On Cohen-Macaulay rings

Edgar E. Enochs, Overtoun M.G. Jenda

Abstract. In this paper, we use a characterization of R-modules N such that $fd_R N = pd_R N$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the dth local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R.

Keywords:injective, precovers, pre
envelopes, canonical module, Cohen-Macaulay, $n\mbox{-}Gorenstein,$ resolvent, resolutions

Classification: 13C14, 13D45, 13H10, 18G10

1. Introduction

R will denote an associative ring with a unit element, R-module will mean left R-module, and noetherian will mean left noetherian.

Let \mathcal{A} and \mathcal{B} be subcategories of R-modules. Then we recall that if A and B are objects in \mathcal{A} and \mathcal{B} respectively, then the A-injective dimension of B (denoted A - idB) or B-projective dimension of A (denoted B - pdA) is the smallest nonnegative integer n such that $\operatorname{Ext}_{R}^{i}(A, B) = 0$ for all i > n. Otherwise, we set $A - idB = B - pdA = \infty$.

We define $A - id\mathcal{B}$ to be the sup{ $A - idB : B \in \mathcal{B}$ }. Note that $A - id\mathcal{B} = \mathcal{B} - pdA$. Similarly, $\mathcal{A} - idB = B - pd\mathcal{A}$ can be defined. If $\mathcal{A} - idB = 0$, we will say that B is \mathcal{A} -injective. We define the \mathcal{A} -injective dimension of \mathcal{B} (denoted by $\mathcal{A} - id\mathcal{B}$) to be sup{ $A - idB : A \in \mathcal{A}, B \in \mathcal{B}$ }.

Likewise, if \mathcal{A} is a subcategory of right *R*-modules and \mathcal{B} is a subcategory of left *R*-modules, then we can define $\mathcal{A} - fdB$ and $A - fd\mathcal{B}$ using $\operatorname{Tor}_{i}^{R}(A, B)$. *B* is \mathcal{A} -flat if $\mathcal{A} - fdB = 0$.

Now let M be an R-module and \mathcal{A} be a full subcategory of R-modules. Then a map $\psi : M \to A$ with A in \mathcal{A} is said to be an \mathcal{A} -preenvelope of M if any diagram

with A' in \mathcal{A} can be completed.

If \mathcal{A} contains all injective *R*-modules, then the preenvelopes are monomorphisms. So that in the case \mathcal{A} -preenvelopes exist for all *R*-modules, we can define an \mathcal{A} -resolution of M to be an exact sequence

$$0 \to M \to A^{\circ} \to A^{1} \to \dots$$
 where

 $M \to A^{\circ}$, $Coker(M \to A^{\circ}) \to A^{1}$, $Coker(A^{n-1} \to A^{n}) \to A^{n+1}$ for $n \geq 1$ are \mathcal{A} -preenvelopes. We will say that M has \mathcal{A} -resolution dimension (denoted $\mathcal{A}-rndimM) \leq n$ if there is an \mathcal{A} -resolution $0 \to M \to A^{\circ} \to A^{1} \to \cdots \to A^{n} \to 0$. The \mathcal{A} -resolution global dimension of R (denoted by $\mathcal{A}-rngldimR$) is to be the sup{ $\mathcal{A}-rndimM: M \in Mod$ } where Mod is the category of R-modules.

If the preenvelopes are not necessarily exact, we get a sequence, not necessarily exact, called an \mathcal{A} -resolvent of M, and so \mathcal{A} -resolvent dimension (denoted $\mathcal{A} - rtdim$) and $\mathcal{A} - rtgldimR$ can be defined similarly.

We start in Section 2 by extending the results in Enochs-Jenda [3] to an arbitrary ring R. In particular, we get a characterization of R-modules N such that $fd_R N = pd_R N$ in terms of the various dimensions defined above (Theorem 2.1). By choosing an appropriate N, this theorem specializes to n-Gorenstein rings (Corollary 2.3) and Cohen-Macaulay local rings (Theorem 3.7).

If (R, m, k) is a commutative noetherian local ring of Krull dimension d and M is a finitely generated R-module, then $H^i_m(M)$ denotes the i^{th} local cohomology functor with respect to the maximal ideal m. A finitely generated R-module K is said to be a *canonical module* of R if the completion of K_R with respect to the m-adic topology

$$\hat{K}_R \cong \operatorname{Hom}(H_m^d(R), E(k))$$

where E(k) denotes the injective envelope of k (see Herzog-Kunz [7]).

A finitely generated *R*-module *M* is said to be maximal Cohen-Macaulay if depth M = d. If *R* is a Cohen-Macaulay ring with a canonical module, then every finitely generated *R*-module *M* has a maximal Cohen-Macaulay precover (see Auslander-Buchweitz [1] or Yoshino [13]), that is, a surjective map $\psi : C \to M$ with *C* maximal Cohen-Macaulay such that any diagram

with C' maximal Cohen-Macaulay can be completed.

We can therefore form a Cohen-Macaulay resolution

$$\dots \to C_1 \to C_0 \to M \to 0 \text{ where}$$

$$C_0 \to M, C_1 \to \operatorname{Ker}(C_0 \to M), C_{n+1} \to \operatorname{Ker}(C_n \to C_{n-1}), n \ge 1$$

are maximal Cohen-Macaulay precovers. If there is a Cohen-Macaulay resolution $0 \to C_n \to C_{n-1} \to \cdots \to C_1 \to M \to 0$, we say that M has Cohen-Macaulay dimension (denoted $CM - \dim) \leq n$. We define the Cohen-Macaulay global dimension of R (denoted CM - gldimR) to be the $\sup\{CM - \dim M : M \in \mathcal{FGMod}\}$ where \mathcal{FGMod} denotes the full subcategory of finitely generated R-modules.

The aim of Section 3 is to give characterizations of Cohen-Macaulay rings in terms of the local cohomology functor and the various dimensions that we have defined above. One of the consequences of this section is that the length of a Cohen-Macaulay resolution of a finitely generated R-module does not exceed the Krull dimension of R when R has a canonical module.

In this paper, $\operatorname{Ext}^{i}(A, B)$, $\operatorname{Tor}_{i}(A, B)$ will denote $\operatorname{Ext}_{R}^{i}(A, B)$, $\operatorname{Tor}_{i}^{R}(A, B)$ respectively, and for a local ring (R, m, k), the Matlis dual $\operatorname{Hom}(M, E(k))$ will be denoted by M^{v} where E(k) is the injective envelope of k.

2. Resolutions and resolvents

Let N be a fixed R-module. Then \mathcal{A}_N will denote the full subcategory of all N-injective R-modules and \mathcal{B}_N will denote the full subcategory of all N-flat right R-modules.

In [3], we showed the existence of copure injective preenvelopes over noetherian rings, and copure flat preenvelopes over commutative artinian rings. For an arbitrary ring R, the same proofs show the existence of \mathcal{A}_N -preenvelopes, and \mathcal{B}_N -preenvelopes in the case N is of finite type for then $\operatorname{Tor}_i(-, N)$ preserves direct products by Lenzing [10]. So straight forward modifications to the proofs of the results in Section 3 and Theorem 4.1 of [3] give the following result which holds for any ring R.

Theorem 2.1. Let N be an R-module such that fdN = pdN. Then the following are equivalent for an integer n.

- (1) $pdN \leq n$.
- (2) $\mathcal{A}_N rngldimR \leq n.$
- (3) Every n^{th} cosyzygy of an *R*-module is in \mathcal{A}_N .
- (4) $N f dMod_R \leq n$.
- (5) $N f d \mathcal{F} \mathcal{G} M o d_R \leq n.$
- (6) Every n^{th} syzygy of a right *R*-module is in \mathcal{B}_N .

Furthermore, if N is of finite type, then each of the above statements is equivalent to (7) $\mathcal{B}_N - rtgldimR \leq n$.

To see that Theorem 4.1 of [3] for n-Gorenstein rings (that is, R is left and right noetherian and is of finite injective dimension at most n over itself on either side) is a consequence of the above theorem, one observes the following:

Proposition 2.2. Let R be noetherian and $\{X_{\alpha}\}$ be a representative set of indecomposable injective R-modules. Set $X = \oplus X_{\alpha}$. Then the following are

equivalent for an integer n.

(1) $idR_R = n$. (2) $pd_{R}X = n$.

(3) $fd_R X = n$.

PROOF: 1 \Leftrightarrow 2. Suppose $idR_R = n$. Then $pd_R X \leq n$ by Jensen [9, Theorem 5.9]. If $pd_R X < n$, then $pd_R E < n$ for all injective *R*-modules *E* since $E = \bigoplus X'_{\beta}$ where $X'_{\beta} \in \{X_{\alpha}\}$, and so $idR_R < n$ by Jensen [9]. So $pd_R X = n$, and conversely.

 $1 \Leftrightarrow 3. idR_R = n$ implies that $fd_R X \leq n$ by Enochs-Jenda [4, Theorem 4.4] and so $fd_R X = n$ as above, and conversely. \square

Now we simply note that \mathcal{A}_X -injective dimension is the copure injective dimension (cid), X-flat dimension is the copure flat dimension (cfd), and \mathcal{B}_X -resolvent dimension is the copure flat resolvent dimension. Furthermore, R is n-Gorenstein if and only if $pd_RX \leq n$ and $pdX_R \leq n$. So if we set N = X in Theorem 2.1 above, we get the following result using Proposition 2.2 above.

Corollary 2.3 ([3, Theorem 4.1]). The following are equivalent for a left and right noetherian ring R.

(1) R is *n*-Gorenstein.

(2) cidM < n for all *R*-modules (left and right) *M*.

(3) Every nth cosyzygy of an R-modules (left and right) is in \mathcal{A}_X .

(4) $cfdM \leq n$ for all *R*-modules (left and right) *M*.

(5) $cfdM \leq n$ for all finitely generated *R*-modules (left and right) *M*.

(6) Every nth syzygy of an R-module (left and right) is in \mathcal{B}_X .

Furthermore, if R is commutative artinian, then each of the above statements is equivalent to

(7) Copure flat resolvent dimension of each R-module is at most n.

Remark. We note that if R is a commutative artinian ring, then R_p is quasi-Frobenius for each prime ideal P of R. Therefore R is quasi-Frobenius and so n = 0 in this case.

3. Local rings

Throughout this section, R will denote a commutative noetherian local ring with maximal ideal m and residue field k.

We start with the following.

Lemma 3.1. The following are equivalent for a ring R and integer $d \ge 1$

- (1) R is Cohen-Macaulay of dimension d.
- (2) $f dH_m^d(R) = d.$ (3) $p dH_m^d(R) = d.$

PROOF: $1 \Rightarrow 2$. See Strooker [12, Proposition 9.1.4].

 $2 \Rightarrow 1$. $H_m^d(R)$ is artinian and so is an \hat{R} -module naturally. So $fdH_m^d(R) = d$ implies that $fd_{\hat{R}}H_m^d(R) = d$ and thus $id_{\hat{R}}H_m^d(R)^v = d$. Therefore, $H_m^d(R)^v$ is a noetherian \hat{R} -module of finite injective dimension. Thus \hat{R} is Cohen-Macaulay (see Strooker [12, Theorem 13.1.7]) and so R is Cohen-Macaulay. Furthermore, the dimension is d for otherwise $H_m^d(R) = 0$.

 $2 \Rightarrow 3.$ $fdH_m^d(R) = d$ implies that Krull dimR = d by the above. So $pdH_m^d(R) \leq d$ by Foxby [5, Corollary 3.4]. So $d = fdH_m^d(R) \leq pdH_m^d(R) \leq d$. Thus $pd_m^d(R) = d$.

 $3 \Rightarrow 2$ is trivial since $fd \leq pd$.

For d = 0, we have the following which is surely known and we present it here for completeness.

Lemma 3.2. The following are equivalent for a ring R.

(1)
$$R$$
 is artinian.
(2) $H_m^0(R) = R$.
(3) $H_m^0(R) \neq 0$ and $H_m^0(R)$ is flat.
(4) $H_m^0(R) \neq 0$ and $H_m^0(R)$ is projective.
PROOF: $1 \Rightarrow 2, 3, 4$.
 $H_m^0(R)^v = \operatorname{Hom}(\lim_{\longrightarrow} \operatorname{Hom}(R/m^t, R), E(k))$
 $= \lim_{\longleftarrow} \operatorname{Hom}(\operatorname{Hom}(R/m^t, R), E(k))$
 $= \lim_{\longleftarrow} R/m^t \otimes E(k)$
 $= E(k)$

since R is complete. Thus $H_m^0(R)$ is nonzero and flat. But then $H_m^0(R)$ is free and so $H_m^0(R) = R$.

 $2 \Rightarrow 1 H_m^0(R)^v = E(k)$ is notherian and so R is artinian.

 $3 \Rightarrow 1$ follows as in Lemma 3.1 and $4 \Rightarrow 3$ is trivial.

Corollary 3.3. *R* is Gorenstein if and only if

$$fd_{R_p}E(k(P)) = pd_{R_p}E(k(P)) = htP$$

for all $P \in SpecR$ where k(P) is the quotient ring of R/p.

PROOF: We first recall that *R*-Gorenstein means that $idR_p < \infty$ for all $P \in SpecR$ (see Bass [2]). If R_p has finite injective dimension, then $H^d_{mR_p}(R_P) = E(k(P))$ where $d = \text{Krull } dimR_p = htP$. So the result follows from the Lemmas above. Conversely, if $fd_{R_p}E(k(P)) = htP$, then $id\hat{R}_p = htP < \infty$, and so $idR_p < \infty$.

Now let \mathcal{I} be the full subcategory of finitely generated *R*-modules with finite injective dimension. We state the following, noting that if *R* is Cohen-Macaulay, then $\mathcal{I} \neq 0$.

 \Box

 \square

Lemma 3.4. Let R be Cohen-Macaulay. Then the following are equivalent for a finitely generated R-module M.

- (1) M is a maximal Cohen-Macaulay R-module.
- (2) Every *R*-module in \mathcal{I} is *M*-injective.
- (3) \mathcal{I} has a nonzero *M*-injective *R*-module.

Furthermore, if R has a canonical module K, then each of the above statements is equivalent to

- (4) K is M-injective.
- (5) \hat{K} is *M*-injective.

PROOF: 1 \Leftrightarrow 2. We recall that idI = depthR for each $I \in \mathcal{I}, I \neq 0$. Furthermore, depthM + M - idI = idI (see Roberts [11]). So the result follows.

Similarly (3) implies (1), and (3) follows from (2) trivially.

1 \Leftrightarrow 4. We use the local duality $\operatorname{Ext}^{i}(M, K) \otimes_{R} \hat{R} \cong \operatorname{Hom}_{R}(H_{m}^{d-i}(M), E(k))$ (see Yoshino [13, Proposition 1.12] or Grothendieck [6, Theorem 6.3]). M is maximal Cohen-Macaulay if and only if $H_{m}^{d-i}(M) = 0$ for all i > 0 and so if and only if $\operatorname{Ext}^{i}(M, K) = 0$ for i > 0.

 $4 \Leftrightarrow 5$. We simply note that $\operatorname{Ext}^{i}(M, K) \otimes_{R} \hat{R} \cong \operatorname{Ext}^{i}(M, \hat{K}_{R})$ by Ishikawa [8, Corollary 1.2], and so the result follows.

Now let \mathcal{C} be the full subcategory of \mathcal{FG} *Mod* consisting of all maximal Cohen-Macaulay *R*-modules, and $\overline{\mathcal{I}}$ be the full subcategory of \mathcal{FG} *Mod* consisting of all \mathcal{C} -injective *R*-modules. It follows from Lemma 3.4 above that if *R* is Cohen-Macaulay, then \mathcal{I} is a full subcategory of $\overline{\mathcal{I}}$.

If $I \in \overline{\mathcal{I}}$ and $0 \to I \to E^{\circ} \to E' \to \cdots$ is an injective resolution of I, then $0 \to \operatorname{Hom}(C, I) \to \operatorname{Hom}(C, E^{\circ}) \to \operatorname{Hom}(C, E') \to \cdots$ is exact for all C in \mathcal{C} . Furthermore, if $\cdots \to C_1 \to C_0 \to M \to 0$ is a Cohen-Macaulay resolution of a finitely generated R-module M, then $0 \to \operatorname{Hom}(M, E) \to \operatorname{Hom}(C_0, E) \to \cdots$ is exact for each injective E. So $\operatorname{Hom}(-, -)$ is right balanced by (\mathcal{C}, Inj) on $\mathcal{FGMod} \times \overline{\mathcal{I}}$ (see Enochs-Jenda [4]). So we obtain right derived functors $\overline{\operatorname{Ext}}^i(M, I)$. We note that $\overline{\operatorname{Ext}}^i(M, I) = \operatorname{Ext}^i(M, I)$.

We are now in a position to prove the following.

Theorem 3.5. The following are equivalent for a ring R with a canonical module.

- (1) R is Cohen-Macaulay of dimension d.
- (2) Every finitely generated R-module has a maximal Cohen-Macaulay precover and CM - gldimR = d.
- (3) $\mathcal{I} \neq 0$ and $\sup_{I \in \overline{\mathcal{I}}} \{ i dI \} = d$.

PROOF: $1 \Rightarrow 2$. The first part was mentioned in Section 1. Now let K be the canonical module. Then $id\hat{K}_R = d$ by Lemmas 3.1 and 3.2 since $\hat{K}_R \cong H^d_m(R)^v$. But then $idK_R = d$ since \hat{R} is faithfully flat. Now consider a Cohen-Macaulay resolution $\cdots \to C_1 \to C_0 \to M \to 0$ of a finitely generated R-module M. Let $0 \to T_{i+1} \to C_i \to T_i \to 0$ where $i \ge n$ be the short exact sequence. Then we have $\operatorname{Ext}^1(T_i, K) \cong \operatorname{Ext}^2(T_{i-1}, K) \cong \cdots \cong \operatorname{Ext}^{i+1}(M, K)$ since $\operatorname{Ext}^i(C, K) = 0$ for i > 0 for all maximal Cohen-Macaulay *R*-modules *C* by Lemma 3.4. But $\operatorname{Ext}^{i+1}(M, K) = 0$ for all $i \ge d$ since idK = d. So $\operatorname{Ext}^1(T_i, K) = 0$ for all $i \ge d$. But we also have that $\operatorname{Ext}^{j}(T_{d}, K) \cong \operatorname{Ext}^{j-1}(T_{d+1}, K) \cong \cdots \cong \operatorname{Ext}^{1}(T_{d+j-1}, K)$ for $j \geq 1$. So $\operatorname{Ext}^{j}(T_{d}, K) = 0$ for all $j \geq 1$. Therefore, T_{d} is maximal Cohen-Macaulay, again by Lemma 3.4. Thus $CM - gldimR \leq d$.

Suppose CM - gldimR = n < d. Then $\overline{\operatorname{Ext}^{i}}(M, I) = 0$ for all i > n and for all $M \in \mathcal{FGMod}, I \in \overline{\mathcal{I}}$. But $K \in \overline{\mathcal{I}}$. So $\operatorname{Ext}^{i}(M, K) = \overline{\operatorname{Ext}}^{i}(M, K) = 0$ for all i > nand for all $M \in \mathcal{FGMod}$. Thus $idK \leq n < d$, a contradiction.

 $2 \Rightarrow 3$. Let $C \to R \to 0$ be a maximal Cohen-Macaulay precover. Then R is a direct summand of C. So depth $C \leq \text{depth } R$. But depth $C = \dim R$. So R is Cohen-Macaulay. Thus $\mathcal{I} \neq 0$.

CM - gldimR = d implies that $\overline{Ext}^{i}(M, I) = 0$ for all i > d for all \mathcal{FGModM} , $I \in \overline{\mathcal{I}}$. So if $I \in \overline{\mathcal{I}}$, then $idI \leq d$. Thus $\sup_{I \in \overline{\mathcal{I}}} \{idI\} \leq d$. If it were less than d, then it is easy to see that CM - qldimR < d.

 $3 \Rightarrow 1 \ \mathcal{I} \neq 0$ means R is Cohen-Macaulay. So let Krull dim R = n. Then $\sup_{I \in \overline{T}} \{ idI \} = n \text{ since } 1 \Rightarrow 3.$ So Krull dimR = d.

Remark. It follows from part (3) of the theorem above that if R is a Cohen-Macaulay ring with a canonical module, then $\mathcal{I} = \overline{\mathcal{I}}$.

Corollary 3.6 (Auslander-Buchweitz [1]). Let R be a Cohen-Macaulay ring with a canonical module. Then in \mathcal{FGMod} , the full subcategories \mathcal{C} and \mathcal{I} are orthogonal. In particular, $\mathcal{C} =^{\perp} (\mathcal{C})^{\perp}$ and $\mathcal{I} = (^{\perp}\mathcal{I})^{\perp}$.

PROOF: $\mathcal{C} - id\mathcal{I} = 0$ by Lemma 3.4. Furthermore, if C is a finitely generated *R*-module such that $C - id\mathcal{I} = 0$, then $C \in \mathcal{C}$, by the same lemma. So \mathcal{C} consists precisely of all R-modules C in \mathcal{FGMod} such that $C - id\mathcal{I} = 0$. So $\mathcal{C} = \mathcal{I} \mathcal{I}$. But by the preceding remark, \mathcal{I} consists of precisely of *R*-modules *I* in \mathcal{FGMod} such that $\mathcal{C} - idI = 0$. So $\mathcal{I} = \mathcal{C}^{\perp}$. Thus \mathcal{C} and \mathcal{I} are orthogonal. So $\mathcal{C} = {}^{\perp} \mathcal{I} = {}^{\perp} (\mathcal{C}^{\perp})$ and $\mathcal{I} = (^{\perp}\mathcal{I})^{\perp}$. \square

We now finally have the following version of Theorem 2.1 for Cohen-Macaulay rings.

Theorem 3.7. The following are equivalent for a ring R and for an integer $d \ge 1$.

- (1) R is Cohen-Macaulay of dimension d.
- (2) $H_m^d(R) idMod = d.$
- (3) $\mathcal{A}_{H^d_m(R)} rngldimR = d.$
- (4) $H_m^{d''(R)} f dMod = d.$ (5) $H_m^{d}(R) f d\mathcal{F}\mathcal{G}Mod = d.$

Furthermore, if R has a canonical module, then each of the above statements is equivalent to

(6) Every finitely generated *R*-module has a maximal Cohen-Macaulay precover and CM - qldimR = d.

 \square

PROOF: The equivalence of 1 to 5 follows from Theorem 2.1 and Lemma 3.1 above.

 $1 \Leftrightarrow 6$ is part of Theorem 3.5.

For d = 0, we have the following which easily follows from Lemma 3.2 and Theorem 3.5.

Proposition 3.8. The following are equivalent for a ring R.

- (1) R is artinian.
- (2) $H_m^0(R) \neq 0$ and every *R*-module is $H_m^0(R)$ -flat. (3) $H_m^0(R) \neq 0$ and every *R*-module is $H_m^0(R)$ -injective.
- (4) Every finitely generated *R*-module is maximal Cohen-Macaulay.

References

- [1] Auslander M., Buchweitz R., The homological theory of maximal Cohen-Macaulay approximations, Soc. Math. de France, Memoire **38** (1989), 5–37.
- [2] Bass H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
- [3] Enochs E., Jenda O., Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolinae 34 (1993), 202-211.
- [4] _____, Balanced functors applied to modules, J. Algebra 92 (1985), 303–310.
- [5] Foxby H.-B., Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand. 40 (1977), 5-19.
- [6] Grothendieck A., Local Cohomology, Lecture Notes in Mathematics 41, Springer, 1967.
- [7] Herzog J., Kunz E., Der Kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics 238, Springer, 1971.
- [8] Ishikawa T., On injective modules and flat modules, Math. Soc. Japan 17 (1965), 291–296.
- [9] Jensen C., Les foncteurs dérivées de lim- et leurs applications en théorie des modules, Lecture Notes in Mathematics 254, Springer, 1972.
- [10] Lenzing H., Endlich präsentierbare Moduln, Arch Math. 20 (1969), 262–266.
- [11] Roberts P., Homological invariants of modules over commutative rings, Semin. Math. Super. 15, Presses Univ. Montreal, 1980.
- [12] Strooker J., Homological questions in local algebra, London Math. Soc. Lecture Note Series 145, Cambridge Univ. Press, 1990.
- [13] Yoshino Y., Cohen-Macaulay modules over Cohen-Macaulay rings, London Math. Soc. Lecture Note Series 146, Cambridge Univ. Press, 1990.

Department of Mathematics, University of Kentucky, Lexington KY 40506-0027, USA

DEPARTMENT OF ALGEBRA, COMBINATORICS, AND ANALYSIS, AUBURN UNIVERSITY, AL 36849-5307, USA

(Received August 18, 1993)