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A contribution to the equivalence results

for the product of distributions

Jiř́ı Jeĺınek

Abstract. Products [S] · [T ] and [S] · T , defined by model delta-nets, are equivalent.
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Introduction

Let S and T be distributions on R
d. Kamiński in [3] considers the following

definitions for their product by regularization using model delta-sequences:

[S · T ] = lim
n→∞

(S ∗ ϕn) · (T ∗ ϕn),(1)

[S] · [T ] = lim
n→∞

(S ∗ ϕn) · (T ∗ ψn),(2)

[S] · T = lim
n→∞

(S ∗ ϕn) · T.(3)

The model delta-sequence {ϕn} ⊂ D(Rd) is defined to be a sequence of testing
functions

(4) ϕn(x) = β
d
nϕ (βnx)

(

x ∈ R
d
)

where ϕ ∈ D(Rd)
∫

ϕ = 1, βn ∈ R, βn → ∞. For each of the definitions of the
product above it is required that the limit in the second member exists and does
not depend on the choice of delta-sequences {ϕn}, {ψn}.
Oberguggenberger [4], Wawak [8] and others use nets of testing functions in-

stead of sequences. The model delta-net {ϕε}ε>0 is defined by

(5) ϕε(x) = ε
−dϕ1

(

x
ε

)

,

where ϕ1 ∈ D(Rd),
∫

ϕ1 = 1, ε ∈ R, ε > 0. It is natural to define the product of
distributions using delta-nets to be

[S · T ] = lim
εց0
(S ∗ ϕε) · (T ∗ ϕε),(6)

[S] · [T ] = lim
εց0
(S ∗ ϕε) · (T ∗ ψε),(7)

[S] · T = lim
εց0
(S ∗ ϕε) · T(8)
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whenever, for each definition, the limit in D′ exists and does not depend on the
choice of model delta-nets {ϕε}, {ψε}.
It is well known (see Kamiński [3]) that the definitions (2) and (3) are equiv-

alent, while the definition (1) is strictly more general. It is easy to see that the
definitions (3) and (8) are equivalent, too. In other words, it does not matter if
we use model delta-nets or model delta-sequences for defining the product [S] ·T .
However, the equivalence between (7) and (8) is not so evident and for prov-
ing this equivalence, we cannot refer to the results contained in [3] concerning
the equivalence between (2) and (3). The definition (7) looks to be more general
than (2). The matter is as follows. The choice of the number sequence {βn} in (4)
influences the speed of convergence of the sequence {ϕn} to the Dirac measure δ.
Hence, from the existence of the product [S] · [T ] by (2) we can easily deduce
that the product [S] · T by (3) is the same, if we let the sequence {ψn} converge
to δ “much more quickly” than {ϕn}. On the other hand, for the definition (7)
this method fails, because the speed of convergence of both nets {ϕε}, {ψε} is
the same. The aim of the paper is to remove this gap showing the equivalence of
the definitions (7) and (8). Thanks to what is said above, it suffices to prove the
following theorem.

Theorem. Let K be the closed unit ball in R
d and suppose that for any nets

{ϕε}ε>0, {ψε}ε>0 satisfying (5) with ϕ1 ∈ D(K), ϕ1 ≥ 0
∫

ϕ1 = 1 and the same
for ψ1, the relation

lim
εց0

〈(S ∗ ϕε)(T ∗ ψε) , ω〉 = 〈W,ω〉

holds for any testing function ω ∈ D(Rd). Then

lim
εց0

〈(S ∗ ϕε)T, ω〉 = 〈W,ω〉 .

For proving the theorem, we use Lemma 5 of Itano [2], p. 166, as follows.

Lemma. Let K1,K2 be compact subsets of R
d1 , Rd2 resp. and let

Wε ∈ D′(K1×K2) for ε > 0. The sufficient (and necessary) condition for the net
{Wε}ε>0 to be convergent to a distribution W ∈ D′(K1×K2) is that for any two
testing functions ϕ ∈ D(K1), ψ ∈ D(K2) the relation

(9) lim
εց0

〈Wε(x, y), ϕ(x)ψ(y)〉 = 〈W (x, y), ϕ(x)ψ(y)〉

holds.

Proof of the theorem: Let us calculate

(10)

〈(S ∗ ϕε)(T ∗ ψε) , ω〉 =

∫

〈S(u), ϕε(z − u)〉u 〈T (v), ψε(z − v)〉v ω(z)dz

= 〈S(u)× T (v),
∫

ϕε(z − u)ψε(z − v)ω(z)dz〉 =
〈

S(u)× T (v), ε−2d
∫

ϕ1

(

z − u

ε

)

ψ1

(

z − v

ε

)

ω(z)dz

〉

.
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For ε > 0, we can define a distribution Wε on R
3d by

〈Wε,Φ〉 =

〈

S(u)× T (v), ε−2d
∫

Φ

(

z − u

ε
,
z − v

ε
, z

)

dz

〉

.(11)

(Φ ∈ D(Rd × R
d × R

d)) and for Φ(x, y, z) = ϕ1(x)ψ1(y)ω(z), we have by (10)
〈Wε,Φ〉 = 〈(S ∗ ϕε)(T ∗ ψε), ω〉. Hence by the hypothesis of the theorem, if the
functions ϕ1, ψ1 satisfy

(12) ϕ1 ≥ 0 , ψ1 ≥ 0,
∫

ϕ1 = 1,
∫

ψ1 = 1,

and

Φ(x, y, z) = ϕ1(x)ψ1(y)ω(z),

we have

lim
εց0

〈Wε,Φ〉 =
∫

ϕ1 ·
∫

ψ1 · 〈W,ω〉 .

Evidently this equality remains true even without the conditions (12). General-
izing the lemma above for 3 variables, we obtain

lim
εց0

Wε(x, y, z) = 1(x) × 1(y)×W (z).

For a given ϕ1 satisfying (12), the set of testing functions

Φε(x, y, z) := ϕ1(x− y)ω(z − εy)ϕ1(x) (0 < ε ≤ 1)

is evidently bounded. By the well known result that a convergent sequence of
distributions converges uniformly on a bounded set of testing functions, we have

lim
εց0

〈Wε,Φε〉 =

〈

W (z),

∫

ϕ1(x− y)ω(z)ϕ1(x) dxdy

〉

= 〈W,ω〉 .

The first member can be calculated by (11)

〈Wε,Φε〉 =

〈

S(u)× T (v), ε−2d
∫

ϕ1

(

v − u

ε

)

ω(v)ϕ1

(

z − u

ε

)

dz

〉

=

〈

S(u)× T (v), ε−dϕ1

(

v − u

ε

)

ω(v)

〉

= 〈(S ∗ ϕε)T, ω〉 ,

which proves the theorem. �
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