LADISLAV BERAN

Abstract. The author studies some characteristic properties of semiprime ideals. The semiprimeness is also used to characterize distributive and modular lattices. Prime ideals are described as the meet-irreducible semiprime ideals. In relatively complemented lattices they are characterized as the maximal semiprime ideals. D-radicals of ideals are introduced and investigated. In particular, the prime radicals are determined by means of \hat{C} -radicals. In addition, a necessary and sufficient condition for the equality of prime radicals is obtained.

Keywords: semiprime ideal, prime ideal, congruence of a lattice, allele, lattice polynomial, meet-irreducible element, kernel, forbidden exterior quotients, D-radical, prime radical

Classification: 06B10

1. Introduction

The notion of a semiprime ideal was introduced by Rav in [8] in the following way: An ideal I of a lattice L is said to be *semiprime* if the implication

$$(a \land b \in I \& a \land c \in I) \Rightarrow a \land (b \lor c) \in I$$

is true for every $a, b, c \in L$.

In a recent paper, a new method was used to characterize the semiprime ideals by means of lattice quotients. For a detailed description of the method see [3], whereas for a comparative study of this technique against a classical background see [1]. The semiprime ideals in lattices have been studied in [6], [2] and [4].

For completeness we include some definitions here.

Let a, b be elements of a lattice L. If $a \leq b$, we say that these elements form a quotient b/a of L. We write $b/a \sim_w d/c$ if either

$$b = a \lor d \& a \land d \ge c$$

or

$$a = b \wedge c \& b \lor c \leq d.$$

If there exist quotients y_i/x_i such that

$$b/a = y_0/x_0 \sim_w y_1/x_1 \sim_w \cdots \sim_w y_n/x_n = d/c,$$

we write $b/a \approx_w d/c$.

A quotient b/a is called an allele if there exists a quotient d/c satisfying $b/a \approx_w \approx_w d/c$ and such that either $b \leq c$ or $d \leq a$. The set of all the alleles of L will be denoted by $\mathbf{A}(L)$.

Let $\hat{C}(L)$ denote the smallest congruence θ of L for which the quotient lattice L/θ is distributive. It can be shown [1] that $(a,b) \in \hat{C}(L)$ if and only if there exist $a_i \in L$ satisfying

(1)
$$a_0 = a \land b \le a_1 \le a_2 \dots \le a_m = a \lor b$$

and such that $a_{i+1}/a_i \in \mathbf{A}(L)$ for every $i = 0, 1, \dots, m-1$.

Proposition 1. Let *I* be an ideal of a lattice *L*. Then the following conditions are equivalent:

- (i) the ideal *I* is semiprime;
- (ii) for any a, \tilde{a}, b of L,

$$(b \wedge a \in I \& b \wedge \tilde{a} \in I \& a \lor \tilde{a} \ge b) \Rightarrow b \in I;$$

- (iii) there is no allele b/a of L with $a \in I$ and $b \notin I$;
- (iv) for any x, y of L,

$$(x \in I \& x \leq y \& (x, y) \in \hat{C}(L)) \Rightarrow y \in I;$$

(v) for any x, y of L,

$$(x \in I \& (x, y) \in \hat{C}(L)) \Rightarrow y \in I;$$

(vi) the ideal $(I]_{Id(L)}$ generated by I in the ideal lattice Id(L) is semiprime.

PROOF: (i) \Leftrightarrow (ii). Clearly, any semiprime ideal satisfies (ii).

Suppose now that $x \wedge y \in I$ and $x \wedge z \in I$. Put a = y, $\tilde{a} = z$ and $b = x \wedge (y \vee z)$. From (ii) it follows that $x \wedge (y \vee z) \in I$.

- (i) \Leftrightarrow (iii). This is Main Theorem of [3].
- (iii) \Leftrightarrow (iv) and (iv) \Leftrightarrow (v). Immediate.
- (i) \Leftrightarrow (vi). This has been proved by Rav [8].

Corollary 2. (i) Let $x \in L$. Then the principal ideal (x] is semiprime if and only if there is no allele y/x with y > x.

(ii) An ideal X of L is semiprime if and only if there is no ideal Y satisfying $X \subsetneq Y$ and $Y/X \in \mathbf{A}(Id(L))$.

PROOF: (i) Suppose that (x] satisfies the condition and let q/i be an allele with $i \in (x]$. Since $(i,q) \in \hat{C}(L)$, $(x, x \lor q) \in \hat{C}(L)$. By the assumption and (1), $x \lor q \in (x]$ and so $q \in (x]$. Thus (x] is semiprime.

The remainder follows from Proposition 1 (i).

(ii) Use (i) and Proposition 1 (v).

2. Properties characterizing semiprime ideals

First we need some notation.

Let I be an ideal of L and let $M \subset L$. By M_I^* we mean the set of all $a \in L$ such that $a \wedge m \in I$ for every $m \in M$. We write m_I^* (or simply m^*) instead of $\{m\}_I^*$.

Note that the ideal I is semiprime if and only if m_I^* is an ideal of L for every $m \in L$.

Given an ideal I of L, let ψ and θ be relations defined on L in the following way:

 $(a,b) \in \psi \Leftrightarrow a_I^* = b_I^*; \ (a,b) \in \theta \Leftrightarrow (a \wedge b)_I^* = (a \lor b)_I^*.$

The relation ψ was used by Rav in the proof of his Main Theorem in [8]. Note that $\theta \subset \psi$. However, the converse inclusion need not be true.

Theorem 3. The following conditions are equivalent for any ideal *I* of a lattice *L* :

- (i) The ideal I is semiprime.
- (ii) The relation ψ satisfies $\psi \supset \hat{C}(L)$.
- (iii) The relation θ satisfies $\theta \supset \hat{C}(L)$.
- (iv) The relations θ and ψ satisfy $\theta = \psi \supset \hat{C}(L)$.

PROOF: (i) \Rightarrow (iv). Let $a^* = b^*$ and let $z \in (a \land b)^*$. Then $z \land a \land b \in I$, which gives $z \land a \in b^* = a^*$. Hence $z \land a \in I$ and, similarly, $z \land b \in I$. Since I is semiprime, it follows that $z \land (a \lor b) \in I$. Consequently, $z \in (a \lor b)^*$ and this implies $(a \land b)^* = (a \lor b)^*$. Thus $\theta = \psi$. By [8, p. 109], L/θ is distributive and so $\theta \supset \hat{C}(L)$.

- $(iv) \Rightarrow (iii)$. Trivial.
- (iii) \Rightarrow (ii). Use $\theta \subset \psi$.

(ii) \Rightarrow (i). Let $q/i \in \mathbf{A}(L)$ be such that $i \in I$. Then $(i,q) \in \hat{C}(L) \subset \psi$, and, therefore, $q^* = i^* = L$. This yields $q \in I$.

Theorem 4. An ideal I of a lattice L is semiprime if and only if (2) $[(a \lor b) \land c]_I^* \supset [a \lor (b \land c)]_I^*$

for every $a, b, c \in I$.

PROOF: Suppose I is semiprime and let $x \in [a \lor (b \land c)]^*$. Then $x \land [a \lor (b \land c)] \in I$, and, a fortiori,

$$x \wedge c \wedge a \in I \& x \wedge c \wedge b \in I.$$

Since I is semiprime, $x \wedge c \wedge (a \vee b) \in I$. Therefore, $x \in [(a \vee b) \wedge c]^*$.

Suppose that (2) is valid and let $a \wedge c \in I$ and $b \wedge c \in I$. Replace a in (2) by $a \wedge c$. Then

(3) $\{[(a \wedge c) \lor b] \land c\}^* \supset [(a \land c) \lor (b \land c)]^*.$

Since $(a \wedge c) \lor (b \wedge c) \in I$, it is readily seen that $\{[(a \wedge c) \lor b] \land c\}^* = L$. Accordingly, $[(a \land c) \lor b] \land c \in I$, and, by (2), $c \in [b \lor (a \land c)]^* \subset [(b \lor a) \land c]^*$. Hence $(a \lor b) \land c \in I$.

L. Beran

Theorem 5. An ideal I of a lattice L is semiprime if and only if the following implication holds for every $a, b, c \in L$:

(4)
$$[(c \wedge a)_I^* \supset (c \wedge b)_I^* \& (c \vee a)_I^* \supset (c \vee b)_I^*] \Rightarrow a_I^* \supset b_I^*.$$

PROOF: First we shall suppose that I is semiprime. Then we can consider the quotient lattice L/ψ where ψ was defined above. If x/ψ , $y/\psi \in L/\psi$, then $x/\psi \leq y/\psi$ if and only if $x_I^* \supset y_I^*$. Hence the antecedent of (4) can be rewritten as

$$c/\psi \wedge a/\psi \leq c/\psi \wedge b/\psi \& c/\psi \vee a/\psi \leq c/\psi \vee b/\psi.$$

This, together with a result of M. Molinaro [7, p. 75], implies that $a/\psi \leq b/\psi$. Thus $a^* \supset b^*$.

Finally, let (4) be valid and let x, y and z be arbitrary elements of L. Let $a = (x \lor y) \land z, b = x \lor (y \land z)$ and c = y. Then

$$c \wedge a = y \wedge z \le c \wedge b = y \wedge [x \vee (y \wedge z)]$$

and

$$c \lor a = y \lor [(x \lor y) \land z] \le c \lor b = x \lor y.$$

Consequently we have

$$(c \wedge a)^* \supset (c \wedge b)^* \& (c \vee a)^* \supset (c \vee b)^*.$$

By assumption, $a^* \supset b^*$. From Theorem 4 we see that I is semiprime.

Theorem 6. An ideal I of a lattice L is semiprime if and only if for any lattice polynomial $p(x_1, x_2, ..., x_n)$ and any choice of elements $a_1, a_2, ..., a_n \in L$ the relations

$$p(a_1, a_2, \dots, a_n) \in I \& a_1 C(L) a_2 C(L) \dots C(L) a_n$$

imply $a_1, a_2, \ldots, a_n \in I$.

PROOF: Let I be semiprime and let $p(a_1, a_2, \ldots, a_n) \in I$. Then

$$I = p(a_1, a_2, \dots, a_n)/\psi = p(a_1/\psi, a_2/\psi, \dots, a_n/\psi)$$

= $p(a_1/\psi, a_1/\psi, \dots, a_1/\psi) = a_1/\psi.$

Thus $a_1 \in I$ and the same is true for the other a_i .

Now suppose that the stated implication is true and let $p(x_1, x_2) = x_1 \wedge x_2$. If $a \leq b$ are such that $a \in I$ and $(a, b) \in \hat{C}(L)$, then $p(a, b) = a \in I$. We therefore have from Proposition 1 (iv) that I is semiprime.

3. Semiprimeness as a descriptive tool

Theorem 7. A lattice L is distributive if and only if every principal ideal (a) $(a \in L)$ is semiprime.

PROOF: Let $I = ((a \land b) \lor (a \land c)]$ be semiprime. Since $a \land b$ and $a \land c$ belong to I, we get $a \land (b \lor c) \in I$. Thus $a \land (b \lor c) \le (a \land b) \lor (a \land c)$ and we conclude that $a \land (b \lor c) = (a \land b) \lor (a \land c)$.

Evidently, every ideal of a distributive lattice is semiprime.

Theorem 8. A lattice L is modular if and only if for any $a, b, c \in L$, the ideal $(a \vee [b \land (a \vee c)]]$ is a semiprime ideal of the sublattice generated by a, b, c in L.

PROOF: Suppose that L is modular and let M denote the sublattice generated by a, b, c. Then, by modularity, $I = (a \lor [b \land (a \lor c)]] = ((a \lor b) \land (a \lor c)]$. Now M is isomorphic to a quotient lattice of the free modular lattice M_{28} (see [5, p. 64]) with three generators x, y, z. However, a closer inspection of the quotient lattices of M_{28} shows that in any of these quotient lattices the ideal corresponding to $((x \lor y) \land (x \lor z)]$ is semiprime. Hence also our ideal I is semiprime.

Conversely, suppose the ideal $I = (a \lor [b \land (a \lor c)]]$ is semiprime. Note that $a \land (a \lor c) \in I$ and $b \land (a \lor c) \in I$. Consequently, $(a \lor b) \land (a \lor c) \in I$. Thus $(a \lor b) \land (a \lor c) = a \lor [b \land (a \lor c)]$ and L is modular.

Theorem 9. Let I be a semiprime ideal of a lattice L. Then I is prime if and only if I is a meet-irreducible element of the ideal lattice Id(L).

PROOF: One easily shows that each prime ideal is a meet-irreducible element in Id(L).

It remains to show that every semiprime ideal I which is meet-irreducible in Id(L) is also prime. To do this, consider $b, c \in L$ satisfying $b \wedge c \in I$.

We first note that the inclusion in $I \subset (I \lor (b]) \cap (I \lor (c])$ can be replaced by the equality sign. Indeed, let $x \in (I \lor (b]) \cap (I \lor (c])$. Then there exist $i, j \in I$ and $b_1 \leq b, c_1 \leq c$ such that $x \leq (i \lor b_1) \land (j \lor c_1)$. Hence $x \leq (h \lor b_1) \land (h \lor c_1)$ where $h = i \lor j \in I$. But $b_1 \land c_1 \leq b \land c \in I$. Therefore, $h \lor (b_1 \land c_1) \in I$.

Now $L/\hat{C}(L)$ is distributive, and so $(h \lor (b_1 \land c_1), (h \lor b_1) \land (h \lor c_1)) \in \hat{C}(L)$. Since I is semiprime, we have, by Proposition 1 (iv), $(h \lor b_1) \land (h \lor c_1) \in I$. Consequently, $x \in I$. Combining this with the meet-irreducibility of I we can derive easily that either $b \in I \lor (b] = I$ or $c \in I \lor (c] = I$.

Corollary 10. Let (a] be a semiprime ideal of a lattice L. Then (a] is prime if and only if a is a meet-irreducible element of the lattice L.

PROOF: Use the fact that a is a meet-irreducible element of L if and only if (a] is a meet-irreducible element of Id(L).

By [8, p. 108], any semiprime ideal of L is the kernel of a congruence of L. Hence the following lemma can be applied to semiprime ideals.

 \Box

Lemma 11. Let I be an ideal of a lattice L which is the kernel of a congruence θ of L.

Then

 $(I \land J \supset K \land J \& I \lor J \supset K \lor J) \Rightarrow I \supset K$

for any ideals J, K of L.

PROOF: Let $k \in K$. Since $K \subset I \lor J$, there exist $i \in I$ and $j \in J$ such that $k \leq i \lor j$. At the same time, $j \land k \in J \land K \subset I$. Hence $(i, j \land k) \in \theta$ and, consequently, $(j, i \lor j) \in \theta$. From $j \leq j \lor k \leq i \lor j$ it follows that $(j, j \lor k) \in \theta$. But then $(j \land k, k) \in \theta$. Since I is the kernel of θ and $j \land k \in I$, we get $k \in I$. \Box

Lemma 12. Let I be a semiprime ideal of a lattice L and let $a, b \in L$ be such that $a \land b \in I$.

Then either $(a] \lor I \neq L$ or

$$(a] \lor I = L \& b \in I.$$

PROOF: Suppose that $(a] \lor I = L$. Put J = (a], K = (b] and use Lemma 11. It follows that $b \in K \subset I$.

The following theorem generalizes a result of Chevalier [6, p. 383] stated for orthomodular lattices.

Theorem 13. Let L be a relatively complemented lattice. Then a proper ideal I of L is prime if and only if it is a maximal semiprime ideal of L.

PROOF: It is well-known that in a relatively complemented lattice every proper prime ideal is maximal.

What remains to be shown is that any maximal semiprime ideal $I \neq L$ is prime. Let I be an ideal having these properties and let $a \land b \in I$ for some $a, b \in I$.

Suppose first that

(5)
$$(a] \lor I \neq L \& a \notin I.$$

Then $(a] \vee I$ is not semiprime and, by Proposition 1 (iv), there exist $p \in (a] \vee I$ and $q \notin (a] \vee I$ such that $(p,q) \in \hat{C}(L)$ with $p \leq q$. But $p \in (a] \vee I$ means that $p \leq a \vee i$ for a suitable $i \in I$. Now

$$p \le q \land (a \lor i) \le q \& (p,q) \in \widehat{C}(L).$$

Hence $(q \land (a \lor i), q) \in \hat{C}(L)$ and, therefore,

(6)
$$(a \lor i, q \lor a \lor i) \in \hat{C}(L).$$

Let r^+ be a relative complement of $a \vee i$ in the interval $[i, a \vee i \vee q]$. From (6) we can see that $(i, r^+) \in \hat{C}(L)$. If r^+ belonged to I, then $r^+ \vee a \vee i$ would belong to $(a] \vee I$. But then

$$q \le a \lor i \lor q = r^+ \lor a \lor i \in (a] \lor I,$$

a contradiction.

Thus $r^+ \notin I$, $i \in I$ and, moreover, $(i, r^+) \in \hat{C}(L)$. But this contradicts Proposition 1 (iv).

We may therefore assume that (5) and a similar statement for b are not true.

However, if $(a] \lor I = L$ or $(b] \lor I = L$, then we can use Lemma 12. Thus either $a \in I$ or $b \in I$ and we are done.

We now turn our attention to the prime radicals. Recall [8, p. 111] that the prime radical rad(I) of an ideal I in a lattice L is the intersection of all the semiprime ideals of L which contain I.

There is a simple way how to generalize this notion [4]: Given any lattice L, let D(L) denote a congruence of L and let D be the class of all these congruences. We shall say that an ideal I of L is an ideal with forbidden exterior quotients in D, if the implication

$$(a \leq b \& (a,b) \in D(L) \& a \in I) \Rightarrow b \in I$$

is true for any choice of a and b in L.

From Proposition 1 (iv) we conclude that an ideal I is semiprime if and only if it is an ideal with forbidden exterior quotients in \hat{C} where \hat{C} denotes the class of all congruences $\hat{C}(L)$.

If I is an ideal of L, we put

$$\Gamma_D(I) = \{ x \in L; (\exists i)i \in I \& (i, x) \in D(L) \}$$

calling it the D-radical of I.

Proposition 14. The *D*-radical of an ideal *I* is equal to the intersection of all the ideals with forbidden exterior quotients in *D* containing *I*.

PROOF: Straightforward.

Corollary 15. The \hat{C} -radical of any ideal I in a lattice L is equal to the prime radical of I.

Let I and J be ideals of a lattice L. If $\Gamma_D(I) \subset \Gamma_D(J)$, then it is clear that for any $i \in I$ there exists $j \in J$ such that $(i, j) \in D(L)$. From this remark we could deduce directly a simple characterization of the case where $\Gamma_D(I) = \Gamma_D(J)$. However, there is another approach which seems to be more fruitful:

Theorem 16. The following two conditions on ideals I, J of a lattice L are equivalent:

(i) $\Gamma_D(I) = \Gamma_D(J)$.

(ii) For any $i \in I$ and any $j \in J$ there exist $i_1 \in I$ and $j_1 \in J$ such that

 $i \leq i_1 \& j \leq j_1 \& (i_1, j_1) \in D(L).$

PROOF: Suppose first that $\Gamma_D(I) = \Gamma_D(J)$ and let $i \in I, j \in J$.

Since $i \in \Gamma_D(I) \subset \Gamma_D(J)$, there exists $j_2 \in J$ such that (i, j_2) belongs to D(L). Then $(i \lor j, j_2 \lor j) \in D(L)$. It follows from $j_2 \lor j \in \Gamma_D(J) \subset \Gamma_D(I)$ that there exists $i_2 \in I$ such that $(i_2, j \lor j_2) \in D(L)$. Hence

(7)
$$(i \lor i_2, i \lor j \lor j_2) \in D(L) \& (i \lor j \lor i_2, i \lor j \lor j_2) \in D(L).$$

Now $i \lor i_2 \in \Gamma_D(I) \subset \Gamma_D(J)$ and so there is $j_3 \in J$ with $(i \lor i_2, j_3) \in D(L)$. Therefore,

(8)
$$(i \lor i_2 \lor j, j_3 \lor j) \in D(L).$$

Put $i_1 = i \lor i_2$, $j_1 = j \lor j_3$. Then using (7) and (8), we get $(i_1, j_1) \in D(L)$ and it is evident that $i \le i_1$ and $j \le j_1$.

Next suppose conversely that I and J satisfy the condition (ii). By symmetry, it is sufficient to prove that $\Gamma_D(I) \subset \Gamma_D(J)$.

Let $x \in \Gamma_D(I)$. Then there exists $i \in I$ with $(x, i) \in D(L)$. Let j be an element of J. By the assumption, there are $i_1 \geq i$, $j_1 \geq j$ such that $(i_1, j_1) \in D(L)$. However, from $(x, i) \in D(L)$ we obtain $(x \lor i_1 \lor j_1, i_1 \lor j_1) \in D(L)$. Similarly, $(i_1, j_1) \in D(L)$ implies that $(i_1 \lor j_1, j_1) \in D(L)$. Therefore, $(x \lor i_1 \lor j_1, j_1) \in D(L)$ and, consequently, $x \lor i_1 \lor j_1 \in \Gamma_D(J)$. Since $\Gamma_D(J)$ is an ideal, we have $x \in \Gamma_D(J)$.

Corollary 17. Let a, b be elements of a lattice L.

Then

- (i) the D-radical Γ_D((a]) is equal to the D-radical Γ_D((b]) if and only if (a, b) ∈ D(L);
- (ii) the prime radical rad((a]) is equal to the prime radical rad((b)) if and only if $(a, b) \in \hat{C}(L)$.

PROOF: (i) Suppose $\Gamma_D((a]) = \Gamma_D((b])$. By Theorem 16, there are a_1, b_1 such that

$$a \le a_1 \& b \le b_1 \& a_1 \in (a] \& b_1 \in (b] \& (a_1, b_1) \in D(L).$$

Hence $(a, b) \in D(L)$.

Conversely, suppose $(a, b) \in D(L)$. For any $i \in (a]$ and $j \in (b]$ we then can put $i_1 = a, j_1 = b$ and use Theorem 16.

(ii) Now immediate.

References

- [1] Beran L., Orthomodular Lattices (Algebraic Approach), Reidel, Dordrecht, 1985.
- [2] _____, Distributivity in finitely generated orthomodular lattices, Comment. Math. Univ. Carolinae 28 (1987), 433–435.
- [3] _____, On semiprime ideals in lattices, J. Pure Appl. Algebra 64 (1990), 223–227.
- [4] _____, On the rhomboidal heredity in ideal lattices, Comment. Math. Univ. Carolinae **33** (1992), 723–726.

- [5] Birkhoff G., Lattice Theory, 3rd ed., American Math. Soc. Colloq. Publ., vol. XXV, Providence, 1967.
- [6] Chevalier G., Semiprime ideals in orthomodular lattices, Comment. Math. Univ. Carolinae 29 (1988), 379–386.
- [7] Dubreil-Jacotin M.L., Lesieur L., Croisot R., Leçons sur la théorie des treillis, des structures algébriques ordonnées et des treillis géometriques, Gauthier-Villars, Paris, 1953.
- [8] Rav Y., Semiprime ideals in general lattices, J. Pure Appl. Algebra 56 (1989), 105-118.

DEPARTMENT OF ALGEBRA, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAGUE 8, CZECH REPUBLIC

(Received December 21, 1993)