Opial's property and James' quasi-reflexive spaces

TADEUSZ KUCZUMOW, SIMEON REICH

Abstract. Two of James' three quasi-reflexive spaces, as well as the James Tree, have the uniform w^* -Opial property.

Keywords: fixed points, James' quasi-reflexive spaces, James Tree, nonexpansive mappings, Opial's property, the demiclosedness principle *Classification:* Primary 46B20, 47H10

Introduction

Let $(X, \|\cdot\|)$ be a Banach space with a Schauder finite dimensional decomposition (FDD) [1], [20]. Define $\beta_p((X, \|\cdot\|))$ for $p \in [1, \infty)$ to be the infimum of the set of numbers λ such that

(1) $(\|x\|^p + \|y\|^p)^{1/p} \le \lambda \|x+y\|$

for every x and y in X with supp(x) < supp(y) (we use here the notation in [1], [15]). In [15] M.A. Khamsi proved the following result.

Theorem A. Let $(X, \|\cdot\|)$ be a Banach space with a finite codimensional subspace Y such that $\beta_p((Y, \|\cdot\|)) < 2^{1/p}$ for some $p \in [0, \infty)$. Then X has weak normal structure.

He then used this theorem to deduce that James quasi-reflexive space, which consists of all null sequences $x = \{x^i\} = \sum_{i=1}^{\infty} e_i$ ($\{e_i\}$ is the standard basis in c_0) for which the squared variation

(2)
$$\sup_{\substack{m \\ p_1 < \dots < p_m}} \left[\sum_{j=2}^m |x^{p_j} - x^{p_{j-1}}|^2 \right]^{1/2}$$

is finite, with the norm $\|\cdot\|$ given by (2), has weak normal structure by claiming that $\beta_2((J\|\cdot\|_1)) = 1$. As a matter of fact, $\beta_2((J,\|\cdot\|_1)) \ge 2^{1/2}$, which can be easily seen by taking $x = e_2$ and $y = e_3$. Fortunately, Theorem A remains true with a slight modification of the definition of $\beta_p((X,\|\cdot\|))$, namely

 $\widetilde{\beta}((X, \|\cdot\|)) =$

 $= \inf_{\substack{k=0,1,2,\dots\\ \sim}} \{ \inf[\lambda:(1) \text{ is valid for } x, y \in X \text{ with } \operatorname{supp}(x) + k < \operatorname{supp}(y)] \},$

and $\beta_2((J, \|\cdot\|)) = 1$. Thus $(J, \|\cdot\|_1)$ does indeed possess weak normal structure. In the present paper we will prove that $(J, \|\cdot\|_1)$ has, in fact, the uniform w^* -Opial property [23], which, of course, also implies weak normal structure [1], [3], [4], [8].

Definitions and notations

We recall that a (dual) Banach space $(X, \|\cdot\|)$ has the $(w^*$ -) Opial property if whenever a sequence $\{x_n\}$ in X converges weakly (weakly^{*}) to x_0 , then for $x \neq x_0$

$$\liminf_{x \to \infty} \|x_0 - x_n\| < \liminf_{x \to \infty} \|x - x_n\|$$

[21], [22]. Opial's property plays an important role in the study of weak convergence of iterates and random products of nonexpansive mappings and of the asymptotic behavior of nonlinear semigroups [4], [5], [7], [13], [18], [21], [22]. Moreover, it can be introduced in the open unit ball of a complex Hilbert space, equipped with the hyperbolic metric, where it is useful in proving the existence of fixed points of holomorphic self-mappings of B [5], [6].

The (dual) Banach space $(X, \|\cdot\|)$ is said to have the uniform (w^*-) Opial property [23] if for every c > 0 there exists an r > 0 such that

$$(3) 1+r \le \liminf_{x \to \infty} \|x - x_n\|$$

for each $x \in X$ with $||x|| \ge c$ and every sequence $\{x_n\}$ with $w - \lim_n x_n = 0$ $(w^* - \lim_n x_n = 0)$ and $\lim_n \|x_n\| \ge 1$.

In the linear space J defined by (2) one uses three different, but equivalent norms, $\|\cdot\|_1$ (defined by (2)), $\|\cdot\|_2$, and $\|\cdot\|_3$, introduced by R.C. James [9], [10], [11]:

$$\|x\|_{2} = \sup_{\substack{k \\ p_{1} \dots < p_{2k}}} \left[\sum_{j=1}^{k} |x^{p_{2j}} - x^{p_{2j-1}}|^{2} \right]^{1/2},$$
$$\|x\|_{3} = \sup_{\substack{m \\ p_{1} \dots < p_{m}}} \left[\sum_{j=2}^{m} |x^{p_{j}} - x^{p_{j-1}}|^{2} + |x^{p_{m}} - x^{p_{1}}|^{2} \right]^{1/2}$$

The choice of norms depends on one's goals [2], [9], [10], [11], [20].

In [14] M.A. Khamsi used the ultraproduct method to prove that $(J, \|\cdot\|_3)$ has the fixed point property for nonexpansive mappings (FPP), i.e. for every nonempty weakly compact convex subset C of $(J, \|\cdot\|_3)$ any nonexpansive self-mapping $T: C \to C$ has a fixed point. D. Tingley [24] has recently shown that $(J, \|\cdot\|_3)$ has, in fact, weak normal structure ([3]): every nonempty weakly compact convex subset C of $(J, \|\cdot\|_3)$ with diam C > 0 has a nondiametral point y, i.e.

$$\sup_{x \in C} \|y - x\|_3 < \operatorname{diam} C$$

This property immediately guarantees the FPP [17]. The proof of weak normal structure is based on the following property of weakly convergent sequences in $(J, \|\cdot\|_3)$: if $\{x_n\}$ converges weakly to 0 and diam $\{x_n\} > 0$, then

$$\sup_{m} \left(\limsup_{n} \|x_m - x_n\|_3 \right) > \liminf_{n} \|x_n\|_3.$$

But it is easy to observe that the sequence $\{-e_n + e_{n+1}\}$ tends weakly to 0 in $(J, \|\cdot\|_3)$ and

$$\|\frac{1}{3}e_1 + e_n - e_{n+1}\|_3 = \|-e_n + e_{n+1}\|_3 = \sqrt{8}$$

for $n \geq 3$. Therefore $(J, \|\cdot\|_3)$ does not have Opial's property.

Main result

In this section we are concerned with the spaces $(J, \|\cdot\|_1)$ and $(J, \|\cdot\|_2)$.

The predual Banach space I to $(J, \|\cdot\|_j)$, j = 1, 2, is generated by the biorthogonal functionals $\{f_n\}$ to the basis $\{u_n\} = \{e_1 + \cdots + e_n\}$ [12], [19]. Throughout this paper we will always treat J as I^* .

Theorem. For j = 1, 2 the space $(J, \|\cdot\|_j)$ has the uniform w^* -Opial property.

PROOF: Let $k \in \mathbb{N}$ and let P_k and Q_k be the natural projections in J associated with the basis $\{u_n\}$:

$$P_k x = \sum_{n=1}^k \xi^n u_n$$

and

$$Q_k x = \sum_{n=k+1}^{\infty} \xi^n u_n$$

for each $x = \sum_{n=1}^{\infty} \xi^n u_n \in J$. Note that if $x = \sum_{n=1}^{\infty} \xi^n u_n$, then

$$\|x\|_{1} = \sup_{\substack{m \\ p_{1} < \dots < p_{m}}} \left\{ \sum_{j=2}^{m} \left[\sum_{n=p_{j-1}}^{p_{j}-1} \xi^{n} \right]^{2} \right\}^{1/2}$$

and

$$\|x\|_{2} = \sup_{\substack{k \\ p_{1} < \dots < p_{2k}}} \left\{ \sum_{j=1}^{k} \left[\sum_{n=p_{2j-1}}^{p_{2j}-1} \xi^{n} \right]^{2} \right\}^{1/2}$$

[11], [12]. Directly from these formulas we obtain

$$\|x\|_j = \lim_k \|P_k x\|_j$$

and

$$\lim_k \|Q_k x\|_j = 0$$

for all $x \in J$ and j = 1, 2. Assume that a sequence $\{x_n\}$ in $(J, \|\cdot\|_j)$ converges weakly^{*} to 0 and let $x \in J$. Then we have

$$\lim_{n} \|P_k x_n\|_j = 0,$$
$$\liminf_{n} \|Q_k x_n\|_j = \liminf_{n} \|x_n\|_j.$$

and

$$\begin{split} \liminf_{n} \|x - x_{n}\| &\geq \liminf_{n} \left[\|P_{k}x - Q_{k+1}x_{n}\|_{j} - \|Q_{k}x\|_{j} - \|P_{k+1}x_{n}\|_{j} \right] \\ &= \liminf_{n} \left[\|P_{k}x - Q_{k+1}x_{n}\|_{j} - \|Q_{k}x\|_{j} \right] \\ &\geq \liminf_{n} \left[\|P_{k}x\|_{j}^{2} + \|Q_{k+1}x_{n}\|_{j}^{2} \right]^{1/2} - \|Q_{k}x\|_{j} \\ &= \left[\|P_{k}x\|_{j}^{2} + \liminf_{n} \|Q_{k+1}x_{n}\|_{j}^{2} \right]^{1/2} - \|Q_{k}x\|_{j} \\ &= \left[\|P_{k}x\|_{j}^{2} + \liminf_{n} \|x_{n}\|_{j}^{2} \right]^{1/2} - \|Q_{k}x\|_{j} \end{split}$$

for $k = 1, 2, \ldots$ Hence we obtain the following inequality

(*)
$$\lim_{n} \inf \|x - x_n\|_j \ge \lim_{k} \left\{ \left[\|P_k x\|_j^2 + \liminf_{n} \|x_n\|_j^2 \right]^{1/2} - \|Q_k x\|_j \right\} = \left[\|x\|_j^2 + \liminf_{n} \|x_n\|_j^2 \right]^{1/2}$$

which leads to (3). In other words, $(J, \|\cdot\|_j)$ has the uniform w^* -Opial property for j = 1, 2.

Corollary 1. For j = 1, 2 the space $(J, \|\cdot\|_j)$ has the uniform Opial property.

Remark 1. The uniform w^* -Opial property of $(J, \|\cdot\|_j)$, j = 1, 2, implies the following important property of these spaces. The (w^*) modulus of noncompact convexity of a (dual) Banach space $(X, \|\cdot\|)$ is the function $\Delta_x : [0,1] \to [0,1]$ $(\Delta_x^* : [0,1] \to [0,1])$ defined by

$$\Delta_x(\varepsilon) = \inf\{1 - \operatorname{dist}(0, A)\}\$$
$$(\Delta_x^*(\varepsilon) = \inf\{1 - \operatorname{dist}(0, A)\}),$$

where the infimum is taken over all convex (weak^{*} compact convex) subsets A of the closed unit ball with $\chi(A) \geq \varepsilon$, and χ is the Hausdorff measure of noncompactness [4]. In the case of $(J, \|\cdot\|_j)$, j = 1, 2, the inequality (*) implies $\Delta_j^*(\varepsilon) > 0$ for all $\varepsilon > 0$. This means that these spaces are Δ^* -uniformly convex and every weakly^{*} compact convex subset C of $(J, \|\cdot\|_j)$ (j = 1, 2) has a compact asymptotic center [4]. Taking $A = \operatorname{conv} \{u_n\}$, where $u_n = \sum_{i=1}^n$, we see that

$$\chi(A) = 1$$

and

$$\underset{x \in A}{\forall} \|x_j\| = 1$$

(j = 1, 2). Therefore $\Delta_x \equiv 0$ for $X = (J, \|\cdot\|_j), j = 1, 2$.

Here we have to mention that generally the uniform Opial property does not imply the Δ -uniform convexity as the following example shows.

Example ([23]). For $\lambda > 1$ let X be the space l_2 with the norm

$$\|(\alpha_n)\| = \max\{\lambda | \alpha_1 |, \|(\alpha_n)\|_2\}$$

where $\|\cdot\|_2$ is the norm in l_2 . Then

$$\liminf_{n} \|x_n - x\| = \max\left\{\lambda |\alpha_1|, \ \left(\liminf_{n} \|x_n\|_2^2 + \|x\|_2^2\right)^{1/2}\right\}$$
$$\geq \left(1 + \|x\|_2^2\right)^{1/2} \geq \left(1 + \lambda^{-2} \|x\|_2^2\right)^{1/2}$$

for each $x \in X$ and each sequence $\{x_n\}$ with w-lim_n $x_n = 0$ and lim inf $||x_n|| \ge 1$. This inequality guarantees the uniform Opial property of X, but $\Delta_x(\varepsilon) = 0$ for all $\varepsilon \le (1 - \lambda^{-2})^{1/2}$.

Remark 2. It is easy to observe that James Tree JT constructed by R.C. James [11] also has the w^* -uniform Opial property, where JT is the dual space to the Banach space B generated by the biorthogonal functionals $\{f_{n,i}\}$ to the basis $\{e_{n,i}\}$ (this basis is analogous to the basis $\{u_n\}$ in J) given in [19]. The proof of this fact is a slight modification of the proof of the Theorem. Corollary 1 and Remark 1 are also valid for JT. (See also [13] for the w^* -Opial property.)

Remark 3. The uniform (w^*-) Opial property of $(J, \|\cdot\|_j)$ with j = 1, 2 and JT implies that these spaces satisfy the weak (weak*) uniform Kadec-Klee property [16].

We conclude our paper with three corollaries.

Corollary 2. $(J, \|\cdot\|_j), j = 1, 2$, and JT have weak and weak^{*} normal structure. **Corollary 3.** $(J, \|\cdot\|_j), j = 1, 2$, and JT have the FPP for weakly^{*} compact convex subsets.

Recall that a Banach space $(X, \|\cdot\|)$ is said to satisfy the (w^*-) demiclosedness principle [1], [4] if whenever C is a nonempty weakly (weakly*) compact convex subset of X and $T : C \to X$ is nonexpansive, then the mapping I - T, where I is the identity operator, is (w^*-) demiclosed, i.e. if $\{x_n\}$ is weakly (weakly*) convergent to x and $\{x_n - Tx_n\}$ converges strongly to y, then x - Tx = y. It is known that every Banach space with the (w^*-) Opial property satisfies the (w^*-) demiclosedness principle. **Corollary 4.** $(J, \|\cdot\|_j)$, j = 1, 2, and JT satisfy the (w^*-) demiclosedness principle.

Acknowledgement. This paper was prepared during a visit of the first author to the Department of Mathematics at the University of Southern California. He is grateful to his colleagues at USC for their hospitality.

References

- Aksoy A.G., Khamsi M.A., Nonstandard Methods in Fixed Point Theory, Springer-Verlag, New York, 1990.
- [2] Andrew A., Spreading basic sequences and subspaces of James' quasi-reflexive space, Math. Scan. 48 (1981), 109–118.
- [3] Brodskii M.S., Milman D.P., On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837–840.
- [4] Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
- [5] Goebel K., Reich S., Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
- [6] Goebel K., Sekowski T., Stachura A., Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011–1021.
- [7] Gornicki J., Some remarks on almost convergence of the Picard iterates for nonexpansive mappings in Banach spaces which satisfy the Opial condition, Comment. Math. 29 (1988), 59–68.
- [8] Gossez J.P., Lami Dozo E., Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565–573.
- [9] James R.C., Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.
- [10] _____, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. USA 37 (1951), 134–137.
- [11] _____, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738–743.
- [12] _____, Banach spaces quasi-reflexive of order one, Studia Math. 60 (1977), 157–177.
- [13] Karlovitz L.A., On nonexpansive mappings, Proc. Amer. Math. Soc. 55 (1976), 321–325.
- [14] Khamsi M.A., James' quasi-reflexive space has the fixed point property, Bull. Austral. Math. Soc. 39 (1989), 25–30.
- [15] _____, Normal structure for Banach spaces with Schauder decomposition, Canad. Math. Bull. 32 (1989), 344–351.
- [16] _____, On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces, preprint.
- [17] Kirk W.A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006.
- [18] Kuczumow T., Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430–432.
- [19] Lindenstrauss J., Stegall C., Examples of separable spaces which do not contain l_1 and whose duals are non-separable, Studia Math. **54** (1975), 81–105.
- [20] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, Vol. I and II, Springer-Verlag, BerlinHeidelberg-New York, 1977 and 1979.
- [21] Opial Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- [22] _____, Nonexpansive and Monotone Mappings in Banach Spaces, Lecture Notes 61-1, Center for Dynamical Systems, Brown University, Providence, R.I., 1967.

- [23] Prus S., Banach spaces with the uniform Opial property, Nonlinear Analysis 18 (1992), 697–704.
- [24] Tingley D., The normal structure of James' quasi-reflexive space, Bull. Austral. Math. Soc. 42 (1990), 95–100.

DEPARTMENT OF MATHEMATICS, LUBLIN TECHNICAL UNIVERSITY, 20-618 LUBLIN, POLAND

Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

(*Received* May 17, 1993)