A σ -porous set need not be σ -bilaterally porous

J. NÁJARES R., L. ZAJÍČEK*

Abstract. A closed subset of the real line which is right porous but is not σ -left-porous is constructed.

Keywords: sigma-porous, sigma-bilaterally-porous, right porous Classification: Primary 26A99; Secondary 28A5

1. Introduction

Let $E \subset \mathbb{R}$ be a set, and let I be an interval. Then we denote by $\lambda(E, I)$ the length of the largest open subinterval of I which does not intersect E. The right porosity of E at $x \in \mathbb{R}$ is defined as

$$p^+(E,x) = \lim_{h \to 0_+} \frac{\lambda \left(E, (x, x+h)\right)}{h}.$$

The left porosity $p^{-}(E, x)$ is defined by the symmetrical way. We say that:

- (i) E is right porous at x if $p^+(E, x) > 0$,
- (ii) E is left porous at x if $p^{-}(E, x) > 0$,
- (iii) E is bilaterally porous at x if it is porous both on the right and on the left at x.

The set E is said to be right (left, bilaterally) porous if it is right (left, bilaterally) porous at each of its points and σ -right-porous (σ -left-porous, σ -bilaterally-porous) if it is a countable union of right (left, bilaterally) porous sets. It is easy to see that a set is σ -bilaterally porous iff it is bilaterally σ -porous (i.e. it is both σ -right-porous and σ -left-porous). The main aim of the present article is to prove the following result.

Theorem. There exists a closed set $F \subset \mathbb{R}$ which is right porous but is not σ -left-porous.

We obtain the example slightly modifying the ideas of [F] and [Za 1].

We essentially use Lemma 5 which is a special case of the generalized Foran lemma [Za 3], which enables us to give a simple proof that our set F is not

^{*}Supported by Research Grant GAUK 363.

 σ -left-porous. Another ingredient of our proof is Proposition, which is analogous to Proposition 4.4 from [Za 2]. We believe that it can be also of some independent importance. Note that for symmetrical porosity an analogical proposition does not hold [E-H-S].

2. Proposition and lemmas

Definition 1. If c > 0, $M \subset \mathbb{R}$ and r > 0 are given, then we define

$$S(c, r, M) = \bigcup \{ x \ominus (y - \sigma, y); y \in \mathbb{R}, 0 < \sigma < r, (y - \sigma, y) \cap M = \emptyset \},\$$

where $c \ominus (y - \sigma, y) = (y - c\sigma, y)$.

We shall need the following lemmas which are obvious.

Lemma 1. If $p^+(M, x) \ge c > 0$, then $x \in \bigcap \{S(\frac{2}{c}, r, M); r > 0\}.$

Lemma 2. If c > 1, $x \in M$ and $x \in \bigcap \{S(c, r, M); r > 0\}$, then $p^+(M, x) \ge \frac{1}{c}$.

Proposition. Let A be a σ -right-porous set (σ -left-porous) and c < 1. Then there exists a sequence $\{A_n\}_{n=1}^{\infty}$ such that $A = \bigcup_{n=1}^{\infty} A_n$ and $p^+(A_n, x) \ge c$ $(p^-(A_n, x) \ge c$, respectively) for any $n \in \mathbb{N}$ and $x \in A_n$.

PROOF: It is sufficient to give the proof for right porosity only. By definition $A = \bigcup_{n=1}^{\infty} B_n$ where B_n is a right porous set for any $n \in \mathbb{N}$. Putting

 $B_{n,k} = \{x \in B_n; \ p^+(B_n, x) \ge \frac{1}{k}\}$ we have that $A = \bigcup_{n,k=1, k=1}^{\infty} B_{n,k}$ and

 $p^+(B_{n,k}, x) \ge \frac{1}{k}$ for any $x \in B_{n,k}$.

Thus it is sufficient to prove the following statement:

If $M \subset \mathbb{R}$, a > 0 and, for each $x \in M$, the inequality $p^+(M, x) \ge a$ holds, then $M = \bigcup_{i=1}^{\infty} M_i$, where $p^+(M_i, y) \ge c$ for any $y \in M_i$.

We can suppose a < c < 1, the case $a \ge c$ being trivial. Choose $n \in \mathbb{N}$ such that $(\frac{1}{c})^n \ge \frac{2}{a}$ and define $C_k = M \cap \bigcap_{r>0} S(c^{-k}, r, M)$. By Lemma 1 $M = C_n$ and therefore $M = \bigcup_{k=2}^n (C_k \setminus C_{k-1}) \cup C_1$. By Lemma 2, we have $p^+(C_1, x) \ge c$ for any $x \in C_1$.

For k = 2, ..., n define $T_{k,m} = C_k \setminus S(c^{-k+1}, m^{-1}, M)$. Then

$$\bigcup_{k=1}^{\infty} T_{k,m} = C_k \setminus \bigcap_{m=1}^{\infty} S(c^{-k+1}, m^{-1}, M) = C_k \setminus C_{k-1}.$$

Since $T_{k,m} \subset C_k$, for each $z \in T_{k,m}$ and r > 0, there exist y and t such that $0 < t < \min(r, m^{-1}), (y-t, y) \cap M = \emptyset$ and $z \in c^{-k} \ominus (y-t, y)$. Put $J = c^{-k+1} \ominus (y-t, y)$. Then $z \in c^{-1} \ominus J$ and $J \cap T_{k,m} = \emptyset$, since $J \subset S(c^{-k+1}, m^{-1}, M)$.

Thus, for each $z \in T_{k,m}$, we have $z \in \bigcap_{r>0} S(c^{-1}, c^{-k+1}r, T_{k,m})$ and therefore $p^+(T_{k,m}, z) \ge c$ by Lemma 2, which proves our statement. \Box

For the sake of brevity, in the following we shall say that E is V-porous at x if $p^{-}(E, x) > \frac{100}{101}$. The following lemma is easy to prove.

Lemma 3. Let $E \subset \mathbb{R}$, $x \in \mathbb{R}$ and a natural number p be given such that $x - 10^{-k}$ or $x - 10^{-(k+1)}$ belongs to E for each natural k > p. Then E is not V-porous at x.

The following lemma is an immediate consequence of Proposition.

Lemma 4. A set $E \subset \mathbb{R}$ is σ -left-porous iff it is σ -V-porous.

Definition 2. We say that $\mathcal{F} \subset exp \mathbb{R}$ is a non- σ -V-porosity family if the following conditions hold:

- (a) \mathcal{F} is a nonempty family of nonempty closed sets,
- (b) for each F ∈ F and each open set G ⊂ R with F ∩ G ≠ Ø, there exists F* ∈ F such that Ø ≠ F* ∩ G ⊂ F ∩ G and F is V-porous at no point of F* ∩ G.

We shall need the following lemma which is a special case of [Za 3, Lemma 4.3].

Lemma 5. Let \mathcal{F} be a non- σ -V-porosity family. Then no set from \mathcal{F} is σ -V-porous.

3. Proof of theorem

Our theorem stated in Introduction immediately follows from Lemma 7 and Lemma 8 below. To formulate them, we need some notions.

Definition 3. Let $x \in (0, 1)$. As usual, we write $x = 0, a_1 a_2 \dots$ if $x = \sum_{i=1}^{\infty} a_i 10^{-i}$ and $a_i \in \{0, 1, \dots, 9\}$. The uniqueness of the expansion is obtained using terminating 0's whenever x has two expansions. Let $a \in \{0, 1, \dots, 9\}$ be a digit. The density and the upper density of a in the expansion of x are defined as

$$d(a, x) = \lim_{n \to \infty} \frac{\#\{k; 1 \le k \le n, \quad a_k(x) = a\}}{n},$$

$$\bar{d}(a, x) = \lim_{n \to \infty} \frac{\#\{k; 1 \le k \le n, \quad a_k(x) = a\}}{n}.$$

The following easy fact is well known and easy to prove.

Lemma 6. The function $x \mapsto \overline{d}(a, x)$ is Borel measurable on (0, 1). **Definition 4.** For a natural n and $x \in (0, 1)$ put

$$c(x,n) = \#\{k; \ n^2 < k \le (n+1)^2, a_k(x) = 9\} \text{ and } e(x,n) = \#\{k; \ n^2 < k \le (n+1)^2, a_k(x) \ne 9\}$$

Let a natural number $N, \varepsilon > 0, 1 > \alpha > 0$ and digits $a_1, \ldots, a_{N^2} \in \{0, 1, \ldots, 9\}$ be given. Then we define the set $A(\alpha, a_1, \ldots, a_{N^2}, \varepsilon)$ as the set of all $x \in (0, 1)$ for which

(1)
$$a_1(x) = a_1, ..., a_{N^2}(x) = a_{N^2}$$
 and

(2)
$$1 - \frac{\varepsilon}{n^{\alpha}} \le \frac{c(x,n)}{2n+1} < 1$$
 whenever $n \ge N$

Lemma 7. Let $0 < \alpha < 1$, $\varepsilon > 0$ and digits $a_1, \ldots, a_{N^2} \in \{0, 1, \ldots, 9\}$ such that

(3)
$$N > \max[(1+\varepsilon)^{\frac{1}{\alpha}}, \varepsilon^{\frac{1}{\alpha-1}}]$$

be given.

Then $A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$ is a closed set which is not σ -left-porous.

PROOF: Obviously (2) implies that

(4)
$$e(x,n) \neq 0$$
 whenever $n \ge N$ and $x \in A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$.

Now suppose that $x_n \in A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$ and $x_n \to x$. On account of (4) we easily obtain that

$$(a_1(x_n), a_2(x_n), \dots) \to (a_1(x), a_2(x), \dots)$$

in the space $\mathbb{N}^{\mathbb{N}}$ and consequently $x \in A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$. Thus we have that $A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$ is closed.

The condition (2) is equivalent to

$$c(x,n) \in \left[(1 - \frac{\varepsilon}{n^{\alpha}})(2n+1), \ 2n+1 \right] := I_n \text{ for } n \ge N.$$

If $n \ge N$, we have by (3)

$$(1 - \frac{\varepsilon}{n^{\alpha}})(2n+1) > (1 - \frac{\varepsilon}{1+\varepsilon})(2(1+\varepsilon)^{\frac{1}{\alpha}}) > 2 \quad \text{and} \\ (2n+1) - (1 - \frac{\varepsilon}{n^{\alpha}})(2n+1) = \frac{\varepsilon}{n^{\alpha}}(2n+1) > 2\varepsilon n^{1-\alpha} > 2.$$

Thus we have $I_n \subset (2, 2n + 1)$ and $length(I_n) > 2$ for $n \geq N$; consequently $A(\alpha, a_1, ..., a_{N^2}, \varepsilon) \neq \emptyset$ and c(x, n) > 2 whenever $x \in A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$ and $n \geq N$.

Now let \mathcal{F} denote the family of all sets of the form $A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$ for which (3) holds. By Lemma 4 and Lemma 5 it is sufficient to prove that \mathcal{F} is a non- σ -V-porosity family. To this end suppose that $F = A(\alpha, a_1, ..., a_{N^2}, \varepsilon) \in \mathcal{F}$ and an open set $G \subset \mathbb{R}$ such that $F \cap G \neq \emptyset$ are given.

Choose an arbitrary $y \in F \cap G$ and find a natural M so large that

(5)
$$M > N, \quad M > \left(\frac{\varepsilon}{2}\right)^{\frac{1}{\alpha-1}} \text{ and}$$
$$F^* := A(\alpha, a_1, ..., a_{N^2}, a_{N^2+1}(y), ..., a_{M^2}(y), \frac{1}{2}\varepsilon) \subset G.$$

Clearly $F^* \subset F$. On account of (3) and (5) we have

$$M > \max\left(\left(1 + \frac{\varepsilon}{2}\right)^{\frac{1}{\alpha}}, \left(\frac{\varepsilon}{2}\right)^{\frac{1}{\alpha-1}}\right)$$

and therefore $F^* \in \mathcal{F}$. Thus it is sufficient to prove that F is V-porous at no point $z \in F^*$. To prove this, fix an arbitrary $z \in F^*$ and consider an arbitrary natural $k > (M+1)^2$. By Lemma 3 it is sufficient to prove that at least one of the points $z_k^- = z - 10^{-k}$, $z_{k+1}^- = z - 10^{-(k+1)}$ belongs to F. It is easy to see that

(6)
$$c(z,n) - 1 \le c(z_k^-, n)$$
 and $c(z,n) - 1 \le c(z_{k+1}^-, n)$, for each n .

Since $z \in F^*$, we have c(z, M) > 0 (we know even c(z, M) > 2) and therefore

(7)
$$a_s(z) = a_s(z_k^-) = a_s(z_{k+1}^-) \text{ for } s \le M^2.$$

Now suppose that $x \in \{z_k^-, z_{k+1}^-\}$. Then (7) says that

$$a_s(x) = a_s(z)$$
 for $s \le M^2$.

For $n \ge M$ the definition of F^* , (6) and (5) yield

$$\frac{c(x,n)}{2n+1} \geq \frac{c(z,n)-1}{2n+1} \geq 1 - \frac{\varepsilon}{2n^{\alpha}} - \frac{1}{2n+1} > 1 - \frac{\varepsilon}{n^{\alpha}}$$

Thus it is sufficient to establish that, for $x = z_k^-$ or $x = z_{k+1}^-$,

(8)
$$e(x,n) \neq 0$$
, for each $n \ge M$.

To this end suppose that

$$e(z_k^-, n) = 0$$
 for some $n \ge M$.

Since $c(z, n) \neq 0$, this condition easily implies that

$$\begin{split} k &= n^2 + i \ \text{ where } \ i \in \{1, ..., 2n\}, \\ a_{n^2+1}(z) &= 0, ..., a_{n^2+i}(z) = 0 \ \text{ and } \\ a_{n^2+i+1}(z) &= 9, ..., a_{(n+1)^2}(z) = 9. \end{split}$$

Consequently it is easy to see that (8) holds for $x = z_{k+1}^-$.

701

Lemma 8. If $\frac{1}{2} < \alpha < 1$, then the set $A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$ from Lemma 7 is right porous.

PROOF: Choose an arbitrary $x \in A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$.

For each natural n, let m_n be the maximum of those natural i, for which there exist natural numbers u, v such that

(9)
$$n^2 \le u < v \le (n+1)^2$$
, $a_s(x) = 9$ for each $u < s \le v$

and v - u = i. It is easy to see that

(10)
$$2n + 1 - e(x, n) = c(x, n) \le m_n (e(x, n) + 1) \text{ and consequently} m_n \ge \frac{2n + 1 - e(x, n)}{e(x, n) + 1}.$$

On account of (2) we have that

$$e(x,n) \le \frac{\varepsilon(2n+1)}{n^{\alpha}} \text{ for } n \ge N$$

and therefore (10) implies that there exists c > 0 and a natural n_0 such that

(11)
$$m_n \ge cn^{\alpha} \text{ for all } n \ge n_0.$$

Now, for each n, choose u_n , v_n such that

 $v_n - u_n = m_n$ and (9) holds for $u = u_n$, $v = v_n$.

Put

$$y_n = x + 10^{-v_n}$$
 and $z_n = x + 10^{-v_n+1}$.

It is easy to see that, for each $t \in (y_n, z_n)$, we have

 $a_s(t) = 0$, for each $u_n < s \le v_n - 1$

and therefore

(12)
$$c(t,n) \le 2n+1-(m_n-1).$$

If n is so big that $n > n_0$, n > N and $2n + 2 - cn^{\alpha} < (2n+1)(1 - \frac{\varepsilon}{n^{\alpha}})$, we have by (12) and (11)

$$c(t,n) \le 2n+2 - cn^{\alpha} < (2n+1)(1 - \frac{\varepsilon}{n^{\alpha}}).$$

Thus we obtain by (2) that $t \notin A(\alpha, a_1, ..., a_{N^2}, \varepsilon)$. Consequently

$$p^+(A(\alpha, a_1, ..., a_{N^2}, \varepsilon), x) \ge \overline{\lim_{n \to \infty}} \frac{10^{-(v_n-1)} - 10^{-v_n}}{10^{-v_n+1}} = \frac{9}{10}.$$

References

- [F] For an J., Continuous functions need not have σ -porous graphs, Real Anal. Exchange **11** (1985–86), 194–203.
- [Za 1] Zajíček L., On σ-porous sets and Borel sets, Topology Appl. 33 (1989), 99–103.
- [Za 2] _____, Sets of σ -porosity and sets of σ -porosity (q), Časopis Pěst. Mat. **101** (1976), 350–359.
- [Za 3] _____, Porosity and σ -porosity, Real Anal. Exchange 13 (1987–88), 314–350.
- [E-H-S] Evans M.J., Humke P.D., Saxe K., A symmetric porosity conjecture of L. Zajíček, Real Anal. Exchange 17 (1991–92), 258–271.

DEPARTMENT OF MATHEMATICAL ANALYSIS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 186 00 PRAHA 8, CZECH REPUBLIC

(Received January 19, 1994)