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Quasitrivial left distributive groupoids

Robert El Bashir, Aleš Drápal

Abstract. Left distributive quasitrivial groupoids are completely described and those of
them which are subdirectly irreducible are found. There are also determined all left
distributive algebras A = A(∗, ◦) such that A(∗) is a quasitrivial groupoid.
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An algebra A = A(∗, ◦) with two binary operations ∗ and ◦ is said to be a left
distributive algebra (or an LD-algebra) [LavFr], [DehAd] if

(a ◦ b) ◦ c = a ◦ (b ◦ c)(P1)

(a ◦ b) ∗ c = a ∗ (b ∗ c)(P2)

a ◦ b = (a ∗ b) ◦ a(P3)

a ∗ (b ◦ c) = (a ∗ b) ◦ (a ∗ c)(P4)

for any a, b, c ∈ G. The left distributive law

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)

is a consequence of identities (P2–3). A groupoid fulfilling this law is called left
distributive (or an LD-groupoid).
A groupoid B = B(∗) is said to be quasitrivial if

a ∗ b ∈ {a, b}

for any a, b ∈ B.
In this paper we determine all quasitrivial LD-groupoids. We also determine all

LD-algebras A(∗, ◦) such that A(∗) is quasitrivial and all subdirectly irreducible
quasitrivial LD-groupoids. We show that subdirectly irreducible quasitrivial LD-
groupoids form a proper class.
The groupoid A(∗) with a∗b = b for all a, b ∈ A will be called discrete. Discrete

groupoids are quasitrivial and left distributive. (Such groupoids are often called
semigroups of left units or semigroups of right zeros.)
Let G be a group and put a ∗ b = aba−1 for any a, b ∈ G. Then G(∗, ·) is an

LD-algebra. Suppose that A is a quasitrivial subgroupoid of G(∗). Then ab = ba
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for any a, b ∈ A, and we see that A(∗) is discrete. We shall show that there are
many quasitrivial LD-groupoids that are not discrete.
Quasitrivial groupoids that are both left and right distributive have been de-

scribed in [JeKe] by Ježek and Kepka. Kepka has also studied [KepQ] quasitrivial
groupoids in the general case of linear identities (i.e. identities in which each vari-
able occurs exactly once at both sides).
Our paper is a modest contribution to the ongoing investigation of left dis-

tributive structures. While the deepest results concern free monogenerated LD-
groupoids [LavFr], [DehBr], idempotent LD-groupoids have recently received also
some attention [DKM]. (A groupoid is idempotent, if a ∗ a = a for all a ∈ A.
Quasitrivial groupoids are idempotent.)
For each quasitrivial groupoid A = A(∗) define relation γ = γA by

(a, b) ∈ γ ⇐⇒ a ∗ b = a.

Lemma 1. Let A = A(∗) be a quasitrivial groupoid. Then a ∗ b = a ∗ (a ∗ b) =
(a ∗ b) ∗ b for any a, b ∈ A.

By a quasiordering we mean any reflexive and transitive relation. A qua-
siordering ≤ of a set M will be called downward rectified, if a ∈ M and b ∈ M
are comparable whenever there exists c ∈ M with a ≤ c and b ≤ c (a ∈ M and
b ∈ M are said to be comparable if a ≤ b or b ≤ a).

Proposition 1. A quasitrivial groupoid A(∗) is left distributive iff γA is a down-
ward rectified quasiordering of A.

Proof: Suppose first that γ is a downward rectified quasiordering. For a, b, c ∈ A
put l = a ∗ (b ∗ c) and r = (a ∗ b) ∗ (a ∗ c).

(i) (a, b) ∈ γ and (b, c) ∈ γ. Then (a, c) ∈ γ by transitivity of γ, and hence
l = a = r.

(ii) (a, b) ∈ γ and (b, c) /∈ γ. Then l = a ∗ c = a ∗ (a ∗ c) = r.
(iii) (a, b) /∈ γ and (b, c) ∈ γ. If (a, c) /∈ γ, then l = b = r. Since γ is downward

rectified, (a, c) ∈ γ implies (b, a) ∈ γ, and we have l = b = r again.
(iv) (a, b) /∈ γ and (b, c) /∈ γ. In this case l = a ∗ c and r = b ∗ (a ∗ c). If

(a, c) /∈ γ, then l = c = r. If (a, c) ∈ γ, then (b, a) ∈ γ implies (b, c) ∈ γ
by transitivity of γ. Thus (b, a) /∈ γ and l = a = r.

On the other hand suppose that A(∗) is quasitrivial and left distributive. If
(a, b) ∈ γ and (b, c) ∈ γ, then a∗c = a∗(a∗c) = (a∗b)∗(a∗c) = a∗(b∗c) = a∗b = a.
The relation γ is therefore transitive. Furthermore, let (a, c) ∈ γ, (b, c) ∈ γ and
(a, b) /∈ γ. Then b ∗ a = (a ∗ b) ∗ (a ∗ c) = a ∗ (b ∗ c) = a ∗ b = b. It follows that γ
is downward rectified. �

Let Ai = Ai(∗), i ∈ I be pairwise disjoint left distributive groupoids. Define
a groupoid V = V (Ai; i ∈ I) on ∪(Ai; i ∈ I) so that

a ∗ b =

{

b if a ∈ Ai, b ∈ Aj and i 6= j,

a ∗i b if a, b ∈ Ai.
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Lemma 2. Let Ai, i ∈ I be pairwise disjoint LD-groupoids. Then V = V (Ai;
i ∈ I) is also an LD-groupoid. If all Ai, i ∈ I are idempotent (or quasitrivial),
then V is idempotent (or quasitrivial), too.

Proof: Only the left distributivity requires a proof. For a, b, c ∈ V put l =
a ∗ (b ∗ c) and r = (a ∗ b) ∗ (a ∗ c). Suppose that a ∈ Ai, b ∈ Aj and c ∈ Ak.
If i = j = k, then l = r by the hypothesis. If i, j, k are pairwise distinct or
i = j 6= k, then l = c = r. If i 6= j = k, then l = b ∗j c = r, and if i = k 6= j, then
l = a ∗i c = r. �

Let A(∗) be a quasitrivial groupoid and denote by ρ the least equivalence
containing γ. The equivalence classes of ρ are called components of A(∗). A
quasitrivial groupoid with only one component is said to be connected.

Corollary 1. If A = A(∗) is a quasitrivial LD-groupoid and Ai, i ∈ I are its
components, then A = V (Ai; i ∈ I).

Lemma 3. Let A(◦) be a semigroup and A(∗) a discrete LD-groupoid. Then
A(∗, ◦) is an LD-algebra iff A(◦) is commutative.

Proof: If A(∗, ◦) is an LD-algebra, then a◦ b = (a∗ b)◦a = b◦a for any a, b ∈ A.
If A(◦) is commutative, then the axioms of LD-algebras clearly hold. �

Lemma 4. Let S(◦) and T (◦) be disjoint semigroups. Extend ◦ to U = S ∪ T
so that s ◦ t = s = t ◦ s for any s ∈ S, t ∈ T . Then U(◦) is a semigroup again.

Stepping out of our main line, we note:

Proposition 2. Let C(∗, ◦) and H(∗, ◦) be disjoint LD-algebras, and suppose
that H(∗) is discrete. For A = C ∪ H define A(∗, ◦) so that:

(i) C(∗, ◦) and H(∗, ◦) are subalgebras of A(∗, ◦) and
(ii) if c ∈ C and h ∈ H , then c ◦ h = h ◦ c = c = h ∗ c and c ∗ h = h.

Then A(∗, ◦) is an LD-algebra again.

Proof: Fix such a, b, c ∈ A that {a, b, c} ∩ C 6= ∅ 6= {a, b, c} ∩ H . Assume first
a ∈ H , then a ∈ C and b ∈ H , and finally a, b ∈ C and c ∈ H . In each of these
cases, (P2–4) can be verified immediately. (P1) follows from Lemma 4. �

For a quasitrivial LD-groupoid A = A(∗) and a, b ∈ A write a||Ab (or just a||b),
if a and b are not comparable with respect to γA.

Lemma 5. Let A(∗) be a quasitrivial LD-groupoid. Then ∗ is associative iff

(†) a||b and (b, c) ∈ γ =⇒ b = c

holds for any a, b, c ∈ A.

Proof: Let ∗ be associative and suppose that a||b and (b, c) ∈ γ for some a, b, c ∈
A. Then (a, c) /∈ γ because γ is downward rectified. Hence b = b ∗ (a ∗ c) =
(b ∗ a) ∗ c = c. On the other hand let (†) be satisfied by all a, b, c ∈ A. Fix
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a, b, c ∈ A and put l = a ∗ (b ∗ c) and r = (a ∗ b) ∗ c. Assume first (a, b) ∈ γ. If
(b, c) ∈ γ, then l = a = r. If (b, c) /∈ γ, then l = a ∗ c = r. Assume now (a, b) /∈ γ.
If (b, c) ∈ γ, then l = b = r. If (b, c) /∈ γ, then l = a ∗ c and r = c. Thus only the
case (a, c) ∈ γ, (b, c) /∈ γ and (a, b) /∈ γ need to be considered. Then (b, a) /∈ γ by
the transitivity of γ, and hence (†) provides a = c. �

Call an LD-groupoid A(∗) quasilinear, if it is quasitrivial and (a, b) ∈ γ or
(b, a) ∈ γ for any a, b ∈ A.

Lemma 6. Let A(∗) be a quasilinear LD-groupoid. Put a ◦ b = a ∗ b for any
a, b ∈ A. Then A(∗, ◦) is an LD-algebra.

Proof: Let a, b ∈ A. If (a, b) ∈ γ, then (a ∗ b) ∗ a = a = a ∗ b, and if (a, b) /∈ γ,
then (b, a) ∈ γ and (a ∗ b) ∗ a = b = a ∗ b too. A(∗) is associative by Lemma 5 and
(P1–4) follow. �

Let H(◦) be a commutative semigroup and I ⊆ H its ideal. I is said to be
prime, if a ◦ b ∈ I implies a ∈ I or b ∈ I for any a, b ∈ H . The set of all prime
ideals will be denoted P(H(◦)). Note that ∅ and H belong to P(H(◦)).

For disjoint LD-algebras C = C(∗, ◦) and H = H(∗, ◦), H(◦) commutative,
and a mapping θ : C → P(H(◦)), define on A = C ∪ H operations ∗ and ◦ so
that:
(A1) C(∗, ◦) and H(∗, ◦) are subalgebras of A(∗, ◦).
(A2) h ◦ c = c ◦ h = c = h ∗ c if h ∈ H and c ∈ C.
(A3) c ∗ h = c if h ∈ H , c ∈ C and h ∈ θ(c).
(A4) c ∗ h = h if h ∈ H , c ∈ C and h /∈ θ(c).

The algebra A(∗, ◦) will be denoted A(C, H, θ).

Lemma 7. Let C = C(∗, ◦) and H = H(∗, ◦) be disjoint LD-algebras. Suppose
that C(∗) is quasilinear with a ◦ b = a ∗ b for all a, b ∈ C and that H(∗) discrete.
Furthermore, let θ : C → P(H(◦)) be a mapping such that θ(b) ⊆ θ(a) for any
a, b ∈ C with (a, b) ∈ γC . Then A(C, H, θ) is an LD-algebra.

Proof: (P1) holds by Lemma 4. Fix now a, b, c ∈ A = H ∪ C such that C ∩
{a, b, c} 6= ∅ 6= H ∩ {a, b, c}. If a ∈ H , then (P2–4) can be verified immediately.
Let a ∈ C and assume b ∈ H . Then a ◦ b = a and (a ∗ b) ◦ a is b ◦ a = a or
a ◦ a = a. This proves (P3). Now (a ◦ b) ∗ c = a ∗ c = a ∗ (b ∗ c) and if c ∈ C, then
a ∗ (b ◦ c) = a ∗ c = a ◦ (a ∗ c) by Lemma 1. Thus a ∗ (b ◦ c) = (a ∗ b) ◦ (a ∗ c) for
c ∈ C, and for c ∈ H we obtain a∗ (b◦ c) = b◦ c = (a∗ b)◦ (a∗ c), if b◦ c /∈ θ(a). If
b ◦ c ∈ θ(a), then b ∈ θ(a) or c ∈ θ(a), and hence a ∗ (b ◦ c) = a = (a ∗ b) ◦ (a ∗ c).
Assume b ∈ C and c ∈ H . Then a ∗ (b ◦ c) = a ∗ b and (a ∗ b) ◦ (a ∗ c) equals

a ∗ b or (a ∗ b) ◦ a. By Lemma 6 (a ∗ b) ◦ a = a ∗ b, and hence (P4) is true. Put now
l = (a ◦ b) ∗ c = (a ∗ b) ∗ c and r = a ∗ (b ∗ c). Assume first (a, b) ∈ γ. If c /∈ θ(a),
then c /∈ θ(b) ⊆ θ(a) and l = c = r. If c ∈ θ(a), then l = a and r is a ∗ b = a or
a ∗ c = a. For (a, b) /∈ γ we distinguish the cases c ∈ θ(b) and c /∈ θ(b). If c ∈ θ(b),
then l = b ∗ c = b = a ∗ b = r. If c /∈ θ(b) ⊇ θ(a), then l = c = r. �
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For a quasitrivial LD-groupoid A(∗) define its core as the set of all a ∈ A
such that there exists b 6= a with (a, b) ∈ γA. If C is the core of A, then call its
complement H = A\C hull of A. There is h ∗ a = a for any h ∈ H and a ∈ A.
For every c ∈ C denote by Hc the set of all h ∈ H with (c, h) ∈ γA.

Lemma 8. Let A(∗) be a quasitrivial LD-groupoid with a core C and a hull H .
If a, b ∈ C and (a, b) ∈ γ, then Hb ⊆ Ha.

Proof: If h ∈ Hb, then (b, h) ∈ γ, and thus by transitivity (a, h) ∈ γ too. �

Lemma 9. Let A(∗, ◦) be an LD-algebra and suppose that A(∗) is quasitrivial,
C ⊆ A is its core and H = A\C its hull. Then:

(i) C(∗) is quasilinear,
(ii) c ◦ d = c ∗ d for any c, d ∈ C,
(iii) H(◦) is a commutative subsemigroup of A(◦),
(iv) Hc ∈ P(H(◦)) for any c ∈ C,
(v) A(∗, ◦) = A(C, H, θ), if θ(c) = Hc for any c ∈ C.

Proof: The proof is divided into a series of separate steps:

(1) If (a, b) ∈ γ and a 6= b, then a ◦ b = a = a ∗ b.
This follows from a = a ∗ (b ∗ b) = (a ◦ b) ∗ b.

(2) If (a, b) /∈ γ, then a ◦ b = b ◦ a.
Clearly, a ◦ b = (a ∗ b) ◦ a = b ◦ a.

(3) If (b, c) ∈ γ, b 6= c and a||b, then a ◦ b = b ◦ a = b.
We have a ∗ (b ∗ c) = b = (a ◦ b) ∗ c. There is b 6= c, and so b = a ◦ b. By
(2) a ◦ b = b ◦ a.

(4) C(∗) is quasilinear.
Suppose there are a, b ∈ C with a||b. Let (a, c) ∈ γ and (b, d) ∈ γ. By (3)
a = a ◦ b = b, a contradiction.

(5) If a, b ∈ C, then a ◦ b = a ∗ b.
For a = b let h ∈ A be such that a 6= h and (a, h) ∈ γ. By (1) a = a ◦ h =
(a ∗ h) ◦ a = a ◦ a. Assume a 6= b. If (a, b) ∈ γ, use (1). If (a, b) /∈ γ, then
(b, a) ∈ γ by (4) and a ◦ b = b ◦ a = b by (2) and (1).

(6) If b ∈ C and a ∈ H , then a ◦ b = b ◦ a = b.
There exists c ∈ A with (b, c) ∈ γ and b 6= c. If a||b, use (3). If (b, a) ∈ γ,
use (1) and (2).

(7) If g, h ∈ H , then g ◦ h = h ◦ g ∈ H .
By (2), g ◦ h = h ◦ g. Assume g ◦ h ∈ C. Then there exists c ∈ A with
c 6= g ◦ h and (g ◦ h, c) ∈ γ. Then c = g ∗ (h ∗ c) = (g ◦ h) ∗ c = g ◦ h,
a contradiction.

(8) Hc ∈ P(H(◦)) for any c ∈ C.
Let h ∈ Hc and g ∈ H . Then c∗(h◦g) = (c∗h)◦(c∗g) = c◦(c∗g). However,
(c, g) ∈ γ implies c ◦ (c ∗ g) = c, and (c, g) /∈ γ implies c ◦ (c ∗ g) = c, too.
Hc is therefore an ideal. Suppose now that g ◦ h ∈ Hc for g, h ∈ H and
neither g ∈ Hc nor h ∈ Hc. Then c ∗ (g ◦ h) = c 6= g ◦ h = (c ∗ g) ◦ (c ∗ h),
a contradiction.
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To conclude note that (i) is (4), (ii) is (5), (iii) is (7), (iv) is (8), (A1) follows from
(ii) and (iii) and (A2–4) follow from (6) and the definitions of H and Hc. �

If ≤ linearly orders a set S, then min≤ is a commutative associative quasitrivial
binary operation and every ideal of S(min≤) is prime. Combining Lemma 3,
Lemma 7, Lemma 8 and Lemma 9 we can thus state:

Proposition 3. Let A(∗) be a quasitrivial LD-groupoid with a core C. A binary
operation ◦ on A, such that A(∗, ◦) is an LD-algebra, can be defined iff C(∗) is
quasilinear.
Moreover, if C(∗) is quasilinear, then ◦ can be always chosen to be quasitrivial,

too.

Proposition 4. Let A(∗) be a quasitrivial LD-groupoid with a quasilinear core
C and a hull H . If ◦ is a commutative associative binary operation on H , and
θ : C → P(H(◦)) a mapping such that θ(b) ⊆ θ(a) for a, b ∈ C with (a, b) ∈ γ, and
if a ◦ b is defined to equal a ∗ b for all a, b ∈ C, then A(C, H, θ) is an LD-algebra.
Moreover, all binary operations ◦ on A such that A(∗, ◦) is an LD-algebra, can
be obtained in this way.

We turn now our attention to the congruences of quasitrivial LD-groupoids.
At the beginning we formulate several easy lemmas pertaining to quasitrivial
groupoids in general. Fix a quasitrivial groupoid A = A(∗). For B ⊆ A denote
εB the equivalence on A given by (a, b) ∈ εB iff {a, b} ⊆ B or a = b. Furthermore,
denote (generically) by E the set of all B ⊆ A such that εB is a congruence of
A(∗), and by E2 the subset of E consisting of all B ∈ E with card(B) ≥ 2. Finally,
put E(A) = ∩(B; B ∈ E2).

Lemma 10. Let A = A(∗) be a quasitrivial groupoid and σ an equivalence on A.
Then σ is a congruence of A if and only if (a, a′) ∈ σ, (b, b′) ∈ σ, (a, b) /∈ σ and
(a, b) ∈ γ imply (a′, b′) ∈ γ for any a, b, a′, b′ ∈ A.

Lemma 11. Let B ⊆ A. Then B ∈ E if and only if

(a, b) ∈ γ =⇒ (a, b′) ∈ γ and (b, a) ∈ γ =⇒ (b′, a) ∈ γ

for any b, b′ ∈ B and a ∈ A\B.

Lemma 12. If σ is a congruence of A(∗) and B is an equivalence class of σ, then
B ∈ E .

Lemma 13. A(∗) is subdirectly irreducible iff E(A) contains at least two ele-
ments or card(A) ≤ 1.

Lemma 14. If B ∈ E intersects at least two different components of A(∗), then
it can be expressed as a union of components of A(∗). On the other hand, every
union of components of A(∗) belongs to E .
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Lemma 15. A disconnected quasitrivial groupoid A(∗) is subdirectly irreducible
iff it contains exactly two components, one of them subdirectly irreducible and the
other one consisting of just one element. If A contains more than two elements and
is disconnected and subdirectly irreducible, and if B is its non-trivial component,
then E(A) = E(B).

From here on assume that A(∗) is a quasitrivial LD-groupoid and denote by η
the kernel of the quasiordering γ; i.e. (a, b) ∈ η iff (a, b) ∈ γ and (b, a) ∈ γ. Note
that γ is an ordering of A iff η = idA.
From Lemma 10, Lemma 11 and from the transitivity of γ one obtains:

Lemma 16.

(i) η is a congruence of A(∗).
(ii) If D is an equivalence class of η and B ⊆ D, then B ∈ E .
(iii) If η contains a class with at least three elements, then E = ∅.
(iv) If η contains at least two distinct classes D1, D2 with card(Di) ≥ 2,

1≤i≤2, then E = ∅.
(v) If η contains a class with at least two elements, then A(∗) is simple iff
card(A) = 2.

For every a ∈ A denote by [ a ] the set {b ∈ A; (a, b) ∈ γ}.

Lemma 17. [ a ] ∈ E for every a ∈ A.

Proof: Let (a, b) ∈ γ, (a, b′) ∈ γ and (a, c) /∈ γ. Then (b, c) /∈ γ and from
(c, b) ∈ γ we deduce that c and a must be comparable with respect to γ. Thus
(c, a) ∈ γ and (c, b′) ∈ γ by transitivity. By Lemma 11 [ a ] belongs to E . �

A quasitrivial LD-groupoid A(∗) will be called linear, if γA is a linear ordering
(i.e. A(∗) is quasilinear and η = idA).

Lemma 18. If the core of A(∗) is not linear and η is idA, then E(A) is ∅.

Proof: By our hypothesis there can be found incomparable elements a and b in
the core of A(∗). Both [ a ] and [ b ] belong to E2 and [ a ]∩ [ b ] = ∅. �

A subset Q of a linearly ordered set (P,≤) will be called downward dense (in
P ), if ∅ 6= Q ∩ {x ∈ P ; a ≤ x < b} for any a, b ∈ P , a < b.
For an LD-groupoid A(∗) with a core C put C = {B ⊆ C; B = {b ∈ C;

(b, e) ∈ γ} for some e ∈ A}, order C by inclusion, denote the ordering of C by
γ, and assume that η = idC . Then c → {b ∈ C; (b, c) ∈ γ} embeds (C, γ) into
(C, γ). Using this embedding, identify C with a subset of C. Let H be the hull of
A(∗). We extend γ to C ∪H in the following way: If {a, b} ⊆ H ∪C intersects H ,
then (a, b) ∈ γ iff either a = b, or a ∈ C, b ∈ H and (c, b) ∈ γ for any c ∈ C with
(c, a) ∈ γ. Then γ is an ordering of C ∪H and γ = γ ∩ (A×A). By the definition
of C, for any h ∈ H there exists supγ{c ∈ C; (c, h) ∈ γ} and this supremum is in

C. For any a ∈ C denote card{h ∈ H ; a = supγ{c ∈ C; (c, h) ∈ γ}} by deg(a).

Note that deg(a) = 0 implies a ∈ C for any a ∈ C. If B ⊆ C, then denote by B′
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the set {c ∈ C; (c, b) ∈ γ for some b ∈ B}. If s = supγ B exists and s 6= supγ C,

put B = B′ ∪ {s}, otherwise define B as B′.

Proposition 5. Let A = A(∗) be a connected quasitrivial LD-groupoid with
a core C and a hull H , and assume that η = idA. Put S = {h ∈ H ; (a, h) ∈ γ for
all a ∈ C}, M = {c ∈ C; (a, c) ∈ γ for all a ∈ C} and C∗ = C\M . Then:

(i) If C is linear, card(S) = 2, deg(c) ≤ 1 for all c ∈ C∗, and if the set
{c ∈ C∗; deg(c) = 1} is downward dense in C, then E(A) = S.

(ii) If C is linear, card(S) ≤ 1, deg(c) ≤ 1 for all c ∈ C∗, and if the set
{c ∈ C∗; deg(c) = 1} is downward dense in C, then E(A) = S ∪ M .

(iii) If C is linear, card(S) = 1, deg(c) ≤ 1 for all c ∈ C∗, and if the set
{c ∈ C∗; deg(c) = 1} is downward dense in C∗ and there exists m ∈ C∗

with deg(m) = 0 and (c, m) ∈ γ for all c ∈ C∗, then E(A) =M .
(iv) E(A) = ∅ in all other cases.

In particular, card(E(A)) ≤ 2.

Proof: Assume that E(A) 6= ∅. We shall show that then one of the cases (i)–(iii)
applies and, in parallel, we shall compute E(A) in these cases.

C is linear by Lemma 18. Moreover, by Lemma 11 every subset of S belongs
to E , and thus card(S) ≤ 2. As card([ c ]) ≥ 2 for every c ∈ C, E(A) is contained
in ∩([ c ]; c ∈ C) = S ∪ M . Put K = S, if card(S) = 2, and K = S ∪ M , if
card(S) ≤ 1. We have proved K ⊇ E(A).
For a ∈ C∗ consider a set B = {h ∈ H ; a = supγ{x ∈ C; (x, h) ∈ γ}}. B

belongs to E by Lemma 11, and as B ∩ K = ∅, we see that deg(a) ≤ 1 for all
a ∈ C∗.
Suppose now that there exist a, b ∈ C such that a 6= b, (a, b) ∈ γ and deg(x) = 0

for every x ∈ C with (a, x) ∈ γ, (x, b) ∈ γ and x 6= b. Put D = {x ∈ C; (a, x) ∈ γ
and (x, b) ∈ γ}. Note that any x ∈ D, x 6= b, is in C. For every h ∈ H there
can be found c ∈ C such that c = supγ{y ∈ C; (y, h) ∈ γ}. Thus by Lemma 11
D ∩ C belongs to E and for every c, d ∈ D the set {x ∈ D; (d, x) ∈ γ, (x, c) ∈ γ
and x 6= c} also belongs to E . If b /∈ C, then D ∩ C has infinitely many elements
and E(A) = ∅. Therefore D ⊆ C can be assumed, and we see that E(A) = ∅
if M 6= {b}. Thus either there exist no a, b ∈ C with a 6= b, (a, b) ∈ γ and
deg(x) = 0 for any x ∈ C such that (a, x) ∈ γ, (x, b) ∈ γ and x 6= b, or M = {b}
and m = a is such that (c, m) ∈ γ for all c ∈ C∗ and deg(m) = 0. Put F = K in
the former case, and F =M ∩K in the latter case. We have proved that {c ∈ C∗;
deg(c) = 1} is downward dense in C or C∗, respectively. We have also proved
that F contains E(A), if some of the cases (i)–(iii) applies.
It remains to show F = E(A). Take k ∈ K and assume k /∈ J for some J ∈ E2.

As S = ∅ implies M = ∅, and thus F = ∅, assume also S 6= ∅. Let j, s ∈ J be
such that j 6= s and s ∈ S. As j ∈ S provides K ⊆ S, we have j /∈ S. For j ∈ C
we obtain k ∈ J by (j, k) ∈ γ, (s, k) /∈ γ and by Lemma 11. Hence J ∩ C = ∅.
If j ∈ H\S, then there can be found c ∈ C with (c, j) /∈ γ. As (c, s) ∈ γ, c ∈ J ,
again by Lemma 11. We have proved S ∩ J = ∅.
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Suppose now that h, j ∈ J are such that j 6= h and h ∈ H\S. If j ∈ C, s ∈ S,
then (j, s) ∈ γ, (h, s) /∈ γ, and Lemma 11 provides s ∈ J . If j ∈ H , then the
sets {a ∈ C; a ≤ j} and {a ∈ C; a ≤ h} are different by our degree assumption.
Therefore we can assume that there exists c ∈ C with (c, j) ∈ γ and (c, h) /∈ γ.
From Lemma 11 we obtain J ⊆ C.
If J ⊆ C, and a, b ∈ J are such that (a, b) ∈ γ and a 6= b, note first that for

any c ∈ C with (a, c) ∈ γ, (c, b) ∈ γ and c 6= b we have c ∈ J by (b, c) /∈ γ
and Lemma 11. Consider now x ∈ C such that (a, x) ∈ γ, (x, b) ∈ γ and x 6= b.
If deg(x) = 1, then there exists h ∈ H with (x, h) ∈ γ and (b, h) /∈ γ. Thus
(a, h) ∈ γ, (b, h) /∈ γ, and hence from Lemma 11 we obtain h ∈ J , a contradiction
with J ⊆ C. Therefore deg(x) = 0 for any x ∈ C with (a, x) ∈ γ, (x, b) ∈ γ,
x 6= b, and by the density assumption, J = {a, b} = D. �

Proposition 6. Let A = A(∗) be a quasitrivial LD-groupoid with a non-trivial
kernel η. A(∗) is subdirectly irreducible if and only if the following conditions are
satisfied:

(i) There exists only one equivalence class of η with more than one element
(denote this class by B).

(ii) card(B) = 2.
(iii) The natural homomorphism A → A/η maps B to E(A/η).

If A is subdirectly irreducible, then E(A) = B.

Proof: Assume E(A) 6= ∅. By Lemma 16 η contains no class with three elements
and at most one class with two elements. Hence there exists an equivalence class
B as required by (i) and (ii). Identify A/η with A′ = (A\B)∪{B}. If C ∈ E ′2 and
B /∈ C, then C ∈ E2 and E(A) = ∅ by B ∈ E2. Therefore B has to be mapped
inside E(A′).
On the other hand, let A be an LD-groupoid satisfying (i)–(iii). Then B ⊆

E(A). If C ∈ E2 and B ∩ C = ∅, then C ∈ E ′2, a contradiction to B ∈ E(A′).
Hence B ∩C 6= ∅ for every C ∈ E2. Assume now that B = {a, b} and there exists
C ∈ E2 with a ∈ C and b /∈ C. If c ∈ C and c 6= a, then (a, b) ∈ γ implies
(c, b) ∈ γ by Lemma 11. Similarly, (b, c) ∈ γ, and thus (b, c) ∈ η and b = c.
Therefore B = E(A). �

From Proposition 5, Proposition 6 and Lemma 16 we obtain:

Corollary 2. If A = A(∗) is a quasitrivial LD-groupoid, then card(E(A)) ≤ 2.

Corollary 3. A quasitrivial LD-groupoid A(∗) is simple iff card(A) ≤ 2.

Proof: Every simple groupoid is subdirectly irreducible. If A(∗) is subdirectly
irreducible and card(A) > 2, then it contains a non-trivial congruence εE(A). �

Propositions 5 and 6 together with Lemma 15 and Lemma 13 provide a com-
plete characterization of subdirectly irreducible quasitrivial LD-groupoids.
By Proposition 5 there are subdirectly irreducible quasitrivial LD-groupoids

for every cardinality κ. This contrasts with the case of both sided distributivity,
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in which every subdirectly irreducible quasitrivial groupoid contains at most four
elements (observe that a quasitrivial LD-groupoid A = A(∗) is right distributive
if and only if the set B = {b ∈ A; there exists a ∈ A with (b, a) ∈ γ and (b, a) /∈ η}
is linearly ordered by γ, if (b, a) ∈ γ for every b ∈ B and a ∈ A\B, and if A\B is
either discrete, or a block of η).
By Proposition 3, for every subdirectly irreducible quasitrivial LD-groupoid

A = A(∗) there exists a binary operation ◦ on A such that A(∗, ◦) is an LD-
algebra.

The following problems seem to be open.
1. Is the variety generated by quasitrivial LD-groupoids characterized by the
identities a∗(b∗c) = (a∗b)∗(a∗c), a∗a = a, (a∗b)∗b = a∗b and a∗(a∗b) = a∗b?
2. Which of the quasitrivial LD-groupoids are included in the variety of LD-
groupoids generated by conjugation in groups (cf. [DKM])?
3. For which LD-groupoids A(∗) there can be defined a commutative associative
operation ◦ on A such that A(∗, ◦) is an LD-algebra?

References

[DehAd] Dehornoy P., The adjoint representations of left distributive structures, Comm. Alge-
bra 20 (1992), 1201–1215.

[DehBr] , Braid groups and left distributive structures, Transactions AMS, to appear.
[DKM] Drápal A., Kepka T., Muśılek M., Group conjugation has non-trivial LD-identities,

Comment. Math. Univ. Carolinae 35 (1994), 219–222.
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