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Checking positive definiteness or stability

of symmetric interval matrices is NP-hard

Jiř́ı Rohn*

Abstract. It is proved that checking positive definiteness, stability or nonsingularity of
all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
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As is well known, a square (not necessarily symmetric) matrix A is called

positive definite if xT Ax > 0 for each x 6= 0, stable if Reλ < 0 for each eigen-
value λ of A, and Schur stable if ̺(A) < 1. We prove here that checking these

properties is NP-hard (see [1]) for a symmetric interval matrix AI =
[

A, A
]

:=
{

A;A ≤ A ≤ A
}

. By definition, AI is called symmetric if both A and A are

symmetric; hence, a symmetric AI may contain nonsymmetric matrices. If AI is
symmetric and A ∈ AI , then 12 (A +AT ) ∈ AI . Let λmin(A) denote the minimal
eigenvalue of a symmetric matrix A. We have these results:

Theorem. For a symmetric interval matrix AI with rational bounds, each of the

following problems is NP-hard:

(i) check whether each A ∈ AI is positive definite,

(ii) check whether each symmetric A ∈ AI is positive definite,

(iii) check whether each A ∈ AI is stable,

(iv) check whether each symmetric A ∈ AI is stable,

(v) check whether each A ∈ AI is nonsingular,

(vi) check whether each symmetric A ∈ AI is nonsingular,

(vii) check whether each symmetric A ∈ AI is Schur stable,

(viii) given rational numbers a, b, a < b, check whether λmin(A) ∈ (a, b) for each

symmetric A ∈ AI .

Proof: Let us call a symmetric real n × n matrix A = (aij) an MC-matrix if
aii = n and aij ∈ {0,−1} for i 6= j (i, j = 1, . . . , n). Then for each x 6= 0 we

have xT Ax ≥ n‖x‖22 −
∑

i6=j |xixj | = (n+ 1)‖x‖
2
2 − ‖x‖21 ≥ ‖x‖22 > 0, hence A is
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positive definite (and so is A−1). For an MC-matrix A and a positive integer L,
let us form three symmetric interval matrices

AI =

[

A−1 −
1

L
eeT , A−1 +

1

L
eeT

]

,

AI
0 =

[

−A−1 −
1

L
eeT ,−A−1 +

1

L
eeT

]

and

AI
1 =

[

I +
1

m
(−A−1 −

1

L
eeT ), I +

1

m
(−A−1 +

1

L
eeT )

]

,

where e = (1, 1, . . . , 1)T , I is the unit matrix and m = ‖A−1‖∞ +
n
L
+ 1. Hence,

AI
0 = {−A;A ∈ AI}, AI

1 = {I + 1
mA;A ∈ AI

0} and ̺(A′) ≤ ‖A′‖∞ < m for each

A′ ∈ AI . We shall prove that the following assertions are mutually equivalent:

0) zT Az ≥ L for some z ∈ {−1, 1}n,

1) AI contains a matrix which is not positive definite,

2) AI contains a symmetric matrix which is not positive definite,

3) AI
0 contains an unstable matrix,

4) AI
0 contains a symmetric unstable matrix,

5) AI contains a singular matrix,

6) AI contains a symmetric singular matrix,

7) AI
1 contains a symmetric matrix which is not Schur stable,

8) λmin(A
′) /∈ (0, m) for some symmetric A′ ∈ AI .

We prove 0)⇒ 6)⇒ 2)⇒ 8)⇒ 2)⇒ 4)⇒ 7)⇒ 4)⇒ 3)⇒ 1)⇒ 5)⇒ 0). 0)⇒

6): If zT Az ≥ L for some z ∈ {−1, 1}n, then the matrix A′ = A−1−(zT Az)−1zzT

is symmetric, belongs to AI and satisfies A′Az = 0, hence it is singular. 6)⇒ 2)

is obvious. 2)⇔ 8): For a symmetric A′ ∈ AI , since ̺(A′) < m, we have that A′

is not positive definite if and only if λmin(A
′) /∈ (0, m). 2) ⇒ 4): If a symmetric

A′ ∈ AI is not positive definite, then λmax(−A′) = −λmin(A
′) ≥ 0, hence −A′ is

unstable and −A′ ∈ AI
0. 4)⇔ 7): For each symmetric A′ ∈ AI

0, since ̺(A′) < m,

we have that A′ is unstable if and only if I+ 1mA′ ∈ AI
1 is not Schur stable. 4)⇒ 3)

is obvious. 3)⇒ 1): If Ã ∈ AI
0 is unstable, then by Bendixson theorem 0 ≤ Reλ ≤

λmax(
1
2 (Ã+ÃT )), hence for A′ = −12 (Ã+ÃT ) we have A′ ∈ AI and λmin(A

′) ≤ 0,

so that A′ is not positive definite. 1)⇒ 5): Let Ã ∈ AI be not positive definite.

Put t0 = sup
{

t ∈ [0, 1] ;A−1 + t(12 (Ã+ ÃT )− A−1) is positive definite
}

. Then

the matrix A′ = A−1 + t0(
1
2 (Ã + ÃT ) − A−1) is symmetric, belongs to AI (due

to its convexity) and is positive semidefinite, but not positive definite, hence

λmin(A
′) = 0, so that A′ is singular. 5) ⇒ 0): Let A′x = 0 for some A′ ∈ AI ,

x 6= 0. Define z ∈ {−1, 1}n by zj = 1 if xj ≥ 0 and zj = −1 otherwise (j =

1, . . . , n). Then eT |x| = zT x = zT A(A−1 − A′)x ≤ |zT A| 1LeeT |x|, which implies

L ≤ |zT A|e = zT Az (since A is diagonally dominant). This proves that the
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assertions 0) to 8) are equivalent. Now, in [3, Theorem 2.6] it is proved that the
decision problem

Instance. An MC-matrix A and a positive integer L.

Question. Is zT Az ≥ L for some z ∈ {−1, 1}n?

is NP-complete. In view of the above equivalences, this problem can be polyno-
mially reduced to each of the problems (i)–(viii), hence all of them are NP-hard.

�

Comments. The result (v) was proved in [3, Theorem 2.8]; here it was included
for completeness. Cf. also Nemirovskii’s results in [2]. Characterizations of posi-
tive definiteness, stability and Schur stability of symmetric interval matrices are
given in [4].
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