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Continuous selections, Gs-subsets
of Banach spaces and usco mappings
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Abstract. Every l.s.c. mapping from a paracompact space into the non-empty, closed,
convex subsets of a (not necessarily convex) Gs-subset of a Banach space admits a single-
valued continuous selection provided every such mapping admits a convex-valued usco
selection. This leads us to some new partial solutions of a problem raised by E. Michael.
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1. Introduction

The famous Michael Theorem [2, Theorem 3.2”] tells that every lower semi-
continuous (l.s.c.) mapping from a paracompact space into the non-empty, closed,
convex subsets of a Banach space admits a single-valued continuous selection. In
the present paper we show that, in a more general situation, this is actually
equivalent to the existence of “nice” set-valued selections. The following theorem
will be proved.

Theorem 1.1. Let X be a paracompact space, E be a Banach space, and let
Y C E be a Gg-subset. Then, the following two conditions are equivalent:

(a) every Ls.c. ¢ : X — Fc(Y) admits a single-valued continuous selection;
(b) every Ls.c. ¢ : X — Fe(Y) admits a convex-valued usco selection.

Here, Fo(Y) = {S € F(Y) : S is convex}, where F(Y) = {S € 2V : S is
closed in Y} and 2¥ = {S C Y : S # 0}. A set-valued mapping ¢ : X — 2Y
is Ls.c. if o1 (U) = {z € X : p(z) N U # 0} is open in X for every open
U CY. A set-valued mapping 6 : X — 2" is upper semi-continuous (us.c.) if
07#(U) = {x € X : 6(z) C U} is open in X for every open U € Y. A set-valued
mapping 6 : X — 2Y is called usco provided that it is u.s.c. and compact-valued
simultaneously. A map f : X — Y (resp. 0 : X — 2) is a selection for ¢ if
f(z) € o(z) (resp. 8(z) C p(x)) for every z € X.

Turning to the possible applications of Theorem 1.1, let us especially mention
that this result is closely related to the following E. Michael’s problem in [6]:
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Problem 396. Let X be paracompact, ' be a Banach space, Y C E a convex
Ggs-subset, and let ¢ : X — F.(Y) be Ls.c.; Does there exists a single-valued
continuous selection f for ¢?

What is known to this question in all, is that it has an affirmative answer if
X is finite-dimensional [3, Theorem 1.2 and Example 2.5] or if Y is such that
conv (K) C Y for every compact K C Y [4, Theorem 1.1] and [2, Propositions 2.6
and 2.3 and Theorem 3.2”]. But, in general, it is still open even if X is a compact
metric space (see [6]).

Using Theorem 1.1 we now obtain two further partial results to this problem.
First, let us recall that a space X is of countable dimension provided that it is
a countable union of finite-dimensional subsets; A space X is strongly countable-
dimensional provided it is a countable union of closed finite-dimensional subsets.

Corollary 1.2. Let X be a countable-dimensional metric space, E be a Banach
space, and let Y C E be a Gg-subset. Then every Ls.c. p : X — Fc(Y) admits
a single-valued continuous selection.

PROOF: Suppose ¢ : X — F(Y) is Ls.c.. Since X is countable-dimensional
and Y is completely metrizable, by [1, Theorem 2.1], ¢ admits a finite-valued
u.s.c. selection 9. Setting then 6(z) = conv (¢)(z)), we get a convex-valued usco
selection 0 for ¢. Finally, Theorem 1.1 completes the proof. O

Corollary 1.3. Let X be a strongly countable-dimensional paracompact space,
E be a Banach space, and let Y C E be a G§-subset. Then every lLs.c. ¢ : X —
Fe(Y) admits a single-valued continuous selection.

Proor: Following the previous proof, it suffices to show that every l.s.c. ¢ : X —
Fe(Y) admits a finite-valued u.s.c. selection. That this is so, it follows from [9,
Theorem 4.5]. O

A construction of continuous selections avoiding Fjs-sets is exhibited in the
next Section 2. A proof of Theorem 1.1 is obtained in the last Section 3.

2. A construction of continuous selections avoiding F,-sets

Throughout this section, (F,d) will denote a Banach space with a metric d
generated by the norm of E, and Y = ({V,, : 1,2,...} where each V, C E is
open. For ¢ > 0 and F € 2F, we use B-(F) to denote the e-neighbourhood of F
in (E,d). If ¢ : X — 2F we shall, for convenience, denote by @ : X — F(E) the
mapping defined by @(x) = ¢(z) (i.e. the closure of p(z) in E).
Lemma 2.1. Let X be a topological space such that, for every l.s.c. mapping
v : X — F(Y) and every n, there is a continuous selection f : X — V, for
@. Then every lLs.c. mapping ¢ : X — F.(Y) admits a single-valued continuous
selection.

PROOF: Suppose ¢ : X — F.(Y) is Ls.c.. By our hypotheses, there is a continu-
ous selection f1 : X — Vj for @. Define a continuous mapping r1 : X — (0, 1] by
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letting
r1(z) = min{d(f1(z), E\V1),1}, z€ X.

By induction, we shall construct a sequence {fp} of continuous selections fy, :
X — V, for @ and a sequence {ry} of continuous maps ry, : X — (0, 1] such that,
for every n and = € X,

(1) rp(x) <min{d(fr(z), E\ Vi) : k <n}, and
(2) d(frns1(2), fu(2)) < 37" ro(z).

This will be sufficient because, by (2), {fn} is a Cauchy sequence. So, it
must converge to some continuous f : X — E. By (1) and [8, Lemma 6.1.1],
fl) ¢ U{E\ Vs :n =1,2,...}. Thatis, f : X — Y and therefore f is
a selection for .

So, it only remains to define these f, and ry,. Since fi and r{ were defined
above, we may suppose that fi,..., fn and r1,...,r, have already been defined,
and we must define fy, 11 and rp41. Define a set-valued mapping ¢, : X — Fe(Y)
by letting

Y
on(x) = Ba—n.p,(2)(fu(@)) Np(z) , z€X.
Note, by [7, Lemma 2.2] and [2, Proposition 2.3|, ¢y is ls.c.. Then, by our

hypotheses, there is a continuous fr4+1 : X — V41 such that f,11(z) € pn(z) C
¢(x) for every x € X. Since fri1(2) € Bz-—n.p, (2)(fn(2)), (2) holds. Defining
finally 41 X — (0,1] by rp41(2) = min{d(frt1(2), B\ Vag1),mn(2)}, we
finish the proof. O

Corollary 2.2. Let Y be such that, for every n and every K C Y compact,
conv (K)NV,, is convex. Then every Ls.c. ¢ : X — F(Y), with X a paracompact
space, admits a single-valued continuous selection.

PROOF: Suppose ¢ : X — F.(Y) is Ls.c. and n is a positive integer. Define first
a set-valued mapping ¢ : X — 2F by (z) = Vj, for every € X. Next, define
0: X — 2F by 0(z) = @(x) N1(x). Notice, that 1) has an open graph in X x E
and 6(z) is convex and non-empty for all x € X. Then, by [5, Theorem 9.1], ¢
admits a continuous selection f. That is, there exists a continuous f : X — V),
which is a selection for @. Applying finally Lemma 2.1, we complete the proof.
O

3. Proof of Theorem 1.1.
In preparation for the proof of Theorem 1.1 we begin by proving the following

Lemma 3.1. Let X be a paracompact space, (E,d) a metric space, ¢ : X — 2F
Ls.c., and let 6 be an usco selection for ¢. Then, for every open cover W of X
and every map ¢ : X — (0,+00) there exist

(1) a locally-finite open cover U of X,

(2) amapu:U — W, and

(3) amap »:U — X,
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such that
(a) U' cU and U’ # O implies »(U') C Nul’) = N{uw(U): U e U'},
(b) 6(2) C Byouny (B6AD)), = € U €U,
(c) 0((U)) C B(S(%(U))(‘P(Z))) zeUel.

PROOF: Since X is a paracompact space, by [3, Lemma 11.4], there is an open
cover V of X and a map v :V — W such that

(%) V' CVand [V # 0 implies | JV' c(v(V'

Define, in a natural fashion, a map S : X — V such that, for every z € X,
x € S(z). Next, for every x € X, we set

Gr = {2 € S(x) N 0% (Bs(,)(0(2))) : 0(x) C By (p(x))} -

Since 6(x) is compact and since ¢ is 1.s.c., by [3, Lemma 11.3], G, is a neighbour-
hood of . So, {Gy : € X} is an open cover of X refining V. Let, then, U be
a locally-finite open cover of X which refines {G, : © € X }. For every U € U pick
a fixed point »(U) € X such that U C G,y), and then define u : U4 — W by

w(U) = v(SGAU))), Uel.

These U, v and s satisfy all our requirements. In fact, we have only to check
(a). Suppose U’ C U with NU" # 0. Then »(U) € S(»(U)) and U C G.qu) C
S(5(U)), U e U, implies s»(U') C | J{S(»(U)): U eU'} c N{v(S(%(V))) : U €
Uy = Nu) (see (x)), which completes the proof. O

Having established Lemma 3.1, we now proceed to the proof of Theorem 1.1.
In fact, we have only to prove (b) —(a). Suppose Y = ({V,, : n = 1,2,...},
where each V, C F is open. Pick a fixed n, and let ¢ : X — F.(Y) be Ls.c.. By
virtue of Lemma 2.1, it suffices to construct a continuous selection f : X — V,, for
@. Towards this end, let 6 be a convex-valued usco selection for ¢, which exists
by virtue of (b).

Define ¢ : X — (0,+00) by o(z) = d(0(z), E\ V), © € X. Note that this
definition is correct because 6(r) C ¢(x) C Vi, and because 6(z) is compact.
Next, let W be a locally-finite open cover of X and let n: W — X be such that

(3.2) 0(x) C By (0(n(W))) C Vi, for every z € W e W.

Such W and 7 can be obtained by using, for instance, Lemma 3.1.
Next, define another map  : X — (0, +00) by

5(z) = min{%d(ﬁ(:v), B\ B,y (60(W)) : W W, @ W} . reX
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This is possible because 6 is compact-valued and W is locally-finite. Let us note
the following property of 4:

(3.3) Bys(a) (0(2)) C By (e(n(W))) for every z € W € W.

Let now U, u : U — W and » : U — X be as in Lemma 3.1 (applied with
these particular ¢, 6, W and 4). Because of the paracompactness of X, there is
an open cover {Gy : U € U} of X such that Gy C U for every U € U. Whenever
U € U, we define a set-valued mapping oy : Gy — 2F by letting

pu(2) = 0(2) N By (0((U))), z€Gy.
The following holds:
(3.4) vy (z) € Fo(E).

Indeed, by (c) of Lemma 3.1, ¢(2) N Bs(,417)) (0(5¢(U))) # 0. Then, (3.4) follows
from the convexity of ¢(z) and 0(x(U)).
(3.5)  wy(z) C ¢(z), which follows immediately from the definition of ;.

(3.6) ¢y is Ls.c. because |Gy is L.s.c. and because Bs (1)) (0(>(U))) is open
(see, [2, Propositions 2.3 and 2.4]).

Now, by (3.4) and (3.6), making use of [2, Theorem 3.2"], we get a continuous
selection fy : Gy — E for ¢y. Let {gy : U € U} be a partition of unity on X
indexed-subordinated to {Gy : U € U}. We finally define f : X — F by letting

=Y {ou() ):U el

and let us check that f is the required one. Since ¢ is convex-valued, by (3.5),
f is a selection for @. So, it only remains to check that f(X) C V,. Towards
this end, let € X. Set Uy = {U € U : = € Gy}. Note that gy(x) # 0 implies
U € U,. Pick a fixed W € u(Uy). Then, by (a) of Lemma 3.1, we get that

#(Us) C (\ulhs) C W,
Together with (3.3), this leads us to the inclusions

fu(z) € Bs(qu)) (0(>(U))) C Ba.s(sury) (0(5(U))) C
C By (0(n(W))), U € Usy.

Therefore,

Z{QU (): U el} =
—Zwv (2) : U € Us} C Bygywy) (8(n(W))) C Vi

Thus, the proof of Theorem 1.1 is completed. O
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