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p-sequential like properties in function spaces

Salvador Garćıa-Ferreira, Angel Tamariz-Mascarúa

Abstract. We introduce the properties of a space to be strictly WFU(M) or strictly
SFU(M), where ∅ 6= M ⊂ ω∗, and we analyze them and other generalizations of p-
sequentiality (p ∈ ω∗) in Function Spaces, such as Kombarov’s weakly and strongly M -
sequentiality, and Kocinac’s WFU(M) and SFU(M)-properties. We characterize these
in Cπ(X) in terms of cover-properties in X; and we prove that weak M -sequentiality
is equivalent to WFU(L(M))-property, where L(M) = {λp : λ < ω1 and p ∈ M},
in the class of spaces which are p-compact for every p ∈ M ⊂ ω∗; and that Cπ(X)
is a WFU(L(M))-space iff X satisfies the M -version δM of Gerlitz and Nagy’s prop-
erty δ. We also prove that if Cπ(X) is a strictly WFU(M)-space (resp., WFU(M)-space
and every RK-predecessor of p ∈ M is rapid), then X satisfies C′′ (resp., X is zero-
dimensional), and, if in addition, X ⊂ R, then X has strong measure zero (resp., X has
measure zero), and we conclude that Cπ(R) is not p-sequential if p ∈ ω∗ is selective. Fur-
thermore, we show: (a) if p ∈ ω∗ is selective, then Cπ(X) is an FU(p)-space iff Cπ(X) is
a strictly WFU(T (p))-space, where T (p) is the set of RK-equivalent ultrafilters of p; and
(b) p ∈ ω∗ is semiselective iff the subspace ω∪{p} of βω is a strictly WFU(T (P ))-space.
Finally, we study these properties in Cπ(Z) when Z is a topological product of spaces.

Keywords: selective, semiselective and rapid ultrafilter; Rudin-Keisler order; weakly M -
sequential, strongly M -sequential, WFU(M)-space, SFU(M)-space, strictly WFU(M)-
space, strictly SFU(M)-space; countable strong fan tightness, Id-fan tightness, property
C′′, measure zero
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0. Introduction and preliminaries

In this paper, space will mean a Tychonoff topological space, and Cπ(X) will
denote the space of all the continuous real valued functions defined on X and
endowed with the topology of pointwise convergence. For f ∈ Cπ(X) and δ > 0,
we put cozδ f = {x ∈ X : |f(x)| < δ}. ω is the set of natural numbers equipped
with the discrete topology and βω is the Stone-Čech compactification of ω which

can be viewed as the set of all ultrafilters on ω, where Â = {q ∈ βω : A ∈ q}
is a basic open neighborhood of p for each A ∈ p. The remainder ω∗ = βω \ ω
coincides with the set of free ultrafilters on ω and if f : ω → βω is a function, we
will denote by f : βω → βω the Stone extension of f .
We say that p ∈ ω∗ is selective if for every collection {An}n<ω of disjoint

infinite subsets of ω, with An /∈ p for every n < ω, there exists A ∈ p such
that |A ∩ An| ≤ 1 for every n < ω; p ∈ ω∗ is semiselective if for every sequence
{An}n<ω ⊂ p there is an ∈ An for each n < ω such that {an : n < ω} ∈ p; and
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p ∈ ω∗ is rapid if for every f ∈ ωω we can find A ∈ p such that |A ∩ f(n)| ≤ n
for each n < ω. It is not difficult to prove that every selective ultrafilter is
semiselective, and every semiselective is a rapid ultrafilter. The existence of these
sorts of ultrafilters is independent from the axioms of ZFC; the reader is referred
to [Bo], [Ku], [L] and [M].
The Rudin-Keisler (pre)-order in ω∗ is defined as follows: for p, q ∈ ω∗, p ≤RK q

if there is f : ω → ω such that f(q) = p. If p ≤RK q and q ≤RK p, then we say
that p and q are RK-equivalent (in symbols, p ≃RK q). It is not difficult to verify
that p ≃RK q iff there is a permutation σ of ω such that σ(q) = p. The type
of p ∈ ω∗ is the set T (p) of all RK-equivalent ultrafilters of p. Observe that the
Rudin-Keisler pre-order in ω∗ is an order in {T (p) : p ∈ ω∗}. Kunen showed (see
[CN, 9.6]) that selective ultrafilters on ω∗ are precisely the RK-minimal points
of ω∗.

For p ∈ ω∗, the p-sum of a sequence {pn : n < ω} of free ultrafilters on ω,
studied by Froĺık ([F]) and, in a more general context, by Vopěnka ([V]) and
Katětov ([K]), is the ultrafilter

Σppn = {A ⊂ ω × ω : {n < ω : {m < ω : (n, m) ∈ A} ∈ pn} ∈ p}.

Throughout this paper, Σppn will be viewed either as an ultrafilter on ω via
a bijection between ω × ω and ω, or as an ultrafilter on ω × ω. If p, q ∈ ω∗ and
pn = q for every n < ω, then Σppn is the usual tensor product p ⊗ q. Booth [Bo]
showed that the induced product T (p)⊗ T (q) = T (p⊗ q), for p, q ∈ ω∗, produces
a semigroup structure in the set of types in ω∗.

For each ν ∈ ω1, we choose an increasing sequence (ν(n))n<ω of ordinals in ω1
such that

(a) if 2 ≤ ν < ω, ν(n) = ν − 1;
(b) ω(n) = n for every n < ω;
(c) if ν is a limit ordinal, then ν(n)ր ν;
(d) if ν = µ+m where µ is a limit ordinal and m < ω, then ν(n) = µ(n) +m
for each n < ω.

For each p ∈ ω∗, we can define the right powers and the left powers of T (p) as
follows (see [Bo] and [GT2]):

T (p)2 = T (p)⊗ T (p) = 2T (p);

If T (p)λ and λT (p) have already been defined for every λ < ν < ω1, then

T (p)ν = T (p)µ ⊗ T (p) and µT (p) = T (p)⊗ µT (p)

for ν = µ+ 1; and, if ν is a limit ordinal,
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T (p)ν = T (f(p)) and νT (p) = T (g(p)),

where f, g ∈ ω → ω∗ are embeddings defined in such a way that f(n) ∈ T (p)ν(n)

and g(n) ∈ ν(n)T (p) for n < ω.
Observe that, by the associativity of ⊗, nT (p) = T (p)n for every n < ω, and

therefore ωT (p) = T (p)ω. On the other hand, it is proved in [Bo, Corollary 2.23]
that T (p)ω+1 <RK

ω+1T (p).
If 0 < ν < ω1 and p ∈ ω∗, then pν and νp stand for arbitrary points in T (p)ν

and νT (p), respectively.
The basic properties of these products are the following:

0.1. (1) If p ∈ ω∗ and o < µ < ν < ω1, then pµ <RK pν ([Bo]) and µp <RK
νp

([GT 2]).

(2) For each 0 < µ < ω1 there are θ, τ < ω1 such that pµ ≤RK θp and
µp ≤RK pτ ([GT2]).

0.2 Notation. For ∅ 6= M ⊂ ω, we set L(M) = {λp : λ < ω1, p ∈ M} and
R(M) = {pλ : λ < ω1, p ∈ M}.

Bernstein introduced in [B] the notion of p-limit of a sequence for p ∈ ω∗:
Let (xn)n<ω be a sequence in X . Then x ∈ X is a p-limit point of (xn)n<ω

(in symbols, x = p - limxn or x = p - limn→∞ xn if it is necessary to emphasize
what the indexes of the sequence are being considered) if for each V ∈ N (x),
{n < ω : xn ∈ V } ∈ p. This notion suggests the following definitions which are
natural generalizations of the concepts of sequentiality and Fréchet-Urysohn.

0.3 Definitions. Let ∅ 6=M ⊂ ω∗ and let X be a space.
(1) (Kombarov [Km]) X is said to be weakly M -sequential if for each non-

closed subset A of X there are a sequence (xn)n<ω in A, p ∈ M and x ∈ X \ A
such that x = p - limxn.

(2) (Kombarov [Km]) X is said to be strongly M -sequential if for each non-
closed subset A of X there are a sequence (xn)n<ω in A and x ∈ X \A such that
x = p - lim xn for all p ∈ M .

(3) (Kocinac [Ko]) X is a WFU(M)-space if for every A ⊂ X and x ∈ clA,
there are p ∈ M and a sequence (xn)n<ω in A such that x = p - lim xn.

(4) (Kocinac [Ko]) X is a SFU(M)-space if for A ⊂ X and x ∈ clA, there is
a sequence (xn)n<ω in A such that x = p - lim xn for every p ∈ M .

Observe that, for p ∈ ω∗, weakly {p}-sequential = strongly {p}-sequential and
WFU({p})-space = SFU({p})-space; in this case, we simply say p-sequential and
FU(p)-space, respectively (the concept of FU(p)-space was discovered by Comfort
and Savchenko independently). We remark that for a space X we have: (a) X is
strongly ω∗-sequential if and only if X is sequential; (b) X is weakly ω∗-sequential
if and only if X has countable tightness if and only if X is a WFU(ω∗)-space; and
(c) X is a SFU(ω∗)-space if and only if X is Fréchet-Urysohn.
Moreover, if p ∈ M ⊂ ω∗, then
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SFU(M)-space =⇒ FU(p)-space =⇒ WFU(M)-space

⇓ ⇓ ⇓

strong M -sequentiality =⇒ p-sequentiality =⇒ weak M -sequentiality

Next we give examples to show that the arrows cannot be reversed.
Let p, q ∈ ω∗ be such that p <RK q, then ξ(q) is a FU(q)-space and is not p-

sequential (see [GF2]); the sequential space S2 (see [AF]) is not Fréchet-Urysohn,
and its p-version S2(p) (see [GF2]) is p-sequential and is not a FU(p)-space.
If p ≤RK q, then every p-limit point is also a q-limit point, as it is stated in the

next lemma.

0.4 Lemma. Let (xn)n<ω be a sequence in a space X such that p - limxn = x ∈
X . If f : ω → ω is a function such that f(q) = p, then x = q − lim

n→∞
xf(n).

As a consequence of the previous lemma and 0.1, we have that if ∅ 6=M ⊂ ω∗,
then

(a) weak R(M)-sequentiality ⇔ weak L(M)-sequentiality;
(b) strong R(M)-sequentiality ⇔ strong L(M)-sequentiality;
(c) WFU(R(M))-space ⇔ WFU(L(M))-space;
(d) SFU(R(M))-space ⇔ SFU(L(M))-space.

We observe next that strong M -sequentiality and weak M -sequentiality imply
SFU(N)-space and WFU(N)-space for a suitable N ⊂ ω∗, respectively. The proof
of our result resembles the one given in Theorems 3.6 and 3.8 in [GT2]. We recall
that a space X is p-compact, where p ∈ ω∗, if every sequence in X has a p-limit
point in X .

0.5 Theorem. For ∅ 6=M ⊂ ω∗, we have that every weakly M -sequential space
is a WFU(L(M))-space. In addition, if X is p-compact for every p ∈ M, then X
is a WFU(L(M))-space if and only if X is weakly M -sequential.

If p ∈ ω∗, then ξ(p ⊗ p) is a WFU(L(p))-space, but it is not p-sequential.
Also, as pointed out by the referee, ξ(p⊗ p) is an example of a p2-sequential non
SFU(L(p2))-space.
Theorem 0.5 leads us to ask:

0.6 Problem. For ∅ 6=M ⊂ ω∗ and X a space, if Cπ(X) is a WFU(L(M))-space
(resp. SFU(L(M))-space) must Cπ(X) be weakly (resp. strongly) M -sequential?

0.7 Definitions. Let ∅ 6=M ⊂ ω∗.
(a) A space Y is a strictly WFU(M)-space if for every sequence (Fn)n<ω of

subsets of Y and every y ∈
⋂

n<ω clY Fn, there exist yn ∈ Fn for each n < ω, and
p ∈ M such that y = p - lim yn.

(b) A space Y is a strictly SFU(M)-space if for every sequence (Fn)n<ω of
subsets of Y and every y ∈

⋂
n<ω clY Fn, there exists yn ∈ Fn for each n < ω

such that y = p - lim yn for every p ∈ M .
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(c) ([S]) A space Y has countable strong fan tightness if for every y ∈ Y and
every sequence (An)n<ω of subsets of Y such that y ∈

⋂
n<ω clAn, there exists

yn ∈ An for each n < ω, such that y ∈ cl{yn : n < ω}.

Note that, for p ∈ ω∗, a space Y is a strictly WFU({p})-space⇔ Y is a strictly
SFU({p})-space; so, in this case, we say that Y is a strictly FU(p)-space.
Observe also that: (a) Y is a strictly SFU(ω∗)-space ⇔ Y is strictly Fréchet-

Urysohn; (b) Y is strictly WFU(ω∗)-space ⇔ Y has countable strong fan tight-
ness; and (c) for p ∈ M ⊆ ω∗, Y is a strictly SFU(M)-space ⇒ Y is a strictly
FU(p)-space ⇒ Y is a strictly WFU(M)-space ⇒ Y has countable strong fan
tightness.
A collection G of subsets of a space X is an ω-cover of X if for every finite

subset F of X there exists G ∈ G such that F ⊂ G.
The following definition was introduced in [GN2].
A space X is said to have property γ if for every open ω-cover G of X , there is

a sequence (Gn)n<ω in G such that

X = limGn =
⋃

n<ω

⋂

n<m

Gm.

It is shown in [GN2] and [G] that the following statements are equivalent:

(a) Cπ(X) is a Fréchet-Urysohn space.
(b) Cπ(X) is a strictly Fréchet-Urysohn space .
(c) Cπ(X) is sequential.
(d) X satisfies γ.

The equivalence (a) ⇔ (b) was proved by Pytkeev ([Py]) as well, and Nyikos
([N]) showed that every Fréchet-Urysohn topological group is strictly Fréchet-
Urysohn.
In this paper, we principally study the p-sequentiality and the FU(p)-property

on function spaces, and their effects on the base space. This leads us to consider
the following generalization of property γ.

0.8 Definition ([GT1]). X satisfies property γp if for each open ω-cover G of
X there is a sequence (Gn)n<ω in G such that X = limp Gn, where limp Gn =⋃

A∈p

⋂
n∈A Gn.

It is natural to ask whether the p-limit version of the statements (a), (b), (c)
and (d), quoted above, are also equivalent for each p ∈ ω∗. The authors proved
in [GT1] the following.

0.9 Theorem. Let X be a space and let p ∈ ω∗. Cπ(X) is a FU(p)-space if and
only if X satisfies γp.

Unfortunately, the next problem remains unsolved.

0.10 Problem ([GT1]). If Cπ(X) is p-sequential, must X satisfy γp?
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The equivalence between the p-Fréchet-Urysohn property and strictly p-Fréchet-
Urysohn property does not hold, in general, on function spaces. In fact, we showed
in [GT1] that Cπ(R) is a FU(q)-space for some q ∈ ω∗, meanwhile Cπ(R) cannot
be a strictly FU(p)-space for all p ∈ ω∗ (see Corollary 2.5 below).
Before finishing this section we will give some results concerning limit of sets,

sum of ultrafilters and RK-order which will be fundamental for our purposes; their
proofs are not difficult, so we have omitted them. If q is an ultrafilter on ω × ω
and (Gn,m)n,m is a bisequence of sets, then the symbol limq Gn,m has a clear
meaning (see 0.8).

0.11 Lemma. Let p ∈ ω∗, {qn}n<ω ⊂ ω∗ and let (Gn,m)n,m<ω be a bisequence

of subsets of a space X . Then

lim
Σpqn

Gn,m = lim
n→∞

p ( lim
m→∞

qnGn,m).

(Observe that the symbol limΣpqn
Gn,m makes sense because Σpqn can be

considered as an ultrafilter on ω × ω.)

0.12 Lemma. Let p, q ∈ ω∗ and let (Gn)n<ω be a sequence of subsets of

a space X . If f : ω → ω is a function satisfying f(q) = p, then limp Gn =
lim

n→∞
qGf(n).

In the next section of this article we give some necessary and sufficient condi-
tions on a space X in order that its function space Cπ(X) be either WFU(M)-
spaces or SFU(M)-spaces, for ∅ 6= M ⊂ ω∗. We also prove that Cπ(R) is not
p-sequential if p ∈ ω∗ is selective. In Section 2 we study the strictly WFU(M)
and strictly SFU(M)- function spaces, and we characterize the semiselective ul-
trafilters in terms of these properties. In the last section we study the product of
spaces having one of the cover-properties analyzed in this work.

1. Weakly and strongly Fréchet-Urysohn function spaces and rapid

ultrafilters

We are going to characterize the WFU(M) and SFU(M)-properties on a func-
tion space Cπ(X) in terms of cover-properties in X .

1.1 Definitions. Let ∅ 6=M ⊂ ω∗.
(1) A space X satisfies property WγM if for each open ω-cover G of X , there

exist a sequence (Gn)n<ω in G and p ∈ M such that limp Gn = X .

(2) A space X satisfies property SγM if for each open ω-cover G of X , there is
a sequence (Gn)n<ω such that limp Gn = X for every p ∈ M .

(3) A space X satisfies property WΓM if X has ε and for each sequence
(Gn)n<ω, where Gn = {Gn

k : k < ω} for n < ω, of open ω-covers of X satis-

fying Gn+1
k ⊂ Gn

k for each n, k < ω, there exists p ∈ M and a sequence (km)m<ω

of positive integers such that X = lim
m→∞

pG
n
km
for each n < ω.
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(4) A spaceX satisfies property SΓM ifX has ε and for each sequence (Gn)n<ω,

where Gn = {Gn
k : k < ω} for n < ω, of open ω-covers of X satisfying Gn+1

k ⊂ Gn
k

for each n, k < ω, there is a sequence (km)m<ω of positive integers such that, for
every p ∈ M , X = lim

m→∞
pG

n
km
for each n < ω.

If p ∈ ω∗, then we denote by Γp the equivalent properties WΓ{p} and SΓ{p}.

We recall that a space X satisfies property ε if for each open ω-cover G of X
we can find a countable ω-subcover. It is shown in [GN 2] and [Ar 3] that X has
ε ⇔ Xn is Lindelöf for every n < ω ⇔ Cπ(X) has countable tightness.
Observe that, if p ∈ M ⊂ ω∗, then SγM ⇒ γp ⇒ WγM ⇒ ε and SγM ⇒

Γp ⇒ WΓM ⇒ ε.
In [GT1] we proved the following four lemmas which will be useful.

1.2 Lemma. Let ∅ 6= Φ ⊂ Cπ(X) and f ∈ clΦ, and let ̺ > 0. Then G =
{coz̺(g − f) : g ∈ φ} is an open ω-cover of X .

1.3 Lemma. Let f ∈ Cπ(X), let ̺ > 0 and let H be an open ω-cover of X with
X /∈ H. If Φ = {g ∈ Cπ(X) : coz̺(g−f) ⊂ H for some H ∈ H}, then f ∈ cl Φ\Φ.

1.4 Lemma. Let p ∈ ω∗, let X be a space and let f, f0, . . . , fn, · · · ∈ Cπ(X).
Then f = p - lim fn if and only if limp coz̺(fn − f) = X for every ̺ > 0.

1.5 Lemma. Let p, X , f, f0, . . . , fn, . . . as in the previous lemma. Let (̺n)n<ω

be a strictly decreasing sequence of positive real numbers converging to 0. If
X = limp coz̺n(fn − f), then f = p - lim fn.

1.6 Theorem. Let X be a space and let ∅ 6= M ⊂ ω∗. Then the following

statements are equivalent.

(a) Cπ(X) is a WFU(M)-space.
(b) X satisfies WγM .

(c) X satisfies WΓM .

Proof: (a) ⇒ (b). Let G be an open ω-cover of X . If X ∈ G, we take Gn = X
for every n < ω and, obviously, limp Gn = X for every p ∈ M . Now we assume
that X /∈ G, so 0 ∈ cl Φ \ Φ where Φ = {f ∈ Cπ(X) : coz1 f ⊂ G for some
G ∈ G} (Lemma 1.3). By hypothesis, there is p ∈ M and (fn)n<ω ⊂ Φ such that
limp fn = 0. It follows from Lemma 1.4 that limp coz1 fn = X . If, for each n < ω,
Gn ∈ G satisfies that coz1 fn ⊂ Gn, then limp Gn = X .

(b) ⇒ (c). We know that WγM implies ε. Let Gn = {Gn
k : k < ω} be an open

ω-cover of X , for each n < ω, such that Gn+1
k ⊂ Gn

k for each n, k < ω. We may
assume that X is infinite and hence choose {xn : n < ω} an infinite subset of X .
For each n < ω, define Fn = {Gn

k \ {xn} : k < ω} and put F =
⋃

n<ω Fn. It is
not hard to prove that F is an open ω-cover of X as well. By assumption, there
is a sequence (Fj)j<ω in F and p ∈ M for which X = limp Fj . For each j < ω,

we have that Fj = G
nj

kj
\ {xnj} for some nj < ω. We claim that X = lim

j→∞
pG

n
kj

for each n < ω. In fact, fix n < ω. First, observe that {j < ω : n ≤ nj} ∈ p.
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Otherwise, there would be s < n for which B = {j < ω : nj = s} ∈ p and so
X =

⋃
j∈B Fj ⊂

⋃
Fs, a contradiction. If x ∈ X , then {j < ω : x ∈ Fj} ∈ p

and hence {j < ω : n ≤ nj , x ∈ G
nj

kj
} ∈ p. Since G

nj

kj
⊂ Gn

kj
for n ≤ nj ,

{j < ω : x ∈ Gn
kj
} ∈ p. This proves our claim.

(c) ⇒ (a). Let Φ ⊂ Cπ(X) such that 0 ∈ clΦ \ Φ. Since X satisfies ε, Cπ(X)
has countable tightness, so we can find Ψ = {fn : n < ω} ⊂ Φ such that 0 ∈ clΨ.
We take, for each k < ω, Gk = {coz1/2k fn : n < ω}. According to Lemma 1.2,

each Gk is an open ω-cover of X . Besides, coz1/2k+1 fn ⊂ coz1/2k fn for every

k, n < ω. Thus, by hypothesis, there is p ∈ M and a sequence (ns)s<ω in ω such
that lim

s→∞
p coz1/2k fns = X for every k < ω. Therefore, 0 = p - lims→∞ fns (by

Lemma 1.4). �

Analogously, we can prove the strong version of the previous theorem:

1.7 Theorem. Let X be a space and let ∅ 6= M ⊂ ω∗. Then the following

statements are equivalent.

(a) Cπ(X) is a SFU(M)-space.
(b) X satisfies SγM .

(c) X satisfies SΓM .

A natural cover-property that is closely related to p-sequentiality in function
spaces is the p-version δp of property δ (δ was introduced and studied in [GN2]).
In order to define δp we need some notation:

Let X be a space, G ⊂ P(X) and p ∈ ω∗. We proceed by induction: Set
S(p,G, 0) = G and if S(p,G, λ) has been defined for all λ < µ < ω1, we put
S(p,G, µ) = {limp Gn : (Gn)n<ω is a sequence in

⋃
λ<µ S(p,G, λ)}. Finally, we

define Sp(G) =
⋃

λ<ω1
S(p,G, λ).

1.8 Definition. Let ∅ 6= M ⊂ ω∗. A space X satisfies property δM if for every
open ω-cover G, X belongs to Sp(G) for some p ∈ M .

We will write δp instead of δ{p} for each p ∈ ω∗.

We will prove that δM is the translation in X of WFU(L(M))-property in
Cπ(X), where L(M) is the set defined in 0.2. First we will give some lemmas.

1.9 Lemma. (a) If λ < µ < ω1, then S(p,G, λ) ⊂ S(p,G, µ);
(b) if p ≤RK q, then S(p,G, λ) ⊂ S(q,G, λ) for every λ < ω1;
(c) if γ < µ < ω1, then S(γp,G, λ) ⊂ S(µp,G, λ).

Proof: (a) is trivial and (c) is a consequence of (b) and 0.1 (2).
The proof of (b) is by induction. The containment S(p,G, 1) ⊂ S(q,G, 1)

follows from Lemma 0.12. Suppose now that S(p,G, λ) ⊂ S(q,G, λ) for all λ <
µ. Thus, S(p,G, µ) = {limp Gn : (Gn)n<ω ⊂

⋃
λ<µ S(p,G, λ)} ⊂ {limp Gn :

(Gn)n<ω ⊂
⋃

λ<ω S(q,G, λ)}. It follows from Lemma 0.12 that S(p,G, µ) ⊂
{limq Gn : (Gn)n<ω ⊂

⋃
λ<µ S(q,G, λ)} = S(q,G, µ). �
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1.10 Lemma. Let X be a space, A ⊂ P(X) and p ∈ ω∗. Then

(a) for every ν < ω1, S(p,A, ν) ⊂ S(ν+1p,A, 1);
(b) for every ν < ω1, S(

νp,A, 1) ⊂ S(p,A, ν).

Proof: We proceed by transfinite recursion.

(a) The statement is true when ν = 1 because of Lemma 1.9. Suppose that, for
every ν < µ, S(p,A, ν) ⊂ S(ν+1p,A, 1). Let G ∈ S(p,A, µ); so G = limp Gn with
(Gn)n<ω a sequence in

⋃
ν<µ S(p,A, ν). Thus, we obtain that {Gn : n < ω} ⊂

S(µp,A, 1) (by Lemma 1.9). So, for each n < ω, there is a sequence (Gn,m)n,m<ω

in A such that Gn = lim
m→∞

µp(Gn,m). Because of Lemma 0.11, we must have

G = lim
n→∞

p( lim
m→∞

µpGn,m) = limµ+1p Gn,m. Thus, G ∈ S(µ+1p,A, 1).

(b) This is evidently true when ν = 1. Suppose that, for every ν < µ,
S(νp,A, 1) ⊂ S(p,A, ν). Let G ∈ S(µp,A, 1), so G = lim µpGn for some se-
quence (Gn)n<ω in A. If µ = λ+1, then there is a bisequence (Gn,m)n,m<ω ⊂ A
such that G = limλ+1p Gn = lim

n→∞
p( lim

m→∞ λp
Gn,m) (Lemmas 0.11 and 0.12).

By induction hypothesis lim
m→∞ λp

Gn,m ∈ S(p,A, λ) for each n < ω. Therefore,

G ∈ S(p,A, µ).

If µ is a limit ordinal, then µp ≃RK Σp
µ(n)p and so, using the results in 0.11 and

0.12 again, we obtain thatG= lim µpGn = limΣp
µ(n)p Gn= lim

n→∞
p lim

m→∞
µ(n)pGn,m

for some bisequence (Gn,m)n,m<ω in A. But lim
m→∞

µ(n)pGn,m ∈
⋃

ν<µ S(p,A, ν)

for every n < ω. Hence, G ∈ S(p,A, µ). �

To prove the following theorem we only need to observe that a space X satisfies
WγL(M), for ∅ 6= M ⊂ ω∗, if and only if for every open ω-cover G of X , X ∈⋃

ν<ω1
S(νp, 1,G) for some p ∈ M , and apply the previous lemma.

1.11 Theorem. Let ∅ 6= M ⊂ ω∗. A space X satisfies δM if and only if X
satisfies WγL(M) (iff Cπ(X) is a WFU(L(M))-space).

The following lemma follows from Lemma 0.12.

1.12 Lemma. Let ∅ 6= M , N ⊂ ω∗. If for each p ∈ M there is q ∈ N such

that p ≤RK q, then every space having δM has δN , and every space having WγM
satisfies WγN .

From 0.1, 1.11 and 1.12 it follows that:

1.13 Corollary. Let p ∈ ω∗ and µ, ν < ω1. All the properties δp, δpν , δµp,

WγL(p), WγL(pν), WγL(µp), WγR(p), WγR(pν) and WγR(µp) are equivalent.

Now we are going to study the properties WγM on R. In particular we will
give some results related to question 0.10.
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1.14 Definition. Let Y be a p-sequential space. σp(Y ) will denote the degree
of p-sequentiality of Y which is defined to be the least ordinal µ ≤ ω1 such that
for every A ⊂ Y , clY A =

⋃
λ<µ A(p, λ), where

A(p, 0) = A, and

A(p, λ) = {y ∈ Y : ∃ (yn)n<ω ⊂
⋃

η<λ

A(p, η) (y = p - lim yn)},

for λ ≤ ω1.

Observe that σp(Y ) is defined iff Y is p-sequential.
As a consequence of Theorem 3.6 in [GT2] we obtain:

1.15 Theorem. Let p ∈ ω∗. If σp(Cπ(X)) = µ < ω1, then Cπ(X) is a FU(
µ+1p)-

space.

1.16 Corollary. Let p ∈ ω∗. If σp(Cπ(X)) = µ < ω1, then X satisfies γµ+1p.

The next result is a generalization of, and its proof is similar to, Lemma 3.15
in [GT1].

1.17 Lemma. Let p ∈ ω∗ be selective. Then, for λ < ω1, the RK-predecessors
of λp are rapid.

The previous results and Theorem 3.6 in [GT1] imply, in particular, that Cπ(R)
does not have a degree of p-sequentiality < ω1 if p is selective. We will obtain
a stronger result in 1.20: if p is selective, then Cπ(R) is not p-sequential.
The following theorem can be proved in a similar way as Theorem 3.6 in [GT1].

1.18 Theorem. Let M ⊂ ω∗ such that every RK-predecessor of any element of
M is rapid. If X ⊂ R satisfies WγM , then X has measure zero.

Because of 1.11, 1.17 and 1.18 we obtain

1.19 Theorem. Let p ∈ ω∗ be selective and X ⊂ R. If X has δp, then X has
measure zero.

1.20 Corollary. Let p ∈ ω∗ be selective and letX ⊂ R. If Cπ(X) is p-sequential,
then X has measure zero. In particular, Cπ(R) is not p-sequential.

2. Strictly Fréchet-Urysohn (M)-function spaces and semiselective
ultrafilters

2.1 Definitions. Let ∅ 6=M ⊂ ω∗.
(a) A space X has strictly WγM if for each sequence (Gn)n<ω of open ω-covers

of X , there are p ∈ M and, for each n < ω, Gn ∈ Gn such that X = limp Gn.

(b) A space X has strictly SγM if for each sequence (Gn)n<ω of open ω-covers
of X , there is Gn ∈ Gn for each n < ω such that X = limp Gn for every p ∈ M .
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In particular, we say that a space X has strictly γp if X has strictly Wγ{p}
(or, equivalently, if X has strictly Sγ{p}).

With a slight modification in the proof of the equivalence (a) ⇔ (b) of Theo-
rem 1.6, we can show the following result.

2.2 Theorem ([GT 1]). Let X be a space and p ∈ ω∗. Cπ(X) is a strictly
FU(p)-space if and only if X has strictly γp.

By applying the same techniques used so far, it is not difficult to prove the
following generalization of Theorem 2.2.

2.3 Theorem. Let X be a space, and let ∅ 6=M ⊂ ω∗. Then

(a) Cπ(X) is a strictly WFU(M)-space if and only if X has strictly WγM .

(b) Cπ(X) is a strictly SFU(M)-space if and only if X has strictly SγM .

We recall that a space X has property C′′ provided that for each sequence
(Gn)n<ω of open covers of X , there is a sequence (Gn)n<ω, with Gn ∈ Gn and
X =

⋃
n<ω Gn. A space Y has Id-fan tightness if for every y ∈ Y and every

sequence (An)n<ω of subsets of Y such that y ∈
⋂

n<ω clAn, there is Fn ∈ [An]
≤n

for each n < ω, such that y ∈ cl
⋃

n<ω Fn. This concept was introduced in
[GT3] and the authors pointed out that the following result holds (the equivalence
between (a) and (c) was shown by Sakai in [S]).

2.4 Theorem. For a space X , the following are equivalent.

(a) Cπ(X) has countable strong fan tightness.
(b) Cπ(X) has Id-fan tightness.
(c) Each finite product of X has property C′′.

Since every strictly WFU(M)-space, for ∅ 6=M ⊂ ω∗, has countable strong fan
tightness, then we obtain the following corollary of Theorem 2.4.

2.5 Corollary. Let ∅ 6= M ⊂ ω∗ and let X be a space. If X satisfies strictly
WγM , then Xn has C′′ for every n < ω. In particular, if X is a subset of R

having strictly WγM , then X has strong measure zero.

We may also obtain the conclusions in Corollary 2.5 by developing a proof sim-
ilar to that given in [D, p. 100] of the fact that γ implies Rothberger property C′′

(see [GN2]).
Corollary 2.5 implies that γp and strictly WγT (p) are not necessarily equiva-

lent because R satisfies γp for some p ∈ ω∗ (Theorem 2.15, [GT1]), but R does
not satisfy strictly WγT (p). Nevertheless, the two concepts coincide when p is

selective:

2.6 Theorem. If p ∈ ω∗ is selective, then a space X has γp if and only if X has
strictly WγT (p).

Proof: It is not difficult to verify that strictly WγT (p) implies property γp for

every p ∈ ω∗. Let p ∈ ω∗ be selective and assume that X has γp. Let (Gm)m<ω
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be a sequence of open ω-covers of X . If X is finite, there is nothing to prove,
so we suppose that we can take {xn : n < ω} ⊂ X such that xi 6= xj if i 6= j.
For each m < ω, we put Fm = {G − {xm} : G ∈ Gm}. Then F =

⋃
m<ω Fm

is an open ω-cover of X . Since X satisfies γp, there is a sequence (Fn)n<ω in F
such that X = limp Fn. The sets Ak = {n < ω : Fn ∈ Fk \

⋃
i<k Fi}, for k < ω,

constitute a partition of ω. Besides, Ak /∈ q for every k < ω because, on the
contrary, if Ak ∈ q for some k < ω, then X =

⋃
n∈Ak

Fn which is in contradiction
with the construction of Fk. Hence, since q is selective, there is A ∈ q such that
|A ∩Ak| ≤ 1 for every k < ω. By adding points if it is necessary, we may assume
that A ∩ Ak = {nk} for each k < ω and hence A = {nk : k < ω}. Thus, the
function f : ω → ω defined by f(i) = ni is injective and f [ω] = A ∈ p. Let

q ∈ ω∗ satisfying f(q) = p. Then, by 0.12, X = lim
k→∞

qFnk
. Since f is one-to-one,

q ≃RK p (see [CN] or [C 1]). Now, for each k < ω we choose Gk ∈ Gk so that
Fnk

⊂ Gk. Then X = limq Gk and q ∈ T (p). This completes our proof. �

2.7 Corollary. Let p ∈ ω∗ be selective. Then Cπ(X) is an FU(p)-space if and
only if Cπ(X) is a strictly WFU(T (p))-space.

2.8 Problem. Are γp and strictly γp the same property whenever p is selective?

2.9. In the following diagrams we summarize some of the results that we have
already proved in this article and in [GT1] concerning generalizations of the FU-
property in Cπ(X) and cover-properties in X . The expression p ≤∗

RK q, for

p, q ∈ ω∗, will mean that λp ≤RK q (equivalently, pλ ≤RK q) for every λ < ω1.

Cπ(X) is strictly SFU(T (p))-space ⇐⇒ X has strictly SγT (p)

⇓ ⇓

strictly FU(p)-space ⇐⇒ strictly γp

⇓ ⇓

strictly WFU(T (p))-space ⇐⇒ strictly WγT (p)

⇓ ⇓

FU(p)-space ⇐⇒ γp

⇓ ⇓

p-sequential space =⇒ δp

⇓ ⇓

WFU(L(p))-space ⇐⇒ WγL(p)

⇓ ⇓

FU(q)-space ∀ p ≤∗
RK q ⇐⇒ γq∀ p ≤∗

RK q
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Moreover, if p ∈ M ⊂ ω∗, then

X has Cπ(X) is X has

strictly SγM ⇐⇒ strictly SFU(M)-space ⇐⇒ strictly SγM

⇓ ⇓ ⇓ ⇓

SγM ⇐⇒ SFU(M)-space strictly FU(p) ⇐⇒ strictly γp

⇓ ⇓ ⇓ ⇓ ⇓

γp ⇐⇒ FU(p)-space strictly WFU(M) ⇐⇒ strictly WγM

⇓ ⇓ ⇓ ⇓

WγM ⇐⇒ WFU(M)-space ⇐⇒ WγM

⇓ ⇓

δM δM

2.10 Problems. (1) Under what conditions on p ∈ ω∗, and on M ⊂ ω∗ (and on
N ⊂ ω∗), does WγM imply γp (resp., WγM implies WγN )?

(2) Is p-sequentiality a consequence of δp if p is selective?

Now we are going to see that semiselective ultrafilters can be characterized in
terms of strictly WFU(M)-properties in ξ(p)-type spaces, where p ∈ ω∗ and ξ(p)
is the subspace ω ∪ {p} of βω.

2.11 Lemma. (a) Let ∅ 6=M ⊂ ω∗ and p ∈ ω∗. If ξ(p) is a strictly WFU(M)-
space, then p is semiselective.
(b) Let p, q ∈ ω∗. If ξ(p) is a strictly FU(q)-space, then p is semiselective and

p <RK q.
(c) For every p ∈ ω∗, ξ(p) is not a strictly FU(q)-space for every q ∈ T (p).

Proof: (a) Let {An}n<ω ⊂ p. For each n < ω there are xn ∈ An and q ∈ M such
that p = q - limxn, because p ∈ clξ(p)An for all n < ω. Take A = {xn : n < ω}.

If A /∈ p, then ω \ A ∈ p, and so ∅ = {n < ω : xn ∈ ω \ A} ∈ q, a contradiction.
Therefore, A ∈ p.

(b) By (a), p is semiselective. Let An ∈ p such that n /∈ An for n < ω. Then,
there is xn ∈ An, for n < ω, such that p = q - limxn. If f(n) = xn for each n < ω,
then f(q) = p. Suppose that f is one-to-one. Let Bn be such that f(n) /∈ Bn

for each n < ω. By assumption, there is g : ω → ω such that g(n) ∈ Bn, for all
n < ω, and g(q) = f(q). By [G-F 1, Lemma 2.1], {n < ω : g(n) = f(n)} ∈ p
which is a contradiction. Thus, p <RK q.

(c) is a consequence of (b). �

2.12 Theorem. Let p ∈ ω∗. p is semiselective if and only if ξ(p) is a strictly
WFU(T (p))-space.

Proof: According to Lemma 2.11 (a), we only have to prove the necessity. As-
sume that p ∈ ω∗ is semiselective and let p ∈

⋂
n<ω clξ(p)An, where An ⊂ ξ(p)

for every n < ω. Let B = {n < ω : p ∈ An}. We have two cases:
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First case: B ∈ p.

In this case, for each n ∈ B we take xn = p, and for every n /∈ B we choose some

xn ∈ An. If W ∈ p, {n < ω : xn ∈ Ŵ} ⊃ B ∈ p; so p = p - limxn.

Second case: B /∈ p.

Let ω \ B = {nk : k < ω} such that ni < nj if i < j. By assumption, for every
k < ω, there is xnk

∈ Ank
such that A = {xnk

: k < ω} ∈ p. We take y0 = xn0
and

yk+1 =

{
xnk+1 if xnk+1 /∈ {xns : 0 ≤ s ≤ k}

x ∈ Ank+1 \ {xns : 0 ≤ s ≤ k} otherwise.

We have that A ⊂ {yk : k < ω} = A′ and so A′ ∈ p. Let f : ω → A′ defined by
f(n) = yk if n = nk and f(n) = y0 if n ∈ B. Let q ∈ ω∗ such that f(q) = p.
It follows that p = q - lim yk. On the other hand, since f |ω\B is a one-to-one

function and ω \ B ∈ p, p ≃RK q (see [C 1, Lemma 3.2 (c)]). So ξ(p) is a strictly
WFU(T (p))-space. �

Note that, according to 2.11 (b) and 2.12, for every semiselective ultrafilter p,
ξ(p) is a strictly WFU(T (p))-space which is not a strictly FU(p)-space.

2.13 Problem. Let p ∈ ω∗ be selective. Is there any q ∈ ω∗ such that p <RK q
and ξ(p) is a strictly FU(q)-space?

3. Products, subspaces and sums

For a nonempty subset M of ω∗, SM will denote one of the p-sequential like
properties that we have considered in this work so far: weakly and strongly M -
sequentiality, WFU(M) and SFU(M)-property and strictly WFU(M) and strictly
SFU(M)-property. Let I be the set of all SM with ∅ 6=M ⊂ ω∗ plus sequentiality
and Fréchet-Urysohn property. In a similar way, CM is one of the cover properties
WγM , SγM , δM , strictly WγM or strictly SγM , and C = {CM : ∅ 6= M ⊂
ω∗} ∪ {ε, γ}.
Properties in I are not invariants under continuous functions and products,

even the square of a space X having S ∈ I does not necessarily satisfy S. In fact,
there exists a Fréchet-Urysohn space X whose square X × X has uncountable
tightness ([AR 1], [AR 2]; see also Example 1 in [GN 1]).

On the other hand, the properties in C satisfy the following result, proof of
which is similar to that given for Theorem 2.1 in [GT1].

3.1 Theorem. Let C ∈ C.

(a) C is preserved under continuous functions.
(b) If F is an Fσ-subset of a space X having C, then F has C.
(c) If X has C, then Xn satisfies C for every n < ω.
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3.2 Remarks. (1) Every countable space has C for every C ∈ C.

(2) Let X, Y be two spaces and C ∈ C. X × Y has C if and only if the disjoint
sum X

`
Y has C. In fact, X

`
Y is homeomorphic to a closed subset of X × Y ,

and X × Y is homeomorphic to a closed subset of (X
`

Y )× (X
`

Y ).

(3) Malykhin and Shakhmatov have shown in [MS] that if we add a single
Cohen real to a countable model of MA +¬CH, then there exist two spaces X
and Y in the generic extension satisfying γ such that X×Y does not even have ε.
On the other hand, as was remarked by van Douwen (see p. 1222 in [C 2]), there
are (without assuming any additional set theoretic axioms) two spaces X and Y
of weight not bigger that 2ω satisfying ε such that X × Y is not Lindelöf. Thus,
because of Theorem 2.3 in [GT1], X and Y have γp for some p ∈ ω∗ but X × Y
does not satisfy any of the properties in C.

3.3 Theorem. If X satisfies C ∈ C and N is a countable space, then X × N
has C.

Proof: Without loss of generality we may suppose that X and N are infinite.
The proof for the case C = γp suffices here. Let {an : n < ω} be a faithful
indexation of N , let {xn : n < ω} ⊂ X such that xi 6= xj if i 6= j and let G be an
open ω-cover of X×N . For each n < ω set Hn = {V ⊂ X : V is open and there is
G ∈ G such that V ×{aj : j < n} ⊂ G} and H′

n = {V \{xn} : V ∈ Hn}. We claim
that H =

⋃
n<ω H′

n is an open ω-cover of X . In fact, if {y0, . . . , yr} ⊂ X there are
s < ω and G ∈ G such that xs /∈ {y0, . . . , yr} and {y0, . . . , yr} × {a0, . . . , as} ⊂
G. Then, there is an open subset V of X containing {y0, . . . , yr} such that
V × {a0, . . . , as} ⊂ G. So, V ∈ Hs and {y0, . . . , yr} ⊂ V \ {xs} ∈ H′

s. Thus, H is
an open ω-cover of X . By hypothesis, there is a sequence (H ′

k)k<ω in H such that
X = limp H ′

k, where H ′
k = Vk \ {xnk

} for some open subset Vk of X and some
natural number nk. For each k there is Gk ∈ G such that Vk×{aj : j < nk} ⊂ Gk.
Now, we are going to prove that X ×N = limp Gn. In order to achieve this goal,
we take a point (x, an) ∈ X×N . IfD = {k < ω : nk ≤ n} ∈ p, then there ism ≤ n
such that E = {k < ω : nk = m} ∈ p; but this implies that X =

⋃
k∈E Vk \ {xm},

which is a contradiction. So, {k < ω : x ∈ Vk \ {xnk
}, n < nk} ∈ p. It follows

that {k < ω : (x, an) ∈ Vk × {aj : j < nk} ⊂ Gk and n < nk} ∈ p. �

3.4 Corollary. Let S ∈ I \ {weakly M -sequentiality, strongly M -sequentiality :
∅ 6=M ⊂ ω∗}.

(a) If Cπ(X) satisfies S, then Cπ(X
n) satisfies S.

(b) If Cπ(X) satisfies S, then Cπ(X)
ω has S.

(c) Cπ(X)× Cπ(Y ) has S if and only if Cπ(X × Y ) has S.
(d) If Y is a quotient space of a space X and Y satisfies C ∈ C, then X has C.

Proof: We obtain (a) as a consequence of Theorem 3.1; (b) follows from 3.1, 3.3
and the fact that C(X)ω ∼= C(X × ω) (see Corollary 2.4.7 in [MN]); 3.2 (2) and
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Cπ(X) × Cπ(Y ) ∼= Cπ(X
`

Y ) implies (c); and (d) results from Theorems 2.2.8
and 2.2.10 in [MN]. �

It is pointed out in [G, p. 258] that if a space X has γ, then X must be
zero-dimensional. For ∅ 6=M ⊂ ω∗, the following holds.

3.5 Corollary. If all RK-predecessors of each p ∈ M ⊂ ω∗ are rapid, then every

space X with WγM is zero-dimensional.

Proof: Assume that X has property WγM . Let x ∈ X and U an open
neighborhood of x. Choose a continuous function f : X → [0, 1] such that
f(x) = 0 and f(y) = 1 for all y ∈ X \ U . From 3.1 (a) and 1.18 it follows
that f [X ] has measure zero. Hence, there is r ∈ [0, 1] such that r /∈ f [X ]. Then
x ∈ f−1([0, r)) ⊂ f−1([0, r]) ⊂ U and f−1([0, r]) is a clopen subset of X . �

We know ([GT 1, Theorem 2.3]) that there is p ∈ ω∗ such that βω and ω∗

have property γp. However, if p ∈ ω∗ is selective, then βω and ω∗ cannot have
property γp since none of them have property C′′. In fact, by induction we may
define a partition {At(0),...,t(n−1) : t : n → {0, 1} is a function} of ω in infinite

subsets such that {At(0),...,t(n−1),0, At(0),...(n−1),1} is a partition of At(0),...,t(n−1)

in infinite sets, for each n < ω and each function t : n → {0, 1}. Now define, for

each n < ω, Gn = {Ât(0),...,t(n−1) : t : n → {0, 1} is a function}. We have that

Gn is a cover of βω. Assume that βω has property C′′. Then, for every n < ω

there is tn : n → {0, 1} such that βω =
⋃

n<ω Âtn(0),...,tn(n−1). We may find

σ : ω → {0, 1} so that σ(n − 1) 6= tn(n − 1) for all 1 < n < ω. We may choose

q ∈ [
⋂

n<ω Âσ(0),...,σ(n−1)] ∩ ω∗. It is then evident that q /∈ Âtn(0),...,tn(n−1) for

all 1 < n < ω, a contradiction. �

Using analogous proofs of those given for Theorems 3.18 and 3.20 in [GT1],
we have

3.6 Theorem. Let C ∈ C.

(1) the following are equivalent.

(a) R satisfies C.
(b) The Cantor space 2ω satisfies C.
(c) Every metrizable separable locally compact space has C.

(2) the following are equivalent.

(a) R
ω satisfies C.

(b) The set of irrational numbers ωω satisfies C.
(c) Every completely metrizable space has C.

If |X | > 1, then the Cantor set 2ω is homeomorphic to a closed subspace of Xω.
On the other hand, 2ω does not have γ ([GN 2, Theorem 6]). Thus, we obtain

3.7. If X has more than one point, then Xω does not satisfy γ.

Note also that if Xω has C ∈ C, then X has C, because X is homeomorphic to
some closed subset of Xω. But the converse is not necessarily true, for example
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the discrete space {0, 1} satisfies C for every C ∈ C but 2ω does not have γp if p
is semiselective ([GT 1, Theorems 3.9 and 3.18]). We obtain something different
when we take X into some convenient class of spaces:

3.8 Theorem. Let X be a compact second countable and non-countable space
and let C ∈ C \ {γ}, then X has C if and only if Xω has C.

Proof: Since X is second countable and non-countable, there is ∅ 6= F ⊂ X
which is perfect (see [E, p. 59, 1.7.11]). Furthermore, F is completely metrizable
because X is, then F contains a copy of the Cantor set ([E, p. 290, 4.5.5]). Thus,
2ω satisfies C. By Theorem 3.6, every compact metric space has C; in particular
Xω has C. �

3.9 Corollary. Let X be a compact second countable non-countable space, and
let S ∈ I \ {weakly M -sequentiality, strongly M -sequentiality : ∅ 6= M ⊂ ω∗}.
Then Cπ(X) has S if and only if Cπ(X

ω) satisfies S.

3.10 Problems. (1) Let C ∈ C. Does R
ω satisfy C if R does?

(2) Let p ∈ ω∗ be a P -point and letX be a space having γ. Does Xω satisfy γp?

3.11 Examples. Let C ∈ C.
(1) If X contains a closed discrete set of cardinality > ℵ0, then X does not

satisfy C. So, the Moore Plane and L × L, where L is the Sorgenfrey Line do
not satisfy C, and by Theorem 3.1, L does not satisfy C either. Also for every

cardinal α ≥ ω, α(α
+) does not have C. In particular, if X contains a closed copy

of ω, Xα does not satisfy C if α > ω.

(2) Let X be a space satisfying ε and such that X contains a point x0 with the
property that for every neighborhood V of x0, |X \V | ≤ ℵ0. Then X satisfies C.
Thus, the one point compactification of a discrete space and [o, ω1] (with the order
topology) satisfy C.

Because of Theorem 2.12 in [GT1] we know that 22
ω
has γp for some p ∈ ω∗.

So it is natural to ask:

3.12 Problem. Does 2(2
ω)+ satisfy γp for any p ∈ ω∗?

For a space X , n(X) denotes the Novak number of X (that is, n(X) is the
smaller power of a family of nowhere dense sets covering X). Our last result is
a consequence of Theorem 1 in [Ma].

3.13 Theorem (n(ω∗) > c). Let X be a space. The following statements are
equivalent.

(a) X satisfies γ.
(b) X satisfies γp for every p ∈ ω∗.

(c) X satisfies strictly γp for every p ∈ ω∗.

(d) Cπ(X) is p-sequential for every p ∈ ω∗.
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3.14 Problems. (1) Is it consistent with ZFC that every space satisfying δp for
every p ∈ ω∗ has γp for every p ∈ ω∗?

(2) Is it consistent with ZFC that there exists a space X satisfying γp (resp.,
δp, strictly γp) for every p ∈ ω∗ and ¬γ?

(3) Is it consistent with ZFC that R satisfies γp for every p ∈ ω∗?
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[V] Vopěnka P., The construction of models of set theory by the method of ultraproducts,
Z. Math. Logik Grundlagen Math. 8 (1962), 293–304.
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