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Two cardinal inequalities for functionally Hausdorff spaces

ALESSANDRO FEDELI

Abstract. In this paper, two cardinal inequalities for functionally Hausdorff spaces are
established. A bound on the cardinality of the T6-closed hull of a subset of a functionally
Hausdorff space is given. Moreover, the following theorem is proved: if X is a functionally
Hausdorff space, then |X| < ox(X)wed(X)
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A space X is said to be functionally Hausdorff if whenever  # y in X there
is a continuous real valued function f defined on X such that f(x) = 0 and
f(y) = 1. A well-known Arkhangel’skii’s theorem states that if X is a Hausdorff
space, then | X | < 2X(X)L(X) ([1], [6]). Bella and Cammaroto [2] established some
cardinal inequalities for Urysohn spaces that improve, for non regular spaces,
the Arkhangel’skii’s formula. In this paper, a bound on the cardinality of the
T6-closed hull of a subset of a functionally Hausdorff space and a bound on the
cardinality of a functionally Hausdorff space are given. We refer the reader to [3]
and [4] for notations and definitions not explicitly given. All topological spaces
considered here are assumed to be infinite. Let E be a set; the cardinality of
E is denoted by |E|, Pr(E) is the collection of all subsets of E of cardinality
< k. x(X) and L(X) denote respectively the character and the Lindel6f degree
of a space X.

Definition 1 [5]. Let A be a subset of a space X. A is called T-open if A is
a union of cozero-sets of X. The t-closure of A, denoted by cl;(A), is the set
of all points x € X such that any cozero-set neighbourhood of x intersects A.
The T-interior of A, denoted by int,(A), is the set of all x such that there is
a cozero-set neighbourhood of x contained in A.

Definition 2. Let X be a topological space and A a subset of X. The T0-closure
of A, denoted by cl ¢(A), is the set of all points x € X such that cl,(V)NA#0
for every open neighbourhood V' of z. A is said to be T0-closed if A = cl 4(A).

As pointed to me by S. Watson, the T6-closure is not in general idempotent.

Definition 3. Let X be a topological space and A a subset of X. The 16-closed
hull of A, denoted by [A],g, is the smallest 70-closed subset of X containing A.
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Clearly, [A];¢ = ({F : A C F and clg(F) = F}. For every space X and
every A C X we have A C clg(A) C [A],9 C cl(A). It is obvious that if X is
a Tychonoff space, then A = cl g(A) = [A];¢ = cl;(A) for any A C X.

The next result gives some conditions on a functionally Hausdorff space which
are equivalent to cl.g = cl; .

Proposition 4. For a functionally Hausdorff space X the following conditions
are equivalent:

(i) For each T-open set V of X,V = cl(V).
(ii) For each open set G of X, G C intr(cl(Q)).
(iii) For each subset A of X, Cl.ﬂg (A) = cl - (A).
=cl (V).

(iv) For each T-open subset V of X, clp(V) =
PRrROOF: (i) < (ii) Lemma 28 in [9]. (ii) = (iii) Let A C X and = ¢ cl9(A), then
there is an open neighbourhood G of = such that cl-(G) N A = (). By hypothesis
G C int;(cl-(G)), then there is a cozero set V such that x € V C cl-(G), so
VNA=0and z ¢ cl;(A4). Hence, clg9(4) = cl-(A). (iii) = (iv) is obvious.
(iv) = (i) Let V be a 7-open subset of X, by hypothesis cl;¢(V) = cl-(V). Now
let z ¢ V, then there is an open set G such that # € G and G NV = cl(V).
Since V is 7-open, we have cl(G) NV = (), hence = ¢ cly(V). Therefore,
V =clg(V) = cl (V). 0

Remark 5. A functionally Hausdorff space X is called weakly absolutely closed
[8] provided that every T-open filter base on X has an adherent point. An SW
space is a functionally Hausdorff space X such that every point-separating subal-
gebra of C*(X) which contains the constants is uniformly dense in C*(X) [8]. It is
worth noting that by Lemma 25 in [9] and Proposition 4, a functionally Hausdorff
space X is weakly absolutely closed iff it is an SW space and cl9(A) = cl-(A)
for every A C X.

The following result gives an upper bound on the 76-closed hull.

Theorem 6. Let X be a functionally Hausdorff space. If A is a subset of X,
then |[A]g] < | AN,

PROOF: Let m = x(X) and k = |A|. For each x € X let B(x) be a base for X at
the point z such that |B(x)| < m. If z € cl9(A), choose a point in cl-(U) N A
for every U € B(z) and let Bz be the set so obtained. Clearly, € clyg(Bg)
and |Bz| < m. Let Gz = {cl-(U)N By : U € B(x)}. For every U € B, we have
x € clyg(clr(U) N By), in fact, if V € B(z) let W € B(z) such that W Cc V N U,
then

0 #cl-(W)NBz Ccl(VNU)N By Cclr (V)N (clr(U) N Byg).

Since X is functionally Hausdorff, then ({cl¢(cl-(U) N Bg) : U € B(z)} = {x},
in fact let y # z, then there exist open sets G and H such that x € G, y € H and
cl-(G)Nclr(H) = 0, now let U € B(z) such that U C G, then cl-(H)Ncl-(U) = 0,
soy ¢ ({clro(clr(U) : U € B(x))}, and, a fortiori, y ¢ ({clyg(cl-(U) N By) :
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U € B(z)}. So the map v : clg(A) — Pm(Pm(A)) defined by ¢ (z) = G, for
every x € clg(A), is one to one. Since |Ppm(Pm(4))] < (™)™ = k™, then
lclg(A)| < k™ = |AXX). Let Ag = A and, by transfinite induction, define
for every a < m™T sets Aq such that Ay = clp(U{As : 6 < a}). Clearly
U{Aa : @ < mT} C [A];9. Now let z € clg(J{An : @ < mT}), for each
V € B(z) choose a point in cl- (V) N (J{Aq : @ < mT}) and let B be the set so
obtained, obviously B € Pp,(J{Aq : @« < m™}) and = € clg(B). Since m™ is
regular, there is an ordinal o < m™ such that B C A,, so

2 € clrg(B) C clrg(Aa) C Aay1 C | J{Aa:a <mt},

therefore | J{Aq : @ < m™} is 70-closed. Hence [A]l, = U{4a : @ < m™}.
It remains to show that |Ay| < k™ for each o < m™ (this is equivalent to
|U{4q : @ < m™}| < k™). Suppose there is an ordinal @ < m™ such that
|Aq| > E™ and let v = min{a : |Aq| > E™}. Since |Aq| < k™ for every § < 7,
we have | J{Ag: 8 <} < k™. Now Ay = clg(U{Ag: B <7}), hence

14y] = |l f4s : 8 <Dl < IUHAg : 8 <1 IXXD) < ()™ = &,
a contradiction. 0

Definition 7. Let X be a topological space. The w-compactness degree of X,
denoted by wed(X), is defined as the smallest infinite cardinal number k with the
property that for every open cover U of X there is a subcollection V € Py (U) for
which X = J{cl;(V):V € V}.

For every space X we have wed(X) < L(X) and this inequality can be proper.

Example 8. Let X be any infinite T3-space such that every continuous real
valued function defined on X is constant. Clearly wed(X) = Rg < L(X).

Example 9. For each o < wy let I(a) = {a}x an open interval in the real line.
Set X =wi UU{I(e) : @ <wi} and for z,y € X define z < y if (i) x,y € w1 and
x<yinwy,or (i) z €wy,ye€lI(f) and z < Fin wy, or (iii) z € I(y), y € wy
and v <y inwy, or (iv) xz € I(a), y € I(B) and a < 8 in wy, or (v) z,y € I(c)
and z < y in I(a). Let o be the order topology on X. Let Y = X U {wy }, define
x < wq for every x € X and let o be the order topology on Y. If 7 is the topology
on Y generated by o U{Y — L : L is the set of limit ordinals in Y — {w1}}, then
(Y, 7) is a functionally Hausdorff H-closed space which fails to be Lindel6f (7], so
wed(Y) = Ro < L(Y).

Theorem 10. If X is a functionally Hausdorff space, then | X| < 2x(X)wed(X),

PRrROOF: Let m = x(X)wed(X) and for every x € X let B(z) be a base for X at
the point z such that |B(z)| < m. Construct a family {Cy : & < m™} of subsets
of X such that
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(1) for any a < m™ Oy is T0-closed;

(2) for any a < m™ |Cqy| < 2™

(3) if a < 8 <mT, then Cy C Cg;

(4) for any o < m™, if U C U{B(z) : € U{Cp : B < a}}, U] < m and
X —U{cl-(U) : U eUU} #0, then Co, — U{cl-(U) : U € U} # 0.

The construction is done by transfinite induction. Let p € X and Cy = {p}.
Let 0 < a < m™ and assume that Cgs has been constructed for every § < a.
Let Bo = U{B(z) : z € {C3 : B < a}}, clearly [By| < 2™. For any U C
Ba such that |U] < m and X — [J{cl-(U) : U € U} # B, choose a point in
X —UH{cl-(U) : U € U} and let A be the set so obtained, obviously |A| < 2.
Let Co = [AU (U{Cp : B < a})]r9, Cu satisfies (1), (3), (4) and, by Theorem 6,
also (2). The set C = |J{Cq : « < m™} is 70-closed, in fact let = € cl4(C), for
every V € B(x) choose a point in cl-(V) N C and let K be the set so obtained,
clearly |K| < m, therefore there exists an a@ < m™ such that K C Cq, then
z € clg(K) C clyg(Ca) = Cq C C. Obviously |C] < 2™, so to complete the
proof it suffices to show that C' = X. Let us suppose that y € X — C, since
X is functionally Hausdorff, then for any « € C there is a U, € B(x) such that
y ¢ cl-(Ug); for every x € X — C let Uy € B(x) such that cl(Ug) N C = 0
(C is 76-closed). {Ug}.ecx is an open cover of X, since wed(X) < m there
is a B C X such that |[B| < m and X = |J{cl-(Uz) : © € B}, clearly C C
U{cl-(Uz) : z € BN C}. Since |[BN C| < m, there is an a < m™ such that
BNC CCq LetU={Uy:x€c BNC}H, U CU{B(x): 2 U{Cs: < a+1}},
Ul <m,ye X —{cr(Ug) : Uy € U} and Cop1 — J{clr(Uy) : Uy € U} = 0,
a contradiction. Hence C' = X and the proof is complete. (|

Remark 11. Let X be a functionally Hausdorff space and let wX be the com-
pletely regular space which has the same points and continuous real valued func-
tions as those of X. Clearly L(wX) < wed(X) for every functionally Haus-
dorff space X. On the other hand, there exist functionally Hausdorff spaces
X such that x(X) < x(wX) (see e.g. [9, Example 36]). I do not know if
X(wX)L(wX) < x(X)wcd(X) for every functionally Hausdorff space X; if this
is the case, then Theorem 10 is a consequence of the Arkhangel’skii’s inequality
quoted at the beginning.
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