limg_, o d(Fy, , Fn) a.e.

Let:
M(I,Y)={z:I — Y :x is strongly measurable},

M(I,R)={q: I — R:qis measurable}.
We denote for all a € Y, R;r > 0, B(a,r) = {x € YV : ||z —a|y < r},
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R(o,r,R)={z €Y :r <|z|]ly < R}. Let:

n
M)o,’n(l) ={FeMy(): F(s)= U R(o, T%(S),R%(s)) for every s € I,r%(O),
=1
Rip(0) € M(I,R) fori=1,...,n, Ru(t) <ridl(t) fortel,
i=1,...,n—1,ifn> 1},

= UMy
i=1
My (I) = {F € My(I) : F(s) = B(o, Rp(s)) for every s € I, Rp(c) € M(I, R)},

My (I) = {F € My(I) : F(s) = Blag(s),rr(s)) for every s € I,ap(o) €
M(1,Y),rp(e) € M(I, R)}.

If F,G € M{(I) and F(t) = G(t) for a.e. t € I, then F = G in MJ-(I). If F,G €
]\;[{)/(I) and F'(t) = G(t) fora.e. t € I, then F = G'in ]\;[{)/(I) In the set My (I) we
introduce the operations ® : Rx M-(I) — My-(I), & : My-(I)x M{-(I) — M-(I)
as follows: let Fy,F» € ML(I), a € R, Fi(s) = Blag,(s),7F,(s)), Fa(s) =
B(ap,(s),rp,(s)) for every s € I; if F' = 1 @ F3 then

F(s) = B(ap,(s) + ap,(s), 7k, (s) + 7, (s)) for every s eI,
if G=a®F, then G(s) = B(aap, (s),arp,(s)) for every sel.

It is easy to see that F,G € MY( ). In the set ]\;[{)/(I) we introduce the operations
®: Rx MY(I) — M2(I), ® : M(I) x ME(I) — MY(I) as follows: let Fy, Fy €
M(I), a € R,

n m
Fi(s) = | R(o, 7%, (5), R, (5)), Fa(s) = | R(0, 75, (), Rz, (s)) for all s € I,
1=1 1=1
if F=F; & Fy, then F(s U R(o, TFl +7°F2( ), %1(3) —i—R{;z(s))
1<i<n
1<js<m

for every s € I, if

n
G =a©® Fy, then G(s) = U R(o, ar%l (s), CLR%I (s)
i=1

for every s € I. It is easy to see that F,G € M}%(I) 0
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Let now
My (1) = {F € My(I) : 7p(o) € L¥(I, R)},
My, (1) = {F € My:(I) : ap(e) € L(LY),r(e) € LI B)},
My () = {F € M{(I) : 17:(0), Rip(0) € L¥(I,R) for i = 1,... ,m,
if Fe My"(I)}.

Remark 2. If F|G € M;,@(I), then d(F,G) is measurable.

PRrOOF: It is easy to see that

d(F,G)(s) = |lap(s) —ag(s)|ly+ | rr(s) —rg(s) | for a.e. s €I,

so d(F, G) is measurable. O
Remark 2°. If F.G € ]\;[{}’SD(I), then d(F, G) is measurable.
PROOF: Let
n m
F(s) = [ R(o,p(s), Rip(s)) = |J R(o, %), L, (5))
i=1 j=1

for s € I. It is easy to see that

'Cﬁ

d(F,G)(s) = dist (| J[r% U (s)]) for a.e. s €I,

=1

so d(F, G) is measurable (see [1, Remark 1, p. 120]). O

Definition 1. Let F, F,, € My (I) for every n € N. We write F, LA F, if there
exists n, > 0 such that d(Fy,, F') are measurable for n > n, and

/go(t, ad(Fy, F)(t))dt — 0 as n — oo for every a > 0.
I

Definition 2. Let F;,, € My (I) for every n € N. We say that the sequence
{Fy} tulfils the (C, d, p)-condition, if there exists n, > 0 such that d(F,, Fy,) are
measurable for n,m > n, and for every ¢ > 0 and every a > 0 there is K > n,
such that [} o(t, ad(Fy, Fr,)(t)) dt < e for all m,n > K.

Definition 3. Let A C My (I). We say that A is (C,d, p)-complete, if for every
sequence {Fy} such that F, C A for every n € N and the sequence {Fy} fulfils

the (C, d, ¢)-condition, there is F' € A such that Fy, LA F.
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Theorem 1. Mxl,’cp(l) is (C,d, p)-complete.

ProoF: Let F, € M}l,sp(l) for every n € N and let the sequence {F,} fulfil
the (C,d, p)-condition. Let Fy(s) = B(ap, (s),7F,(s)) for every s € I and every
n € N. Then {ap, } is a Cauchy sequence in the Musielak-Orlicz space L¥(I,Y")

and {rp,} is a Cauchy sequence in the Musielak-Orlicz space L¥(I, R). So there
area € LP(1,Y) and r € L¥(I, R) such that

ola(a—ap,)) — 0,0(a(r —7F,)) — 0 as n — oo for every a > 0.
Let F(s) = B(a(s),r(s)) for every s € I. It is easy to see that F € M;,(p(]) and

£, 24 F. 0

Remark 3. ]\7[)0,%0([) is not (C, d, ¢)-complete.
Now, let us denote

My g(I) = {F € My(I) : d(Fp, F) — 0 a.e. for some F,, € My, (I),n € N},

M g (1) = {F € My o(I) : Fy “% F for some F,, € M. (I),n € N}
Remark 4. If F,G € My 4(I), then d(F,G) is measurable.

Proor: Let F,G € M%d(l). So there are F,, Gy, € M{}’@(I), n € N such that
d(F,,F) — 0 and d(Gp,G) — 0 as n — oo a.e. So d(F,,Gp) — d(F,G) as
n — oo a.e. Hence d(F, G) is measurable because from Remark 2’ d(F,,, Gy,) are
measurable for n € N. O

Theorem 2. M)O,’dﬁp(l) is (C, d, p)-complete.

PROOF: Let Fy, € My 4 sD(I) for every n € N, and let the sequence {Fy} fulfil

the (C,d, ¢)-condition. It is easy to prove that the sequence {Fy} fulfils the
assumptions of Lemma 1, so there exist a subsequence {Fy, } of the sequence
{F,} and F € My (I) such that d(Fy, , F) — 0 a.e. and d(Fy,, F) are measurable.
We have by Fatou Lemma

/cp(t,ad(Fn,F)(t)) dt <eforn> K,
1

so Iy, 94 F. For every n € N, € > 0, a > 0 there exists F}]} € ]\;[30/@([) such that
Jr et ad(F}, Fp)(t)) dt < e, so we have

/ o(t, 2(FR, F) () dt <
IR

< /<p(t, ad(E}, Fp)(t)) dt + / o(t,ad(Fp, F)(t)) dt < 2¢
1 1
for n > K, hence F' € My 4 sD(I) and My 4 (p(]) is (C,d, ¢)-complete. O

The spaces M{- (p(I ) and My 4 go(I ) will be called the Musielak-Orlicz spaces
of vector multifunctions.
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3. On the operator H
Let H:I xY — Y and let

H(F)(t)={H(t,x):xz € F(t)} for every t € I, F € My (I).

Lemma 2. Let the function H fulfil the following conditions:

(a) H(s,x) is a strongly measurable function as a function of s for every
reY,

(b) there exists L > 0 such that ||H(s,z) — H(s,y)lly < L||z — y|ly for all
sel,xz,yey,

(c) H(s,0) = o for every s €I,

() if |2lly < lylly then |H(s,2)lly < | H(s,m)lly and i |zlly = [lylly then
VH(s2)lly = 1H(s,p)lly for every s € I,

(e) for every t € I and every y € Y there is x € Y such that y = H(t,x).

Then H : My, (1) — My ,(I) and H : My, (I) — My (I).
PrOOF: We only prove that H : M}O/@(I) — M{}@(I). The proof that H :

M)",’cp(l) — ]\7[}0,7%0([) as analogous is omitted. Let F € M)",’cp(l). We prove
that there exists rgpy € LP(I, R),rg(p)(t) = 0 for every ¢t € I, such that
H(F)(t) = B(o,r(r)(t)) for every t € I. Let x € Y, x # o be arbitrary. Let now
E(t) = xrp(t)/||x||y for every ¢t € I. It is easy to see that £ € M(I,Y)N F and
€@y = rp(t) for every t € I. Let rgpy(t) = [[H(L,£(t))|y for every ¢ € I.
We have
sup |[zlly = sup [[H(tz)lly < |[HE &)y
2€H(F)(1) zeF(t

for every t € I, so H(F)(t) C B(o,rg(r)(t)) for every t € I. For every a > 0 we
have

/I (b, argy py (8) dt = /I ot al H(LEWD)ly) dt < /I o(t,aLlE®)]y) dt
= /I o(t,alrp(t)) dt.

So reg(p) € L?(I, R). Let t € I be arbitrary, let y € B(o, rg(p)(t))-

From (e) we obtain that there exists T € Y such that y = H(¢,%). So ||[H(¢,7)|y <
|H(t,&(t))|ly- Hence from (d) we obtain that ||Z||y < rp(t). So T € F(t) and
y € H(F)(t). Hence H(F)(t) = B(o,rg(r)(t)) for every t € I. O

Remark 5. Let C(F)(t) = H(F + (—ap))(t) for every t € I, where F(t) =
B(ap(t),rp(t)) for every ¢ € I. If the assumptions of Lemma 2 hold, then

C: My (1) = My ,(I).
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Remark 6. Let the assumptions of Lemma 2 hold. If
(i) H(s,A) is closed for every nonempty and closed A C Y and for a.e. s € I,
then H : M%d’(p(f) — M}",’d7¢(l).

PRrROOF: The proof is analogous to that of Theorem 1’ in [2] so we give only
the sketch of it. First, from the assumptions (b), (¢) of Lemma 2 and from
the assumption (i) H : My (I) — My (I). Second, from the assumption (b) of
Lemma 2 we obtain that

(1) dist (H(F)(t), H(G)(t)) < Ldist (F(t),G(t))

for all F,G € My (I) and t € I such that F(¢), G(t) are nonempty, bounded and
closed. Third, from (1) and Lemma 2 we obtain that o(ad(H(Fy,), H(F))) — 0 as

~ d
n — oo for every a > 0, whereFeM{}d@(I), F, EM}O’W n € N and F, Ly o)

So H(F) € My 4 SD(I) because from Lemma 2 H(F},) € ]\7[}0,%0([) for every n € N.
O

4. On the operators 7, and T}/
Let V be an abstract set of indices and let V be a filter of subsets of V.

Definition 4. A function g : V — R tends to zero with respect to V, written

g(v) Y, 0, if for every € > 0 there is a set V' € V such that | g(v) |< € for every
veV.

Definition 5. Let F, € My (I) for every v € V and let F € My (I). We write

F, dey F, if there is V,, € V such that d(F, F) are measurable for every v € V,

and for every € > 0, every a > 0 there is V' € V such that
/<p(t, ad(Fy, F)(t)) dt < € for every v € V, N V.
I

Definition 6. Let M(I) C My (I). The family T' = (T,),cv of operators, Ty, :
M(I) — M(I) for every v € V will be called (d,V, M (I))-bounded, if there exist

positive constants k1, k2 and a function g : V — R4 such that g(v) Y, 0, and
for all F,G € M([I) such that d(F, ) is measurable there exists a set Vp g € V
such that d(T,(F'), Ty (G)) are measurable and

/1 ot ad(Ty(F), Ty (G))(1)) dt < k1 /I ot akad(F, G) (1)) dt + g(v)

for every a > 0 and all v € Vg g.

87



88

A. Kasperski

Remark 7. Let the family T be (d,V, Mg g (I))-bounded. 1t Ty(F) “*¥ F for
every F € M{}@(I), then Ty, (F) > Lo p for every F'e My 4 (p(])

PrROOF: Let a,e > 0 be arbitrary. Let F € M}O,d@( ) be arbitrary. Let
G e MOSD and V' € V be such that o(3ad(G, F)) < 7, 0(3akd(G, F)) < g,
0(3ad(T(G),G)) < §, g(v) < § for every v € V, where we may assume that
k1 > 1. It is easy to see that such G, V exist. We have for every v € VN Vg g

0(ad(Ty(F), F)) <
< 0(3ad(Ty(F), To(@))) + 0(3ad(Tu(G), G)) + 0(3ad(G, F)) < =
O
Let now I = [0,b) and let us extend ¢ b-periodically to the whole R.

Definition 7. We shall say that the function ¢ is 7-bounded, if there are positive
constants k1, ko such that

o(t —v,u) < k1ot kau) + f(t,v) for all u,v,t € R,

where f : Rx R — Ry is measurable and b-periodic with respect to the first
variable and such that writing h(v fO f(t,v)dt for every v € R, we have
M = sup,cp h(v) < 0o and h(v )—>Oasv—>00rv—>b.

Let now Ky : [0,b) — R4 for every v € V be integrable in [0,b) and singular,
ie. ) y - y

- / Koy dt 251, os) = [ Ko(t)dt 0
0 é

for every 0 < 4 < %, 0 = sup,cy o(v) < oo. Let us extend K, b-periodically to
the whole R.

Let ¢ : [0,b) — R be measurable and let us extend ¢ b-periodically to the
whole R. We introduce the family of operators Al = (Al)vev by the formula:

t) = /0 K,(s—t)q(s)ds

for every v € V and every t € [0,b).
Let = : [0,b) — Y be strongly measurable and let us extend x b-periodically to
the whole R. We introduce the family of operators A2 = (A2)v€V by the formula:

A2(2)(1) = { fO Ky(s —t)z(s)ds, if fO Ky(s —t)||z(s)|ly ds < oo
2 =
o, if fob Ky(s —t)||z(s)|ly ds = oo
for every v € V and every t € [0,b).
Let us extend F' b-periodically to the whole R.
Let By(F) = {A2(z) : 2 € M([0,b),Y)NF} for every F' € My ([0,b)) and every
veV.
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Remark 8. If AL : L#(]0,b), R) — L¥([0,b), R), where R = [—o0, +00], then
v
BU : Mﬁ()/,¢([07 b)) - M§,¢([07 b))

PROOF: Let F € M{}SD([O,I))), v € V. We have for D = [0,b)

aw | [0ty < s ([ Kl - 00l a5
zeM(D,)Y)NF zeM(D,)Y)NF

b
= / Ky(s —t)rp(s)ds.
0

On the other hand, for z(s) = xrp(s)/|z|ly for every s € D, where z € Y and
x # o0, we have

||/ Kols=t)a(s) dsly = | /K (s >ds||y—/ Ky (s—t)rp(s) ds.

Let 0 < fé’ Ky(s —t)rp(s)ds < oo and let y € B(o fo Ky(s —t)rp(s)ds). Let

() =) [ Kals ~ e ds
for every s € [0,b). We have
/Ob Ko(s — t)z4(s) ds = y and @ € M([0,b),Y) N F
because
lze(s)lly = llyrr(s)/ /Ob Ky(s — t)rp(s)ds|ly < rp(s) for every s € [0,0).
So B(F)(t) = B(o, i (1)) for every ¢ € [0, b), where

- fo Ky(s —t)rp(s)ds, if AL(rp)(t) < oo
BE) 0, i AL(rp)(t) = oo

for every t € [0,b). It is easy to see that rzpy € L¥([0,0), R).
Let F € Mxl,w([o,b)) and let F(s) = B(ap(s),rp(s)) for every s € [0,b). We
introduce the family of operators T’ = (T7,),ev by the formula:

B(A(arp)(s), Ay(rr)(s),  if Ay(rp)(s) < oo

OO = { iy it Ay(re)(s) = o0
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for every s € [0,b) and every v € V.

Let F € M)"/m([O,b)) and F(s) = [ R(o,r%(s), Ri(s)) for every s € [0,b),
where we receive that if there are D C [0,b), D € X, and m < n such that
F(s) = U™, R(o,r%(s), Ri(s)), Ri(s) < r?‘l( YforseD,i=1,...,m—-1
if m > 1, then we denote F(s) = 221(0 7(s), Ri(s)) for every s € D, where
TF( s) = TF( ), R%(s) = Ri(s) for i = 1,...,m, r%(s) = R},(s) = Ri.(s) for
i=m+1,...,n for every s € D.

We 1ntr0duce the family of operators T” = (T)/),ev by the formula:

T”(F)(S) _ { zn:l (07 A%}(TF)( )7A11)(RZ )( ))7 if A})(Rn)( ) <00
° {o}, if Ay(Rp)(s) = 00
for every s € [0,b) and every v € V. O
Remark 9. If Al : L¥([0,b),R) — L¥([0,b), R), where R = [—o0,400], then
T} ML (0.0)) — M (0.0))
PRrROOF: Let F € M%w([o,b)), F(s) = Blap(s),rp(s)) for every s € [0,b). It is
easy to see that

B(A3(ar)(s), Ay (rr)(s)) = B(A] (aF)( ),0) @ B(o, Ay(rr)(s))
for every s € [0,b) and A2 L¥([0,b),Y) — L¥([0,b),Y),so T, (F) € Miw([o,b)).
O

Corollary 1. If the assumptions of Lemma 2 and Remarks 5, 8 hold, then
TI(C) : M, (0.b)) — M, ([0,0)).

Applying the proofs of Proposition 2 and Theorem 4 in [3], we obtain the
following

Theorem 3. Let ¢ be a convex, T-bounded ¢-function which fulfils the Ay con-
dition, fé’ o(t,c)dt < oo for every ¢ > 0 and let (Ky)yecv be singular. Then

o(a(A2x — 1)) Y. 0 for every a > 0 and every x € L¥([0,)),Y).
Corollary 2. If the assumptions of Theorem 3 hold, then
TH(F) Y2 F for every F € MY ,([0,b)).
PROOF: By the assumptions T}, : My, ([0,0)) — My, ([0,b)). Let F € My, ([0,b)),
F(s) = B(ap(s),rr(s)) for every s € [0,b). We have for a > 0

b
| ettaacriie). ) a
b
<3 [ et2al AenO e har

b
+3 | et 20143 an) ) — ar)ly) e 2o
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Remark 10. Let A = ' ;[a;,b;], B = Uj;lci, d;], where [a;,b;], [, di],
i = 1,...,n, are nonempty and compact segments in R, then dist (4, B) <
Z?:l dist ([aiu bl]u [Ciu dl])

Corollary 3. If the assumptions of Theorem 3 hold, then

T)(F) YV P for every F € MX‘}’(p([O, b)).

PrOOF: Let F € ]\7[}0,@([0,17)), F(s) = U, R(o,7%(s), R%(s)),a > 0, v € V.
By the assumptions and by Remark 10 (also, see the proof of Remark 2’ and [2,
Remark 10]) we have

b
/0 o(t,ad(T! (F), F)(t)) dt

IN
N

m
=1

m 0
o O [ lts2am | A0~ (o) )
0

b
1 — ; ; Vv
b O [ el 2am | ALEL) - B0 e -0
2210

Let F' € My 4 (p([O, b)). Let v € V be arbitrary. If there exists G, €
M{}’dp([o, b)) such that limy,—co fé’ o(t, adETé’(Fn)7 Gy)(t)) dt = 0 for every a > 0
and every sequence {F},} such that F;, € M}O,@([O, b)) for every n € N and
limp— oo fob o(t,ad(Fy, F)(t)) dt = 0 for every a > 0, then we define Ty, (F) = Gy.

O
Theorem 4. Let the assumptions of Theorem 3 hold and there are K1, K2 > 0
such that o(ad(T}/(F), T} (G))) < Kjo(aK2d(F,G)) for all F,G € My ,([0,0)),

a > 0 and every v € V, then T,(F) YV P for every F' € My 4 g0([0 b)).
PRrROOF: The proof is analogous to that of Theorem 3’ from [2], so we give the
sketch of it only. Analogously as in that proof we prove that the family (T}),ev

is (d,V, My 4 S0([0, b))-bounded. So we obtain the assertion from Remark 7 and
Corollary 3.

Final remarks. The results of [2] can be extended in other ways.



92 A. Kasperski

1. Let 2,y € Y. By s(x,y) we denote the closed segment joining the points x
and y. Let a € Y. Define:

Y% ={\a: )€ R},
={F e My(I): F(t)=s(bp(t),er(t)) for every t € I, where
br(-),e (') € LA(L,Y*)},

={F e My(I U (b%(t), €% (1)) for every ¢ € I, where
1=1
() () € LALY )i = 1, o, e (t)ly < b5 (0)]ly for every
tel,i=1,...,n—1ifn> 1},
[e.e]
_ U yma
= pa
i=1

Y§ ={F € My(I) : d(Fy,, F') — 0 a.e. for some F,, € YJ,n € N},
Yi,={FeYs: /Igp(t,)\d(Fn,F)(t))dt — 0 as n — oo for every A > 0
for some F, € f’g,n € N}.

The results of [2] will be in force if we replace R by Y, the space Xq ., by Y{ o
and if we introduce the other evident changes.

2. Let Y = R™. By II"(a;,b;) we denote the Cartesian product of the n closed
segments [a;, b;|, where a;, b; € R. Define
VI = {F € My(I) : F(t) = TI"(af (t),bf (t)) for every t € I,
af (),0F () e LP(1,Y) fori =1,... ,n},
D(F,G)(t) = max d([a; EoE) 16868 () for all F,G e Y te T
<i<n

We easily obtain that the space (YH",]D)> is a complete space. For all F' € y,

v eV, te[0,b) we define:

F F
T (F)(t) = I (Ay (af ) (1), Ay (b)) (1))
We easily obtain the following :
Theorem 5. If the assumptions of Theorem 3 hold, then

D

(F) 22 F for every F e v neN.
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