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Guidance properties of a cylindrical defocusing waveguide

Oldřich John, Charles A. Stuart

Abstract. We discuss the propagation of electromagnetic waves of a special form through
an inhomogeneous isotropic medium which has a cylindrical symmetry and a nonlinear
dielectric response. For the case where this response is of self-focusing type the problem
is treated in [1]. Here we continue this study by dealing with a defocusing dielectric
response. This tends to inhibit the guidance properties of the medium and so guidance
can only be expected provided that the cylindrical stratification is such that guidance
would occur for the linear response that is obtained in the limit of zero field strength.
The guided modes that we seek correspond to solutions of the boundary value problem
−u′′ + 3

4

u

r2
− q(r)u + p(r, u)u = λu for r > 0 with u ∈ H1

0
(0,∞) and its linearisation

is −u′′ + 3

4

u

r2
− q(r)u = λu with u ∈ H1

0
(0,∞). This linear problem has the interval

[0,∞) as its essential spectrum and the requirement that guidance should occur in
the limit of zero field strength leads us to suppose that it has at least one negative
eigenvalue. Solutions of the nonlinear problem are then obtained by bifurcation from
such an eigenvalue. The main interest concerns the global behaviour of a branch of
solutions since this determines the principal features of the waveguide. If the branch
is bounded in L2(0,∞) there is an upper limit to the intensity of the guided beams
(high-power cut-off), whereas if the branch is unbounded in L2(0,∞) then guidance is
possible at arbitrarily high intensities. Our results show how these behaviours depend
upon the properties of dielectric response.
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1. Introduction

In a non-conducting (dielectric), non-magnetic and charge free medium, Maxwell
equations can be written as

rotE = −1
c

∂H

∂t
,(1.1)

rotH =
1

c

∂D

∂t
,(1.2)

div H = 0 and div D = 0(1.3)

where E,H and D denote the electric, magnetic and displacement fields, respec-
tively, and where c is the speed of light in a vacuum. Recalling that rot rotA =
−△A+▽ div A, we see that (1.1) and (1.2) imply that

(1.4) −△ E +▽ div E = − 1
c2
∂2D

∂t2
.
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In the study of nonlinear optical waveguides it is common practice to consider
monochromatic fields and to adopt a constitutive law having the form

(1.5) D(x, t) = ε(x,< E2 > (x))E(x, t)

where ε is a scalar function and where < E2 > denotes the time average of the
intensity of the field E. That ε is a scalar means that at each point the medium is
isotropic and its dependence on x ∈ R3 allows for inhomogeneity of the medium.
Its dependence on the average value < E2 > (x) of | E(x, t) |2 at x, rather than
on | E(x, t) |2 itself, reflects the idea that, due to the high frequency of E, the
dielectric constant at x can only adjust to this average effect.
Combining (1.4) and (1.5) we obtain an equation for E,

(1.6) −△E +▽ div E = − 1
c2
ε(x,< E2 > (x))

∂2E

∂t2

which is sometimes called the vector electric field wave equation.
So far we have not placed any restriction on the way in which the properties of

the medium vary from place to place. In what follows we suppose that this inho-
mogeneous composition enjoys a cylindrical symmetry. Using (r, ϕ, z) to denote
the usual cylindrical polar coordinates, we suppose that the dielectric response
depends only on r and < E2 >. Thus in (1.5), ε = ε(r,< E2 > (x)). In order
to accomodate both smooth and abrupt changes in composition across cylindrical
layers, we allow ε to be a piecewise continuous function of r. More precisely,
we postulate a constitutive law of the form (1.5) where ε satisfies the following
condition.

(H1) There are M intervals (ri, ri+1) with

0 = r1 < r2 < · · · < rM < rM+1 =∞
and M nonnegative functions

χi ∈ C1([ri, ri+1]× (0,∞)) ∩ C([ri, ri+1]× [0,∞)) for i = 1, 2, . . . ,M

such that
ε(r, s) = 1 + 4πχi(r, s) on (ri, ri+1)× [0,∞).

Furthemore,

ε(r, s) ≤ ε(r, 0) for (r, s) ∈ [0,∞)2,(1.7)

lim
r→∞ ε(r, 0) exists and is finite(1.8)

∂ε

∂r
(0, s) = 0 for s ≥ 0(1.9)

and there exists γ > 0 such that

(1.10) lim
s→0

ε(r, 0)− ε(r, s)

sγ
= 0 uniformly for r ≥ 0.
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Remark. 1. These conditions are similar to those laid down in (A1) of [1]. Note
however that in [1], the condition (A1) requires ε(r, s) to be a non-decreasing
function of s and so it covers materials that have a self-focusing dielectric response.
In (H1), the condition (1.7) constitutes a weakened form of the requirement
that ε(r, s) be a non-increasing function of s and so it covers materials having
a defocusing response.

2. To simplify the subsequent analysis we introduce the following notations,

εL(r) = ε(r, 0) , εL(∞) = lim
r→∞ εL(r),(1.11)

q(r) =
ω2

c2
[εL(r) − εL(∞)],(1.12)

p(r, s) =
ω2

c2
[εL(r) − ε(r,

1

2

s2

r
)],(1.13)

and

(1.14) λ =
ω2

c2
εL(∞)− k2

where ω is the frequency of the monochromatic fields.
This situation is similar to that set out in (3.1)–(3.5) of [1], but for convenience

in the present case we have changed the sign of p. By (H1), we have

(1.15 (i)) q ∈ C1([ri, ri+1]) , i = 1, ...,M , with lim
r→∞

q(r) = 0

and

(1.15 (ii)) p ∈ C([0,∞) \ {r1, ..., rM} × [0,∞)) with p(r, 0) ≡ 0 for r > 0.

Furthermore,

(1.15 (iii)) 0 ≤ p(r, s) ≤ A for r > 0 and s ≥ 0

where A = ω2

c2
supr≥0 εL(r) <∞, and there exists a constant K > 0 such that

(1.16) 0 ≤ p(r, s) ≤ K(
1

r
s2)γ for r > 0 and s ≥ 0.

3. The usual Hilbert space norm on L2(0,∞) is denoted by ‖ ‖ . For the Sobolev
space

H10 ((0,∞)) = {u ∈ L2(0,∞); u′ ∈ L2(0,∞) and u(0) = 0}
we use the norm ‖ ‖1 defined by

‖ u ‖1= {‖ u ‖2 + ‖ u′ ‖2} 12 .
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We recall that for u ∈ H10 (0,∞)

lim
x→∞

u(x) = 0 , lim
x→0

x−
1

2u(x) = 0 ,(1.17)

maxx≥0 | u(x) |=‖ u ‖∞≤ (‖ u ‖ ‖ u′ ‖) 12 ,(1.18)

x−
1

2 | u(x) |≤‖ u′ ‖ for x > 0(1.19)

and

(1.20) ‖ u
x
‖≤ 2 ‖ u′ ‖ (Hardy′s inequality)

For u ∈ H10 (0,∞) , it follows that

(1.21) 0 ≤ p(r, u(r)) ≤ K(r−1u2(r))γ ≤ K ‖ u′ ‖2γ

and

(1.22) lim
r→0

p(r, u(r)) = lim
r→∞

p(r, u(r)) = 0.

In view of the cylindrical symmetry that underlies (H1) it is natural to seek a
solution of Maxwell’s equations that incorporates this symmetry. In particular we
are interested in monochromatic fields propagating in the direction of the z-axis.
This leads us to look for a solution of (1.6) in the form

(1.23) E = v(r) cos(kz − ωt)




− sinϕ
cosϕ
0



 for r > 0,

where v is a scalar function. From (1.23) it follows that < E2 > (x) = 1
2v
2(r)

and div E ≡ 0.
As is discussed in more detail in [1], the field E given by (1.23) yields a complete

solution of Maxwell’s equations (1.1) to (1.3) satisfying (1.5) provided that

v ∈ C1((0,∞)) ∩ C2((0,∞) \ {r2, ..., rM}),(1.24)

lim
r→0

v(r) = 0 and lim
r→0

v′(r) exists and is finite,(1.25)

and

(1.26)
1

r
(rv′(r))′ − 1

r2
v(r) +

ω2

c2
ε(r,
1

2
v2(r))v(r) − k2v(r) = 0

for r ∈ (0,∞) \ {r2, ..., rM}.
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Furthermore, such a solution constitutes a guided wave provided that

(1.27) lim
r→∞

v(r) = lim
r→∞

v′(r) = 0

and

(1.28) v ∈ H1(R2) (as a function of x and y where r =
√
x2 + y2 ).

These assertions are justified in §§1–3 of [1], where it is also shown that the
problem of finding guided waves of the form (1.23) can be expressed in the fol-
lowing more compact way, by introducing the new variables λ (defined by (1.14))
and u defined by

(1.29) u(r) = r
1

2 v(r) for r > 0.

Problem G. Given a dielectric response ε that satisfies (H1), find a pair (λ, u) ∈
R×H10 ((0,∞)) such that −∞ < λ ≤ ω2

c2
εL(∞), u 6= 0 and

(1.30)

∫ ∞

0
u′ϕ′ dr =

∫ ∞

0
[q(r)− 3

4r2
−p(r, u)+λ] uϕdr for all ϕ ∈ H10 ((0,∞)).

In particular, a solution of Problem G has the property that u ∈ C2((0,∞) \
{r2, ..., rM}) and

(1.31) −u′′ + 3

4r2
u− q(r)u + p(r, u)u = λu for r 6= r2, ..., rM .

(See Theorem 3.1 of [1].)

2. The linear case

Prior to the analysis of the nonlinear eigenvalueProblem G we summarize the
essential features of the special case where p ≡ 0. This means that the dielectric
function ε is independent of the field strength and that Problem G is linear.
Associated with the differential expression −u′′ + 3

4r2
u − q(r)u appearing on

the left hand side of (1.31) there is a bilinear form defined by

(2.1) a(u, v) =

∫ ∞

0
(u′v′ +

3

4r2
uv − q(r)uv) dr for u, v ∈ H10 (0,∞).

Clearly

(2.2) a(u, u) ≥ − sup
r≥0

q(r) ‖ u ‖2 for u ∈ H10 (0,∞)
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where q ∈ L∞(0,∞) and recalling Hardy’s inequality we also have that, for u, v ∈
H10 (0,∞)

(2.3) |a(u, v)| ≤ 4 ‖ u′ ‖‖ v′ ‖ +sup
r≥0

|q(r)| ‖ u ‖‖ v ‖≤ C ‖ u ‖1‖ v ‖1 .

Hence a is a symmetric bilinear form that is continuous on H10 (0,∞) and
bounded below. Furthermore, it is easily seen that a is closed in L2(0,∞) and
so, according to Theorem 2.1, Chapter VI, §2 in [4], there is a unique self-
adjoint operator S : D(S) ⊂ L2(0,∞) −→ L2(0,∞) associated with a through
the relation

(2.4) a(u, v) =

∫ ∞

0
(Su)v dr for all u ∈ D(S) and v ∈ H10 (0,∞).

As in Chapter VI, §4 of [4],

(2.5) D(S) = {u ∈ H10 (0,∞);−u′′ +
3

4r2
u ∈ L2(0,∞)}

and

(2.6) Su = −u′′ + 3

4r2
u− q(r)u for u ∈ D(S).

For a self-adjoint operator T , the spectrum and essential spectrum are denoted
by σ(T ) and σe(T ). Let

(2.7) Λ = inf{a(u, u); u ∈ H10 (0,∞) and ‖ u ‖= 1}.

Then Λ ≥ − supr≥0 q(r) > −∞ by (2.2) and

(2.8) Λ = inf σ(S).

To obtain some further information about the spectrum of S we regard S as
a perturbation of the operator S0 : D(S0) ⊂ L2(0,∞) → L2(0,∞) defined by
D(S0) = D(S) and S0u = −u′′ + 3

4r2
u for u ∈ D(S0).

As for S0 it follows from Chapter VI, §4.1 of [4] that S0 is a positive self-adjoint
operator and by the analysis following (4.5) there,

∫ ∞

0
(u′v′ +

3

4r2
uv) dr =

∫ ∞

0
(S0u)v dr for u ∈ D(S0) and v ∈ H10 (0,∞).

In particular,

(2.9) ‖ u′ ‖2 ≤ 1

2
{‖ S0u ‖2 + ‖ u ‖2} ∀u ∈ D(S0).
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Defining a linear operator Q by Qu = qu, it follows easily from the properties
q ∈ L∞(0,∞) and limr→∞ q(r) = 0 that Q : H10 (0,∞)→ L2(0,∞) is compact.
From (2.9), we conclude that Q is S0-compact in the terminology of [5]. Since

S = S0 +Q we can now assert that σe(S) = σe(S0) and that the graph norms of
S and S0 are equivalent on D(S) = D(S0). In particular, ∃C > 0 such that

(2.10) ‖ u ‖1≤ C ‖ u ‖2 ∀u ∈ D(S)

where ‖ u ‖2= {‖ Su ‖2 + ‖ u ‖2} 12 is the graph norm of S.
By explicit calculation, σe(S0) = [0,∞) and hence 0 = inf σe(S). We assume

that q is such that the following condition is fulfilled:

(H2) Λ < 0.

It follows that

(2.11) Λ is a simple eigenvalue of S

with an eigenfunction ϕ that can be normalized so that ϕ > 0 on (0,∞) and
‖ ϕ ‖= 1.
It is not hard to give explicit properties of q that imply (H2).

3. A bifurcation result

With the notation and hypothesis of Sections 1 and 2, let H2 denote the real
Hilbert space that is obtained by considering D(S) equipped with the graph norm
‖ ‖2 of S. By (2.10), H2 is continuously embedded inH10 (0,∞). For u ∈ H10 (0,∞)
we define a nonlinear operator M by

(3.1) M(u)(r) = p(r, u(r))u(r) for r > 0.

As in [1] the continuity, boundedness and compactness of M : H10 (0,∞) →
L2(0,∞) are easy consequences of (1.21) and (1.22).
Furthermore, ‖M(u) ‖ ≤ supr>0 p(r, u(r)) ‖ u ‖≤ K ‖ u ‖‖ u′ ‖2γ≤ K‖ u ‖1+2γ1

for u ∈ H10 (0,∞).
The study of the Problem G can be replaced by the analysis of the set of

solutions of the equation

(3.2) Su+M(u) = λu in R×H2.

In fact by strengthening slightly the assumption (H2) it can be shown that
Problem G has no solutions with λ > 0. For example if the response has the
following properties in addition to (H1):

(i) εL ∈ C1((rM ,∞)) with limr→∞ r
∂εL(r)

∂r (r) = 0

and

(ii) ε(r, s)→ εL(r) and r
∂ε
∂r (r, s)→ r ∂εL

∂r (r) as s→ 0 uniformly on (rM ,∞),
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then by a slight modification of the proof of Theorem 3.1 in [10] it follows that
λ ≤ 0 for all solutions of Problem G.
Setting

E = {(λ, u) ∈ R×H2; λ < 0, u 6= 0 and Su+M(u) = λu}

it is easy to see that (λ, u) is a solution of Problem G with λ < 0 if and only if
(λ, u) ∈ E. Here we shall restrict our attention to one part of this set ; that which
corresponds to the fundamental modes of the guidance problem. Let C denote the
component of E ∪ {(Λ, 0)} that contains the point (Λ, 0) and let C̄ be its closure
in R×H2. According to Theorem 1.2 of [2] (or Theorem 2.1 of [3]), C has at
least one of the following properties:

(i) C is unbounded in R×H2,
(ii) sup{λ; (λ, u) ∈ C} = 0,
(iii) there exists µ ∈ σ(S)∩ ]Λ, 0[ ((Λ, 0) is an open interval here) such that

(µ, 0) ∈ C̄.
However, using the additional properties ofM that are available in the present

setting this conclusion can immediately be sharpened. First of all we claim that
for (λ, u) ∈ C \ {(Λ, 0)}, u2(r) > 0 for all r > 0. See [2], [3] for two different ways
of obtaining this conclusion, and the corollary which states that C cannot have
the property (iii).
Next, we observe that for (λ, u) ∈ E, λ < 0 and

(3.3) λ ‖ u ‖2=
∫ ∞

0
[Su+M(u)]u dr ≥

∫ ∞

0
(Su)u dr = a(u, u) ≥ Λ ‖ u ‖2 .

Hence {λ; (λ, u) ∈ C} ⊂ [Λ, 0[.
Furthermore for (λ, u) ∈ E, it follows from (1.15) that

(3.4) ‖ Su ‖ ≤ | λ |‖ u ‖ + ‖M(u) ‖ ≤ (| Λ | +A) ‖ u ‖ .

Thus we can assert that the following result has been established.

Theorem 3.1. Under the hypotheses (H1) and H(2) the component C has ex-
actly one of the following properties:

(I) a =∞ and b < 0,
(II) a <∞ and b = 0,
(III) a =∞ and b = 0

where a = sup{‖ u ‖; (λ, u) ∈ C} and b = sup{λ; (λ, u) ∈ C}.
Finally we observe that since (λ,−u) ∈ C whenever (λ, u) ∈ C, the same result

holds with C replaced by C+ = {(λ, u) ∈ C : u(r) > 0 for all r > 0}.
The main aim of our paper is to establish conditions on the function ε (equiv-

alently, on the functions p and q) that enable us to predict which one of the
possibilities (I), (II) or (III) occurs.
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4. The case of small nonlinearity

The nearer to the zero (in L∞-norm) the nonlinearity is, the closer the com-
ponent C+ is to the ray of positive eigenfunctions of S.
Theorem 4.1. Let (H1) and (H2) hold and suppose that 0 ≤ p(r, s) ≤ d for all
r > 0 and s ≥ 0 where 0 < d < −Λ.
Then for each (λ, u) ∈ C+ we have λ ≤ Λ + d < 0.

Remark. According to the assertion (I) of Theorem 3.1 we have
sup{‖ u ‖; (λ, u) ∈ C+} =∞ in this case.
Proof: If (λ, u) ∈ C+, then λ is the first eigenvalue of the self-adjoint operator T
defined by:

Tw = −w′′ +
3w

4r2
− q(r)w + p(r, u(r))w, for w ∈ D(T ) = D(S) ,

with the corresponding eigenfunction u. According to the variational property we
obtain that

λ = inf{ a(w,w) +
∫ ∞

0
p(r, u(r))w2(r) dr; w ∈ H10 (0,∞) and ‖ w ‖= 1}

≤ inf{ a(w,w); w ∈ H10 and ‖ w ‖= 1}+ d = Λ+ d
which is what we had to prove. �

5. Sufficient condition for sup{λ; (λ, u) ∈ C+} = 0
We begin with a result concerning the uniform exponential decay of solutions.

Lemma 5.1. Let (H1) and (H2) hold and let γ be given such that Λ < γ < 0.
Then there exist L > 0 and β > 0 such that for each (λ, u) ∈ C+ with λ ≤ γ,

the function u(r)eβr is decreasing on the interval [L,∞).
Proof: Let (λ, u) ∈ C+ with λ ≤ γ. As u ∈ W 22 (A,∞) for all A > 0, we have
that both u and u′ are continuous on the interval (0,∞) and

u′′(r) = (−λ− q(r) +
3

4r2
)u(r) + p(r, u(r))u(r)

almost everywhere. (In (rM ,∞) it holds pointwise.)
As limr→∞ q(r) = 0, there exists L > 0 such that −q(r) + 3

4r2
≥ γ
2 for all

r ∈ (L,∞), and so (taking account of p(r, u) ≥ 0)

(5.1) u′′(r) ≥ −γ
2
u(r) > 0, r ∈ (L,∞).

If now u′(ro) ≥ 0 in some ro > L, we would have from (5.1) that u′ is a
strictly increasing positive function on (ro,∞), which contradicts to the fact that
limr→∞ u′(r) = 0. So u′ < 0 on (L,∞).
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Multiplying the relation (5.1) by the derivative u′(r) on the interval (L,∞)
and setting −γ

2 = β
2 with β > 0, we obtain the inequality

[(u′)2]′ ≤ β2(u2)′.

Integrating it over any interval (r,∞) with r > L, we obtain

(u′)2(r) ≥ β2u2(r), r ∈ (L,∞).

As u > 0 and u′ < 0 on the interval (r,∞), we have

(5.2) −u′(r) ≥ βu(r), r ∈ (L,∞).

From (5.2) easily follows that ddr(log u(r)) ≤ −β, r ∈ (L,∞). After the
integration over the interval (r1, r2), r1 > L, we obtain finally

(5.3) u(r2)e
βr2 < u(r1)e

βr1 , L < r1 < r2.

Corollary. Let the assumptions of the Lemma 5.1 be satisfied. Then there are
positive constants L, β and Q such that (λ, u) ∈ C+ and λ ≤ γ imply that

(5.4) u2(r) + (u′)2(r) ≤ Qe−2βr, r ∈ (L,∞).

(L, β and Q depend only on γ, Λ and on the bounds for q and p.)

Proof: The estimate for u2 follows immediately from (5.3). Rewrite now the
equation (1.31) as

−u′′ = {− 3
4r2
+ q(r) + λ− p(r, u(r))}u.

Taking account of the facts that λ ≥ Λ, that − 3
4r2
+ q(r)− p(r, u(r)) is bounded

from below on (L,∞) and that u′(r) < 0 on (L,∞), we obtain

−[(u′)2]′ ≤ M(u2)′ on (L,∞)

with some negative constantM. Integrating from r > L to ∞, we obtain finally
the relation

(u′)2(r) ≤ −Mu2(r), r ∈ (L,∞),
which completes the proof of (5.4). �

Now we are able to prove that if the nonlinearity p(r, s) is sufficiently big with

respect to the expression q(r) − 3
4r2
for large values of s, then sup{λ; (λ, u) ∈

C+} = 0.
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Theorem 5.1. Let (H1) and (H2) hold and suppose that there exists so > 0 so
that

(5.5) ∀s≥so
∀r>0 p(r, s) ≥ q(r) − 3

4r2
.

Then

(5.6) b ≡ sup{λ; (λ, u) ∈ C+} = 0.

Proof: Suppose that b < 0 and that (λ, u) ∈ C+. Let ro ∈ (0,∞) be a point
where u(ro) =‖ u ‖∞. If ‖ u ‖∞≥ so, we have, according to (5.5)

−u′′(ro) = [λ+ q(ro)−
3

4r2o
− p(ro, u(ro))]u(ro) ≤ bu(ro) < 0,

which contradicts to the fact that ro is a point of maxima of u on the interval
(0,∞). (In case that ro = ri for some i = 2, . . . ,M , we can do similar reasoning
using one-sided limits at the point ro.) So we have proved that

(5.7) (λ, u) ∈ C+ ⇒ ‖ u ‖∞< so.

Taking γ for b in Lemma 5.1, we have the existence of positive numbers L
and β such that u(r)eβr is decreasing on the interval (L,∞) for all functions u
for which (λ, u) ∈ C+.
This yields the estimate,

‖ u ‖2=
∫ L

0
u2(r) dr +

∫ ∞

L
u2(r) dr ≤ s2oL+ s

2
o

∫ ∞

L
e2β(L−r) dr ≤ s2o(L+

1

2β
)

and so

(5.8) sup{‖ u ‖; (λ, u) ∈ C+} is finite.

According to Theorem 3.1, (5.8) is incompatible with b < 0. So we have
proved that b = 0. �

6. The existence of a supersolution

In this section we prove the existence of a supersolution ψ of the problem under
the condition that p = p(r, s) is sufficiently big even for small values of s.



664 O. John, C.A. Stuart

Lemma 6.1. In addition to (H1) and (H2), suppose that the following condi-
tions are satisfied,

lim
r→∞

[r2q(r)− 3
4
] ≤ 0,(6.1)

∃so>0 ∀r>0 ∀s≥so
p(r, s) ≥ q(r) − 3

4r2
,(6.2)

∃z>0∃ρ∈[0,2)∃K>0∃σ>0∀r>z∀s∈(0,so) p(r, s) ≥ Ksσr−ρ.(6.3)

Then there exist positive constants A and d such that the function

(6.4) ψ(r) =
A

(1 + d2r2)α
, α =

2− ρ

2σ

is a supersolution, i.e.,

(6.5) −ψ′′(r) + p(r, ψ(r))ψ(r) − q(r)ψ(r) +
3

4r2
ψ(r) ≥ 0 a.e. in (0,∞).

Proof: Put ψ(r) = A
(1+d2r2)α

with α,A and d positive. After elementary calcu-

lations we obtain

(6.6) ψ′′(r) = d2h(dr)ψ(r),

where

(6.7) h(x) =
2α

1 + x2
{−1 + 2(α+ 1)x

2

1 + x2
}.

So the inequality (6.5) can be rewriten as

(6.8) p(r, ψ(r)) − q(r) +
3

4r2
≥ d2h(dr), r ∈ (0,∞).

Recall that the condition (H1) implies that p and q have the properties
(1.15 (i)) to (1.15 (iii)).

I. STEP. The function h(dr) is non-positive for r ∈ (0, X(d)) where

(6.9) X(d) =
1

d
√
2α+ 1

.

Put

(6.10) α =
2− ρ

2σ
.
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(The purpose of this choice we shall see later.) Trying to find A in a way that
ψ(r) ≥ so on (0, X(d)) (and ψ(r) < so on (X(d),∞)) we get

(6.11) A = so

(
2α+ 1

2α+ 2

)α

, which does not depend on d.

With this choice of A, X(d) and α and using ((6.2)) we get

p(r, ψ(r)) − q(r) +
3

4r2
≥ 0 ≥ d2h(dr), r ∈ (0, X(d))

and so (6.8) is valid on (0, X(d)).
Observe that we have the possibility to change free parameter d > 0 (without

any disturbing α and A) so that the point X(d) shifts as much to the right as we
need.

II. STEP. Taking sufficiently small d > 0 we have X(d) > z. So from (6.3) we
get (as ψ(r) < so for r ∈ (X(d),∞))
(6.12) r2p(r, ψ(r)) ≥ Kψσ(r)r−ρ+2, r ∈ (X(d),∞).
For r > X(d) it follows from (6.9) that 1 < (2α+ 1)r2d2 and thus we get

ψ(r) ≥ A

(2α+ 2)αd2αr2α
, r ∈ (X(d),∞).

Substituting it into (6.12) and using (6.10) (the choice of α !) we have

(6.13) r2p(r, ψ(r)) ≥ KAσ

(2α+ 2)ασ

1

d2ασ
r−ρ+2−2ασ =

K∗

d2ασ
, r ∈ (X(d),∞),

where we put K∗ = KAσ

(2α+2)ασ .

Supposing now d > 0 sufficiently small, we have from (6.1)

(6.14) −r2q(r) + 3
4
≥ −1
2
K∗ > −1

2

K∗

d2ασ
, r ∈ (X(d),∞).

Putting (6.13) and (6.14) together we can write

(6.15) r2{p(r, ψ(r)) − q(r) +
3

4r2
} ≥ 1
2

K∗

d2ασ
, r ∈ (X(d),∞).

Multiplied by r2, the expression (6.7) can be estimated on (X(d),∞) as follows
(6.16) r2d2h(dr) ≤ 2α(2α+ 1).
If d is sufficiently small, then obviously 2α(2α + 1) ≤ 1

2
K∗

d2ασ . It follows now

from (6.15) and (6.16) that for such a choice of d > 0 we obtain (6.8) on (X(d),∞),
which completes the proof of Lemma 6.1. �

Remember that C+ is a connected subset of
{ (λ, u); λ < 0, (λ, u) solves Problem G, and u(r) > 0 on (0,∞)}

and that (Λ, 0) ∈ C̄+.
This implies the following result.
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Lemma 6.2. Let the assumptions of Lemma 6.1 be satisfied. Then for each
(λ, u) ∈ C+ we have u(r) ≤ ψ(r) for all r ∈ [0,∞).
Proof: Denote

(6.17) D = { (λ, u) ∈ C+; u(r) ≤ ψ(r), r ∈ [0,∞)} ∪ {(Λ, 0)}.
We shall prove that D is a nonempty subset of C+∪ {(Λ, 0)}, which is simulta-

neously closed and open in C+ ∪ {(Λ, 0)} considered as a connected metric space
equipped with the topology induced by R×H2. It follows that D = C+∪{(Λ, 0)}.
I. STEP. As (Λ, 0) ∈ D, D 6= ∅.
II. STEP. (D is closed.) Let (λn, un) ∈ D and (λn, un) → (λo, uo) ∈ C+ ∪

{(Λ, 0)} in R×H2. Because of un → uo in H2 and H2 is continuously imbedded
into H10 , we have that un → uo pointwisely in [0,∞) from which follows that
uo(r) = limn→∞ un(r) ≤ ψ(r).

III. STEP. (D is open.) Note that for (λo, uo) ∈ D we have that uo(r) < ψ(r)
for all r ∈ [0,∞). If this were false, we would have the existence of r̄ ∈ (0,∞) such
that uo(r̄) = ψ(r̄). Then r̄ is the point of minima of the (nonnegative) function
w = ψ − uo.
So we would have

0 ≤ w′′(r̄) = ψ′′(r̄)− u′′o(r̄) ≤
3

4r̄2
[ψ(r̄)− uo(r̄)]

− q(r̄)[ψ(r̄)− uo(r̄)] + p(r̄, ψ(r̄))ψ(r̄)− p(r̄, uo(r̄))uo(r̄) + λouo(r̄)

= λouo(r̄) < 0,

which is a contradiction. (Here we used (6.5), the fact that uo solves the equation
(1.31) and that ψ(r̄) = uo(r̄). In the points of discontinuity of coefficients we can
use the reasoning for one-sided limits.)

Let now (λo, uo) ∈ D. Then λo < 0 and we put Iλo
= [Λ, 0) ∩ (32λo,

1
2λo).

From Lemma 5.1 we have that

(6.18) ∃L>0∃β>0 such that u(r)e
βr is non− increasing on (L,∞)
for all (λ, u) ∈ C+ ∪ {(Λ, 0)} with λ ∈ Iλo

.

Because of limr→∞ ψ(r)eβr =∞, there exists Y > L such that

(6.19) uo(r) <
1

2
ψ(r), r ∈ (Y,∞).

Let now (λ, u) ∈ C+ ∪ {(Λ, 0)} with λ ∈ Iλo
and ‖ u − uo ‖2< 1

2ψ(Y ). For
r ∈ (Y,∞) we have

u2(r) ≤ u2(Y )e2β(Y −r) ≤ {u2o(Y ) + u2(Y )− u2o(Y )}e2β(Y −r)

≤ {1
4
ψ2(Y ) + 2 ‖ u− uo ‖22}e2β(Y −r) ≤ 3

4
ψ2(Y )e2β(Y −r) < ψ2(r),
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and so

(6.20) u(r) < ψ(r) on (Y,∞).
(Here we used the fact that ψ(r)eβr is increasing on (Y,∞).)
From the observation at the beginning of this part of the proof,

(6.21) ∆ = min{ψ(r)− uo(r); r ∈ [0, Y ]} > 0.

Let now (λ, u) ∈ C+ ∪ {(Λ, 0)} with λ ∈ Iλo
and ‖ u − uo ‖2< ∆√

Y
. For

r ∈ (0, Y ) we have

u(r) = uo(r) + (u(r)− uo(r)) ≤ uo(r) +
√
Y ‖ u− uo ‖2< (ψ(r)−∆)+∆ = ψ(r),

and so

(6.22) u(r) < ψ(r) on (0, Y ) .

Hence we have proved that for each (λo, uo) ∈ D there exists a neighbourhood
of (λo, uo) in C+ ∪ {(0,Λ)} which lies in D.

7. Sufficient condition for sup{ ‖ u ‖; (λ, u) ∈ C+} <∞. Compactification
Here the supersolution obtained in §6 is used to control the behaviour of C+

near λ = 0.

Theorem 7.1. Let the conditions (H1), (H2), (6.1), (6.2) and (6.3) be satisfied.
(a) If there exists {(λn, un)} ⊂ C+ with λn → 0 and sup{ ‖ un ‖; n ∈ N} <∞,

then there exists ū ∈ H2 such that 0 < ū ≤ ψ on (0,∞) and ū satisfies (1.31)
with λ = 0. (Here ψ is the supersolution defined by (6.4).)

(b) If the exponents σ and ρ in (6.3) satisfy

σ

2
+ ρ < 2

then sup{ ‖ u ‖; (λ, u) ∈ C+} <∞, and C+ is relatively compact in R×H2.

Proof: (a) By (3.4), sup ‖ un ‖2< ∞ and so we may suppose (by passing to
a subsequence if necessary) that un ⇀ ū weakly in H2. Hence ū ∈ H2 and using
(2.10) we may suppose that un ⇀ ū weakly in H10 (0,∞) and un → ū uniformly
on bounded subsets of [0,∞). From Lemma 6.2 we can conclude that 0 ≤ ū ≤ ψ

on [0,∞).
Since limr→∞ ψ(r) = 0 we can now assert that un → ū uniformly on [0,∞).

Since (λn, un) satisfies (1.30) it now follows that for all ϕ ∈ H10 (0,∞)
∫ ∞

0
(Sū)ϕdr = lim

n→∞

∫ ∞

0
(Sun)ϕdr = lim

n→∞

∫ ∞

0
{u′nϕ′ + (

3

4r2
− q)unϕ} dr

= lim
n→∞

∫ ∞

0
{λn − p(r, un)}unϕdr = −

∫ ∞

0
p(r, ū)ūϕ dr.
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Hence ū satisfies (1.31) with λ = 0. It remains to prove that ū(r) > 0 on (0,∞).
Let ro > 0 be such that ū(ro) = 0. As ū then attains its minimum at ro, we

have ū′(ro) = 0. But ū satisfies almost everywhere the linear equation

−w′′ +
3

4r2
w(r) − q(r)w(r) + p(r, ū(r))w(r) = 0

with the conditions ū(ro) = ū
′(ro) = 0, and it follows that ū ≡ 0.

Hence we have either ū ≡ 0 or ū > 0 on (0,∞).
Suppose that ū = 0 and put vn =

ūn

‖ūn‖ . Since vn > 0 on (0,∞), λn is the

lowest eigenvalue of

−w′′ +
3

4r2
w − qw + p(r, un(r))w = λw, w ∈ H2.

Hence

λn = inf{ a(v, v) +
∫ ∞

0
p(r, un(r))v

2(r) dr; v ∈ H10 (0,∞) with ‖ v ‖= 1 }.

By (3.3), Λ ≤ λn and by (2.11),

λn ≤ a(ϕ,ϕ) +

∫ ∞

0
p(r, un(r))ϕ

2 dr ≤ Λ +
∫ ∞

0
p(r, un(r))ϕ

2 dr.

But un → ū ≡ 0 uniformly on [0,∞) and so we have λn → Λ. By (H2), Λ < 0
whereas by hypothesis λn → 0. This means that ū 6= 0 and we must have ū > 0
on (0,∞).
(b) Under these conditions ψ ∈ L2(0,∞) and by Lemma 6.2

(7.1) sup{ ‖ u ‖; (λ, u) ∈ C+} ≤‖ ψ ‖<∞.

Let {(λn, un)} ⊂ C+. By (3.4) and (7.1), sup{‖ un ‖2} < ∞. As in the proof
of part (a), by passing to a subsequence we may suppose that λn → λ ≤ 0 and
that un ⇀ u weakly in H2 where 0 ≤ u ≤ ψ on (0,∞) and (λ, u) satisfies (1.31).
We also have that un → u uniformly on (0,∞) and, since ψ ∈ L2(0,∞), we

conclude that ‖ un − u ‖ → 0.
Furthermore ‖M(un)−M(u) ‖→ 0 by dominated convergence since

p(r, un(r))un(r) → p(r, u(r))u(r) a.e. on (0,∞) and by (1.15 (iii)),

|p(r, un(r))un(r)− p(r, u(r))u(r)|2 ≤ 2A2ψ(r)2

Hence ‖ S(un − u) ‖→ 0 and so ‖ un − u ‖2→ 0. �
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8. Sufficient condition for sup{λ; (λ, u) ∈ C+} = 0 and
sup{ ‖ u ‖; (λ, u) ∈ C+} =∞.
We suppose throughout this section that (H1), (H2), (6.1), (6.2) and (6.3)

are satisfied. By Theorem 5.1 sup{λ; (λ, u) ∈ C+} = 0 and our purpose here
is to give conditions ensuring that sup{ ‖ u ‖; (λ, u) ∈ C+} = ∞. According to
Theorem 3.1 it is sufficient to show that

(8.1) sup{ ‖ u ‖; (λ, u) ∈ C+} <∞ is impossible.

In fact, if (8.1) holds, then Theorem 7.1 (a) shows that there exists ū ∈
C2((rM ,∞)) ∩H1(rM ,∞) such that 0 < ū(r) ≤ ψ(r) for r > rM and

(8.2) −ū′′(r) + { 3
4r2

− q(r) + p(r, ū(r))}ū(r) = 0 for r > rM .

In particular

(8.3) ū(r) > 0 on (rM ,∞), ū ∈ L2(rM ,∞) and lim
r→∞

ū(r) = 0.

We now give conditions which imply that (8.2) cannot have a solution satisfying
(8.3), and hence that (8.1) cannot occur. These conditions are as follows,

rq(r) ∈ L1(rM ,∞),(8.4)

lim
r→∞

r2(log r)q(r) ≥ 0(8.5)

and

(8.6) ∃ez>0∃eso>0∃eρ∈[0,2)∃ eK>0
∃eσ>0∀r>ez∀s∈(0,eso) p(r, s) ≤ K̃seσr−eρ.

Since (6.3) holds, we must have σ̃ ≤ σ and ρ̃ ≤ ρ in (8.6).
The main conclusion of this section can now be stated.

Theorem 8.1. Let the conditions (H1), (H2), (6.1), (6.2), (6.3), (8.4), (8.5) and
(8.6) hold. Suppose that either

(8.7)
σ̃

2
+ ρ̃ > 2

or

(8.8)
σ̃

2
+ ρ̃ = 2 and σ̃ ≥ 2

Then sup{ ‖ u ‖; (λ, u) ∈ C+} =∞.
The proof of this result is a consequence of the following lemmas concerning

the asymptotic behaviour of solutions of (8.2).
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Lemma 8.2. Let the hypothesis of Theorem 8.1 hold with the additional re-
striction that σ̃ > 2 when (8.8) occurs. Let u be a solution of (8.2) and (8.3).
Then

(8.9) ∃H > 0 such that 0 < u(r) < (r log r)−
1

2 for r > H.

Proof: Set
V (r) = u(r) − (r log r)− 12 .

Calculating V ′′(r) and taking account in the conditions we obtain that for
sufficiently big l > 0

(8.11) V ′′(r) < r−
5

2 log−
3

2 r{−1
2
− 1

log r
+ K̃(log r)−

eσ
2
+1r−

eσ
2
−eρ+2} < 0

at each point r ∈ (l,∞) in which V (r) < 0.
Now either V < 0 on the whole interval (l,∞) or V (ro) ≥ 0 at some point

ro > l. If the second possibility takes place we take any point yo, yo > ro,
in which V (yo) < 0. (Such a point exists, otherwise V ≥ 0 on (ro,∞) which
contradicts the assumption that u ∈ L2(0,∞).)
Let (C,D) be the maximal interval containing yo on which V < 0. Suppose

that D < ∞. Then V (C) = V (D) = 0 and V attains its minimum on [C,D] in
some zo ∈ (C,D). So V (zo) < 0 and V ′′(zo) ≥ 0 which contradicts to (8.11).
Thus D =∞.
The validity of Lemma 8.2 is now obvious. �

Lemma 8.3. Under the hypothesis of Theorem 8.1, let u be a solution of (8.2),
(8.3). Set

(8.12) Q(r) = −q(r) + p(r, u(r)).
Then

(8.13) rQ(r) ∈ C((rM ,∞)) ∩ L1(rM ,∞).

Proof: The integrability of rq(r) is given by (8.4). Furthermore, there exists
Z ≥ rM such that

(8.14) 0 ≤ rp(r, u(r)) ≤ K̃rueσ(r)r−eρ for r > Z

by (8.6) since limr→∞ u(r) = 0.
If (8.8) holds with σ̃ = 2 we have ρ̃ = 1 and so (8.14) becomes 0 ≤ rp(r, u(r)) ≤

K̃u2(r). Since u ∈ L2(rM ,∞) we see that (8.13) holds if (8.8) occurs with σ̃ = 2.
In all other cases, it follows from (8.14) and Lemma 8.2 that 0 ≤ rp(r, u(r)) ≤

K̃r1−
eσ
2
−eρ(log r)−eσ

2 .
The restrictions on the exponents guarantee the integrability of the right hand

side of this inequality and so (8.13) holds. �
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Lemma 8.4. Consider the equation

(8.15) −v′′(r) + 3

4r2
v(r) +Q(r)v(r) = 0 on (a,∞)

where Q ∈ C((a,∞)) and rQ(r) ∈ L1(a,∞). It has two solutions ψ1, ψ2 such
that

(8.16) lim
r→∞

ψ1(r)

r
3

2

= lim
r→∞

ψ2(r)

r−
1

2

= 1.

Proof: The functions r
3

2 and r−
1

2 are linearly independent solutions of the
equation −v′′(r) + 3

4r2
v(r) = 0 on (0,∞). By a slight modification of the proof

of the Theorem 3.6.1 in [6] we obtain the deserved result. �

Proof of Theorem 8.1: If (8.1) occurs, there is a function ū satisfying (8.2)
and (8.3). Setting

Q(r) = −q(r) + p(r, ū(r)) for r > rM

we see that ū satisfies (8.15).
By Lemma 8.3, Q satisfies (8.13) and hence Lemma 8.4 implies that there

exist constants A and B such that

ū(r) = Aψ1(r) +Bψ2(r) for r > a

where ψ1, ψ2 satisfy (8.16).
But limr→∞ u(r) = 0 by (8.3) and so A = 0. Then ū = Bψ2 ∈ L2(a,∞) by

(8.3) and this means that B = 0, contradicting the fact that ū(r) > 0 on (rM ,∞).
Hence (8.1) cannot occur and the result follows from Theorem 3.1. �

Remark. The above proof actually establishes a stronger conclusion, namely

lim
µ→0

{ ‖ u ‖; (λ, u) ∈ C+ with µ ≤ λ < 0} =∞.

9. Behaviour of the waveguide

We summarize our conclusions, giving the hypothesis in terms of the dielec-
tric response function ε which satisfies the basic assumptions (H1), (H2). For
convenience we set

εNL(r, s) = ε(r, s)− εL(r).

By (H1), εNL ≤ 0 and, setting M = supr,s≥0 |εNL(r, s)| we also have that
M <∞.
If

(9.1) M <
c2

ω2
|Λ|
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it follows from Theorem 4.1 that the component C of fundamental modes has
the property (I) of Theorem 3.1 so guidance is possible at all powers.
Instead of (9.1) let us now suppose that

(9.2) ∃ δ > 2 such that lim
r→∞

rδ{εL(r) − εL(∞)} = 0.

Clearly this implies (6.1), (8.4) and (8.5).
We suppose also that

(9.3)

∃ so > 0 such that r2{ε(r, 1
2r
s2)− εL(∞)} ≤ 3c

2

4ω2
for r > 0 and s ≥ so,

whereas there exist z > 0, K > 0, ν ∈ (0, 2) and κ ∈ [0, 2− ν) such that

(9.4) |εNL(r, s)| ≥ Ksνr−κ ∀ r > z and s ≤ so.

By Theorem 7.1 we see that the conditions (9.2), (9.3) and (9.4) ensure that
C has the property (II) of Theorem 3.1 provided that 2ν + κ < 2. This means
that there are no guided modes of this kind with power above a certain level.
If (9.2), (9.3) and (9.4) are satisfied and also there exist s1 > 0, K1 > 0,

ν1 ∈ (0, 2) and κ1 ∈ [0, 2− ν1) such that

(9.5) |εNL(r, s)| ≤ K1s
ν1r−κ1 ∀ r > z and s ≤ s1

then Theorem 8.1 shows that C has property (III) of Theorem 3.1 provided
that either 2ν1 + κ1 > 2 or ν1 ≥ 1. This means that guidance is possible at all
powers.
Finally as an example we deal with a special case in which the waveguide has

a homogeneous exterior region (cladding) with a nonlinear response.

Example. In addition to (H1) and (H2), suppose that ε(r, s) = εc(s) for all
r > rM and s ≥ 0, where εc is non-increasing and

(9.6) ∃K > 0, ν > 0 such that lim
s→0

εc(s)− εc(0)

sν
= −K.

Suppose also that there exists s1 > 0 such that

(9.7) ε(r, s) < εc(0), ∀ r ∈ [0, rM ] and s ≥ s1.

Clearly εL(r) = εc(0) for r > rM and so (9.2) is satisfied. Setting so =
√
2rMs1

we find that (9.3) and (9.4) are satisfied with κ = 0 and z = rM . Furthermore,
(9.5) is also satisfied with κ1 = 0, ν1 = ν and z = rM .
Hence the component C has the property (II) if 0 < ν < 1 and it has the

property (III) if 2 > ν ≥ 1, where ν is given by (9.6). The case ν = 1 corresponds
to a cladding composed of a defocusing material whose response is approximated
by the usual Kerr non-linearity [7]. But other values of ν (particularly 0 < ν < 1)
do occur for some other types of material [8], [9].
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