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Whitney blocks in the hyperspace of a finite graph

Alejandro Illanes*

Abstract. Let X be a finite graph. Let C(X) be the hyperspace of all nonempty sub-
continua of X and let µ : C(X) → R be a Whitney map. We prove that there exist
numbers 0 < T0 < T1 < T2 < · · · < TM = µ(X) such that if T ∈ (Ti−1, Ti), then the
Whitney block µ−1(Ti−1, Ti) is homeomorphic to the product µ−1(T )× (Ti−1, Ti). We
also show that there exists only a finite number of topologically different Whitney levels
for C(X).
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Introduction

Throughout this paper X denotes a finite graph, i.e. a compact connected
metric space which is the union of finitely many segments joined by their end
points. A segment of X is one of those segments. A subgraph of X is a graph
contained in X formed by some of those segments. Let SG(X) = {A ⊂ X : A is
a subgraph of X}.
The hyperspace of subcontinua of X is C(X) = {A ⊂ X : A is a nonempty,

closed, connected subset of X} metrized with the Hausdorff metric. Let F1(X) =
{{x} ∈ C(X) : x ∈ X}. A map is a continuous function. A Whitney map for
C(X) (see [8, 0.50]) is a map µ : C(X) → R such that µ({x}) = 0 for every
x ∈ X , µ(A) < µ(B) if A ⊂ B 6= A and µ(X) = 1. A Whitney level is a set of
the form µ−1(t), where t ∈ [0, 1]. A Whitney block is a set of the form µ−1(t, s),
where 0 ≤ t < s ≤ 1. From now on, µ will denote a Whitney map for C(X).
In [1], R. Duda made a detailed study of the polyhedral structure of C(X) by

giving a good decomposition of C(X) into balls. In [2], he gave a characterization
of those polyhedra which are hyperspaces of acyclic finite graphs.
Whitney levels of finite graph have been studied by H. Kato. In [4] he showed

that they are always polyhedra and that if t0 = min{µ(A) : A is a simple closed
curve contained in X} and 0 ≤ t < t0, then µ

−1(t) is homotopically equivalent
to X . In [4] and [6] he gave bounds for the fundamental dimension of Whitney
levels of finite graphs and, in [5] he proved that Whitney levels of finite graphs
admit all homotopy types of compact connected ANRs.
This paper was motivated by the following result of I. Puga ([10, Theorem 2.5]):

“There exists t ∈ [0, 1) and there exists a homeomorphism ϕ : (Cone over µ−1(t))
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→ µ−1([t, 1) such that ϕ(A, 0) = A, ϕ(A, 1) = X and s < t implies that ϕ(A, s) ⊂
ϕ(A, t) for each A ∈ µ−1(t)”. She expressed this property by saying that the
hyperspace of subcontinua of a finite graph is conical pointed.

In this paper, we prove:

Theorem 1. Suppose that µ(SG(X))∪{0} = {T0, T1, . . . , TM}, where 0 = T0 <
T1 < · · · < TM = 1. If 1 ≤ i ≤ M and T ∈ (Ti−1, Ti), then there exists

a homeomorphism ϕ : µ−1(T )×(Ti−1, Ti)→ µ−1(Ti−1, Ti) such that ϕ(A, T ) = A
and ϕ(A, s) ⊂ ϕ(A, t) if s < t for every A ∈ µ−1(T ) and, for each t ∈ (Ti−1, Ti),

ϕ | µ−1(T )× {t} is a homeomorphism from µ−1(T )× {t} onto µ−1(t).

Theorem 2. There is only a finite number of topologically different Whitney

levels for C(X).

1. Preliminaries

The vertices of X are the end points of the segments of X . Notice that the
set SG(X) of subgraphs of X depends on the choice of the segments. We are
interested in having as less subgraphs as possible, so we will suppose that X is
not a simple closed curve and each vertex of X is either an end point of X or
a ramification point of X . With this restriction two extremes of a segment of X
may coincide and then such a “segment” would be a simple closed curve. The set
of segments of X is denoted by S. For each J ∈ S, we fix an orientation and then
we identify J with a closed interval [(−1)J , (1)J ]. Notice that it is possible that
(−1)J = (1)J . We write −1 (resp. 1) instead of (−1)J (resp. (1)J ) if no confusion
arrives.
In order to define the map ϕ in Theorem 1, we will describe its action in each

J ∈ S. For each A ∈ µ−1(T ), we consider A ∩ J and we enlarge or shrink this
set. To illustrate how this shrinking of A ∩ J has to be done, let us consider the
following diagram:

A
J

M

L
A1
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B
J

M

L
A2

C
J

M

L
A3

Here, L and M are segments of X and J is a segment in X such that the end
points of J coincide (that is, J is a simple closed curve). The subcontinua A1,
A2 and A3 have been outlined in thicker lines. The subcontinuum A2 contains J
and M and one half of L, A1 ∩ L and A3 ∩ L are a little bit larger that A2 ∩ L
while A1 ∩ J and A3 ∩ J are a little bit smaller than A2 ∩ J . In this example,
Ti−1 = µ(J ∪M).
If we shrink A2 ∩ J , then we have to cut it at some place of the circle J . Since

A1 is very close to A2, the continuity of the shrinking implies that we have to cut
A1 ∩ J at a similar position as A2 ∩ J . Then, the connectedness of the shrinking
of A1 ∩ J implies that A2 ∩ J has to be cut only on the upper part of J . But,
since A3 is very close to A2, in the same way as above, A2 ∩ J has to be cut only
on the lower part of J . This contradiction shows that it is not possible to shrink
A2 ∩ J .
However, we have to shrink the continuum A2 and the shrinkings have to take

all the sizes in the interval (Ti−1, µ(A2)]. Then, the shrinking of A2 will be carried
out by making the arc A2∩L shorter and shorter. Since A1 and A3 are very close
to A2, then the shrinking of A1 ∩ J and A3 ∩ J have to be almost imperceptible
compared with the shrinking of A1 ∩ L and A3 ∩ L, respectively.
The map ϕ in Theorem 1 will be an appropriate reparametrization and re-

striction of the following map F , so the behaviour of F will be similar to the
behaviour of ϕ and the discussion concerning the shrinking of the subcontinua of
X is applicable to F .
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Observe that to get the effect of shrinking some intervals very slowly compared
with others, we strongly use the asymptoteness of the graph of the map g to the
lines y = ±1 in the Euclidean plane.

2. Auxiliary maps

Consider the map f : (−1, 1) → R given by f(t) = tg(tπ/2) and let g : R →
(−1, 1) be the inverse map of f . Then f(−t) = −f(t) for every t ∈ (−1, 1),
g(−s) = −g(s) for every s ∈ R and −g is the inverse map of −f . Define C∨(X) =
C(X)− (SG(X) ∪ F1(X)).
Define F : C∨(X) × R → C∨(X) by F (A, t) =

⋃

{FJ (A, t) : J ∈ S}, where
FJ : C

∨(X)× R → {E : E is a closed subset of J} is defined as follows:

FJ (A, t) =























































































(a) A ∩ J if A ∩ J = ∅, {−1}, {1}, {−1, 1} or J,

(b) [−1, g(f(b) + t)] if A ∩ J = [−1, b] and − 1 < b < 1,

(c) [g(f(a)− t), 1] if A ∩ J = [a, 1] and − 1 < a < 1,

(d) [a+ e(m− a), b+ e(m− b)], where m = a+b
2+a−b and

e = 1 +
1+g(f(b−a−1)+t)

a−b if A ∩ J = [a, b] and

−1 < a < b < 1 and ,

(e) [−1, a+ e(m− a)] ∪ [b+ e(m− b), 1],

where m = a+b
2+a−b

and

e = 1 +
1+g(f(b−a−1)−t)

a−b if A ∩ J = [−1, a] ∪ [b, 1],

−1 ≤ a < b ≤ 1 and − 1 < a or b < 1.

In case (e), a(1 + a) ≤ b(1 + a) and a(1 − b) ≤ b(1 − b), then 2a + a2 − ab ≤
a + b ≤ 2b + ab − b2, so a ≤ m ≤ b, where a < m or b < m. Notice that e
is a strictly increasing function of t. If t → ∞, e → 1, a + e(m − a) → m and

b+e(m−b)→ m. If t→ −∞, e→ 1+ 2
a−b

a+e(m−a)→ −1 and b+e(m−b)→ 1.

Thus FJ (A, t) is a proper subset of J , {−1, 1} ⊂ FJ (A, t) 6= {−1, 1}; if t < s, then
FJ (A, t) ⊂ FJ (A, s) 6= FJ (A, t), FJ (A, t)→ J as t → ∞ and FJ (A, t) → {−1, 1}
as t→ −∞.
Similarly, in case (d), FJ (A, t) is a proper subset of J , −1, 1 /∈ FJ (A, t), m ∈

FJ (A, t); if t < s, then FJ (A, t) ⊂ FJ (A, s) 6= FJ (A, t), FJ (A, t) → J as t → ∞
and FJ (A, t)→ {m} as t→ −∞.
In all the cases, if A ∩ J is a nonempty proper subset of J , then FJ (A, t) is

a nonempty proper subset of J . Moreover, −1 (resp. 1) belongs to A if and only
if −1 (resp. 1) belongs to FJ (A, t). It follows that, for each t, a vertex p of X
belongs to A if and only if p belongs to F(A,t) and F (A, t) ∈ C∨(X). Therefore
F is well defined.

We will need the following properties of function F :
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I. If t < s, then F (A, t) ⊂ F (A, s) 6= F (A, t).
It follows from the fact that in cases (b), (c), (d) and (e), if t < s, then FJ (A, t) ⊂
FJ (A, s) 6= FJ (A, t).

II. For a fixed A ∈ C∨(X), if t → −∞, F (A, t) tends to a one-point set or to
a subgraph of X which is contained in A and, if t → ∞, then F (A, t) tends to
a subgraph of X which contains A.

III. F is continuous.
Let ((An, tn))n be a sequence in C

∨(X)×R which converges to an element (A, t)
in C∨(X)×R. We may suppose that if J ∈ S and A∩J = ∅, then An ∩J = ∅ for
every n. Let S∗ = {J ∈ S : A∩J 6= ∅}. Since F (A, t) has no isolated points, if we
can find a finite set E such that F (An, tn)∪E → F (A, t), then we will have that
F (An, tn)→ F (A, t). In order to find such a set E, it is enough to show that, for
each J ∈ S∗, there exists a finite set EJ such that FJ (An, tn) ∪ EJ → FJ (A, t).
Then take J ∈ S∗. Here it is necessary to consider the following cases:

1. A ∩ J = J ,
2. A ∩ J = [−1, b] with −1 < b < 1,
3. A ∩ J = [a, 1] with −1 < a < 1,
4. A ∩ J = [a, b] with −1 < a < b < 1,
5. A ∩ J = [−1, a] ∪ [b, 1] with −1 < a < b < 1,
6. A ∩ J = [−1, a] ∪ {1} with −1 < a < 1,
7. A ∩ J = {−1} ∪ [a, 1] with −1 < a < 1,
8. A ∩ J = {−1},
9. A ∩ J = {1} and,
10. A ∩ J = {−1, 1}.

We only check cases 1 and 6; the others are similar. For case 1, the sequence
(An)n can be partitioned into subsequences (Bk)k where each Bk lies in one of
the following subcases:

(a) Bk ∩ J = J . Then FJ (Bk, tnk
) = J → FJ (A, t).

(b) Bk ∩ J = [−1, bk] with −1 < bk < 1. Since Bk → A, bk → 1, then
FJ (Bk, tnk

) = [−1, g(f(bk) + tnk
)]→ [−1, 1] = FJ (A, t).

(c) Bk ∩ J = [ak, 1] with −1 < ak < 1. It is similar to (b).
(d) Bk ∩ J = [ak, bk] with −1 < ak < bk < 1. Then ak → −1 and bk → 1,
so ek = 1 + [1 + g(f(bk − ak − 1) + tnk

)]/(ak − bk) → 0. Thus bk +
ek(mk − bk) − (ak + ek(mk − ak)) = (bk − ak)(1 − ek) → 2. Therefore
FJ (Bk, tnk

) = [ak + ek(mk − ak), bk + ek(mk − bk)]→ [−1, 1] = FJ (A, t).
(e) Bk ∩ J = [−1, ak] ∪ [bk, 1], with −1 < ak < bk < 1 and −1 < ak or

bk < 1. Then bk − ak → 0. Thus bk+ ek(mk − bk)− (ak+ ek(mk − ak)) =
(bk − ak)(1− ek) = (bk − ak)([1+ g(f(bk − ak − 1)+ tnk

)]/(ak − bk))→ 0.
Thus FJ (Bk, tnk

)→ J = FJ (A, t).

Therefore FJ (An, tn)→ FJ (A, t).
In case 6, define EJ = {1}. Note that FJ (A, t) = [−1, g(f(a) + t)] ∪ {1}. We

must consider the following subcases:

(a) Bk ∩ J = [−1, bk] with −1 < bk < 1. Since Bk → A, bk → a, then
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FJ (Bk, tnk
) ∪EJ = [−1, g(f(bk) + tnk

)] ∪ {1} → [−1, g(f(a) + t)] ∪ {1} =
FJ (A, t).

(b) Bk ∩ J = [ak, bk] with −1 < ak < bk < 1. Then ak → −1 and bk → a.
This implies that mk = (ak + bk)/(2 + ak − bk)→ −1 and ek → 1 + [1 +
g(f(a) + t)]/(−1− a). Thus FJ (Bk, tnk

) ∪ EJ = [ak + ek(mk − ak), bk +
ek(mk − bk)] ∪ EJ → [−1, g(f(a) + t)] ∪ {1} = FJ (A, t).

(c) Bk ∩J = [−1, ak]∪ [bk, 1], with −1 ≤ ak < bk ≤ 1 and −1 < ak or bk < 1.
Then ak → a, bk → 1, mk → 1 and ek → (a − g(f(a) + t))/(a − 1).
Thus, FJ (Bk, tnk

)∪EJ = [−1, ak+ek(mk −ak)]∪ [bk+ek(mk − bk), 1]→
[−1, g(f(a) + t)] ∪ {1} = FJ (A, t).

Hence, FJ (An, tn) ∪ EJ → FJ (A, t).
Therefore, F is continuous.

IV. If (A, t), (B, s) ∈ C∨(X) × R are such that A − B 6= ∅ and F (A, t) =
F (B, s), then t < s.

To prove this, choose a point p ∈ A−B, let J ∈ S be such that p ∈ J . If p is
a vertex of X , then p ∈ F (A, t) = F (B, s), so p ∈ B. This contradiction proves
that p is not a vertex of X . Then J is the unique segment of X which contains p.
We consider some cases:

(a) A ∩ J = J . Then J ⊂ F (B, s). This implies that B ∩ J = J and p ∈ B.
This contradiction shows that this case is not possible.

(b) A∩J = [−1, b] with −1 < b < 1. Since F (A, t) = F (B, s), then B∩J is of
the form B ∩J = [−1, b1] with −1 < b1 < b and [−1, g(f(b)+ t)] = [−1, g(f(b1)+
s)]. Then f(b) + t = f(b1) + s. Thus t < s.

(c) A ∩ J = [a, 1] with −1 < a < 1. This case is similar to case (b).

(d) A ∩ J = [−1, a] ∪ [b, 1] with −1 ≤ a < b ≤ 1 and −1 < a or b < 1.
Since F (A, t) = F (B, s), then B ∩ J is of the form B ∩ J = [−1, a1]∪ [b1, 1], with
−1 ≤ a1 < b1 ≤ 1 and −1 < a1 or b1 < 1. Moreover, a+e(m−a) = a1+e1(m1−
a1) . . . (1) and b+e(m−b) = b1+e1(m1−b1) . . . (2), where m = (a+b)/(2+a−b),
m1 = (a1 + b1)/(2 + a1 − b1), e − 1 = (1 + g(f(b − a − 1) − t))/(a − b) and
e1 − 1 = (1 + g(f(b1 − a1 − 1)− s))/(a1 − b1) . . . (3).

From (1) and (2), (1−e)a−(1−e1)a1 = (1−e)b−(1−e1)b1, then (1−e)(a−b) =
(1−e1)(a1−b1) . . . (4). Using (3) we have s+f(b−a−1) = t+f(b1−a1−1) . . . (5).

Let r = 1+g(f(b−a−1)−t) = 1+g(f(b1−a1−1)−s) > 0. Then e = 1+r/(a−b)
and e1 = 1 + r/(a1 − b1). So, (1) and (2) imply: m + r(m − a)/(a − b) =
m1+ r(m1−a1)/(a1− b1) and m+ r(m− b)/(a− b) = m1+ r(m1− b1)/(a1− b1).
Using definitions ofm andm1, m−r(1+a)/(2+a−b) = m1−r(1+a1)/(2+a1−b1)
and m + r(1 − b)/(2 + a − b) = m1 + r(1 − b1)/(2 + a1 − b1) . . . (6). Then
m − m1 = r[(1 + a)/(2 + a − b) − (1 + a1)/(2 + a1 − b1)]. Hence m − m1 =
r(a − a1 + b − b1 − ab1 + ba1)/(2 + a − b)(2 + a1 − b1). While, from definitions
of m and m1, m−m1 = 2(a− a1 + b − b1 − ab1 + ba1)/(2 + a− b)(2 + a1 − b1).
Since r < 2, (a− a1 + b− b1 − ab1 + ba1)/(2 + a− b)(2 + a1 − b1) = 0. Therefore
m = m1.
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From (6) we have (1+a)/(2+a−b) = (1+a1)/(2+a1−b1) and (1−b)/(2+a−b) =
(1− b1)/(2 + a1 − b1). Since p ∈ (A∩ J)− (B ∩ J), then a1 < a or b < b1. In the
first case, 1+a1 < 1+a, so 2+a−b > 2+a1−b1 and f(b−a−1) < f(b1−a1−1),
then (5) implies t < s. Analogously, in the second case, t < s.

(e) A∩J = [a, b] with −1 < a < b < 1. This case is similar to case (d). Then
t < s.

This completes the proof of Property IV.

Define G : C∨(X) × R → C∨(X) by G(B, t) =
⋃

{GJ (B, t) : J ∈ S}, where
GJ : C

∨(X)× R → {E : E is a closed subset of J} is defined as follows:

GJ (B, t) =











































































(a) B ∩ J if B ∩ J = ∅, {−1}, {1}, {−1, 1} or J,

(b) [−1, g(f(b)− t)] if B ∩ J = [−1, b] and − 1 < b < 1,

(c) [g(f(a) + t), 1] if B ∩ J = [a, 1] and − 1 < a < 1,

(d) [(a− e′m)/(1− e′), (b − e′m)/(1− e′)], where m = a+b
2+a−b

and e′ = 1 + b−a
−1+g(t−f(b−a−1))

if B ∩ J = [a, b] and

−1 < a < b < 1 and,

(e) [−1, (a− e′m)/(1− e′)] ∪ [(b− e′m)/(1− e′), 1], where

m = a+b
2+a−b and e′ = 1 + b−a

−1+g(−t−f(b−a−1))
if B ∩ J=

[−1, a] ∪ [b, 1], −1 ≤ a < b ≤ 1 and − 1 < a or b < 1.

In case (e), let a1 = (a− e′m)/(1− e′) and b1 = (b− e′m)/(1− e′), then a1 < b1.
Note that e′ is an increasing continuous function of t. If t→ ∞, e′ → (2+a−b)/2,
if t→ −∞, e′ → −∞. Then e′ < (2 + a− b)/2 for every t ∈ R. Thus e′(1 +m) =
e′2(1 + a)/(2 + a − b) ≤ 1 + a and e′(1 −m) = e′2(1 − b)/(2 + a − b) ≤ 1 − b.
This implies that −1 ≤ (a − e′m)/(1 − e′) = a1 (equality holds if and only if
−1 = a) and b1 = (b − e′m)/(1 − e′) ≤ 1 (equality holds if and only if b = 1).
If t → ∞, a1 → −1 and b1 → 1. If t → −∞, a1 → m and b1 → m. Since
a+ b− 2e′m = m(2 + a− b− 2e′), m = (a− e′m+ b− e′m)/(2(1− e′) + a− b) =

(a1+b1)/(2+a1−b1). Thereforem =
a1+b1
2+a1−b1

. Define e = 1+
1+g(f(b1−a1−1)+t)

a1−b1
.

Note that b1 − a1 − 1 = (b− a− (1− e′))/(1− e′) = −g(−t− f(b− a− 1)). This
implies that e = e′. Thus a1 + e(m− a1) = a and b1 + e(m− b1) = b.
Therefore, GJ (B, t) is a continuous function of t, GJ (B, t) → J as t → −∞,

GJ (B, t) → {−1, 1} as t → ∞, GJ (B, 0) = B ∩ J and supposing that G(B, t) ∈
C∨(X), we have that FJ (G(B, t), t) = [−1, a] ∪ [b, 1] = B ∩ J for every t ∈ R.
The analysis of cases (a), (b), (c) and (d) is similar and we conclude that

G(B, t) ∈ C∨(X) for each t ∈ R, FJ (G(B, t), t) = B ∩ J for every t ∈ R, then
F (G(B, t), t) = B for every t ∈ R, G(B, t) depends continuously on t, G(B, t)
tends to one-point set or to a subgraph of X which is contained in B as t → ∞
and G(B, t) tends to a subgraph of X which contains B as t→ −∞.
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3. Proof of Theorem 1

Define A = µ−1(T ) ⊂ C∨(X) and B = µ−1(Ti−1, Ti). For each A ∈ A, let
r(A) = inf{t ∈ R : F (A, t) ∈ B} and R(A) = sup{t ∈ R : F (A, t) ∈ B}. Since
FJ (A, 0) = A ∩ J for every J ∈ S, we have that F (A, 0) = A ∈ B for each
A ∈ A. Then r(A) and R(A) are defined and −∞ ≤ r(A) < 0 < R(A) ≤ ∞.
Let C = {(A, t) ∈ A × R : r(A) < t < R(A)}. We will prove that the function
F0 = F | C is a homeomorphism from C onto B.
Property I implies that F0(A, t) ∈ B for ever (A, t) ∈ C. In order to prove that

F0 is injective, suppose that F0(A, t) = F0(B, s). If A 6= B, since µ(A) = µ(B),
then A − B 6= ∅ and B − A 6= ∅. Property IV implies that t < s and s < t.
This contradiction implies that A = B. Thus, by Property I, (A, t) = (B, s).
Therefore F0 is injective. To prove that F0 is onto, let B ∈ B ⊂ C∨(X). Since
G(B, t) tends to one-point set or to a subgraph of X which is contained in B as
t→ ∞ and G(B, t) tends to a subgraph of X which contains B as t→ −∞. Then
limt→∞ µ(G(B, t)) ≤ Ti−1 and limt→−∞ µ(G(B, t)) ≥ Ti. Thus there exists t ∈ R

such that A = G(B, t) ∈ A. The continuity of F implies that r(A) < t < R(A).
Then F0(A, t) = B. Therefore F0 is surjective.
LetK : B → C be the inverse function of F0. We will show thatK is continuous.

It is enough to prove that if (Bn)n is a sequence in B which is convergent to an
element B ∈ B and the sequence (K(Bn))n converges to an element (A0, t0) ∈
A× [−∞,∞], then (A0, t0) = K(B).
Let (A, t) = K(B) and, for each n, let (An, tn) = K(Bn). Then (An, tn) →

(A0, t0). If r(A0) < t0 < R(A0), then F0(A, t) = B = limn→∞Bn =
limn→∞ F0(An, tn) = F0(A0, t0), so (A0, t0) = K(B). If t0 ≤ r(A0), take a num-
ber t∗ > r(A0). Then there exists N such that tn < t∗ for each n ≥ N . Then
Bn ⊂ F (An, tn) ⊂ F (An, t

∗) for each n ≥ N . Thus B ⊂ F (A0, t
∗) for every

t∗ > r(A0). If r(A0) > −∞, then B ⊂ F (A0, r(A0)) ⊂ F (A0, 0) = A0. Thus
Ti−1 < µ(B) ≤ µ(F (A0, r(A0))) ≤ µ(A0) < Ti. Then there exists r < r(A0)
such that Ti−1 < µ(F (A0, r)) < Ti which is a contradiction with the definition of
r(A0). If r(A0) = −∞, then B ⊂ limn→∞ F (A0,−n) which is a subgraph of X
or a one-point set contained in A0. Thus µ(B) ≤ Ti−1 which is a contradiction.
Similar contradictions are obtained supposing that t0 ≥ R(A0). This completes
the proof that (A0, t0) = K(B). Therefore K is continuous.
Hence F is a homeomorphism.

In order to define ϕ, let ̺1 : A×R → A and ̺2 : A×R → R be the respective
projection maps. Define ψ : B → A × (Ti−1, Ti) by ψ(B) = (̺1(K(B)), µ(B)).
Then ψ is continuous.
Let (A, t) ∈ A× (Ti−1, Ti). Since F (A, n) converges to a subgraph of X which

contains A, then limn→∞ µ(F (A, n)) ≥ Ti. Thus there exists n1 > 1 such that
µ(F (A, n1)) > t. Similarly, there exists n2 > 1 such that µ(F (A,−n2)) < t.
Hence there exists a unique s ∈ R such that µ(F (A, s)) = t. Define ϕ(A, t) =
F (A, s).
Property I implies that if t1 < t2, then ϕ(A, t1) ⊂ ϕ(A, t2). Note that
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ψ(ϕ(A, t)) = ψ(F (A, s)) = (A, t). Since µ(F (̺1(K(B)), ̺2(K(B)))) = µ(B),
then ϕ(ψ(B)) = ϕ((̺1(K(B)), ̺2(K(B)))) = F (K(B)) = B. Then ψ is the in-
verse map of ϕ. Since µ(F (A, 0)) = µ(A) = T , then ϕ(A, T ) = A for every
A ∈ A.
To prove that ϕ is continuous, it is enough to prove that if ((An, tn))n is a se-

quence in A × (Ti−1, Ti) which converges to an element (A, t) in A × (Ti−1, Ti)
and ϕ(An, tn) converges to an element B ∈ C(X), then B = ϕ(A, t). Set
ϕ(An, tn) = F (An, sn), where µ(F (An, sn)) = tn and set ϕ(A, t) = F (A, s) where
µ(F (A, s)) = t. Then tn = µ(ϕ(An, tn)) → µ(B), so µ(B) = t ∈ (Ti−1, Ti).
Thus B ∈ B. Set K(B) = (A∗, r). Then (A∗, r) = limn→∞K(ϕ(An, tn)) =
limn→∞K(F (An, sn)) = limn→∞(An, sn). Thus An → A∗ and sn → r. Hence
A∗ = A. Since tn = µ(F (An, sn)) → µ(F (A, r)), then t = µ(F (A, r)). Hence
B = ϕ(A, t).

This completes the proof that ϕ is a homeomorphism and the proof of Theo-
rem 1.

�

Corollary ([10, Theorem 2.5]). C(X) is conical pointed. That is, for each Whit-
ney map µ : C(X) → R there exists T ∈ (0, 1) such that µ−1([T, 1]) is homeo-
morphic to the topological cone of µ−1(T ).

4. Proof of Theorem 2

Definition. Let A and B be two Whitney levels for C(X) and let C ∈ C(X).
We say that C is placed between A and B if there exists A ∈ A and B ∈ B such
that A ⊂ C ⊂ B 6= A or B ⊂ C ⊂ A 6= B.

Theorem. Let A and B be two Whitney levels. Suppose that no element in
SG(X) ∪ F1(X) is placed between A and B. Then A and B are homeomorphic.

Proof: Set A = µ−1(t) and B = ν−1(s) where µ, ν : C(X) → R are Whitney
maps and t, s ∈ [0, 1]. Let A ∈ A − B, we will prove that there exists a unique
r ∈ R such that ν(F (A, r)) = s. If ν(A) < s, taking an order arc from A to
X (see [8, Theorem 1.8]), there exists B0 ∈ B such that A ⊂ B0 6= A, then
A /∈ SG(X) ∪ F1(X). Therefore A ∈ C∨(X). Let D = limn→∞ F (A, n). Then
D is a subgraph of X which contains A. If ν(D) ≤ s, there exists B ∈ B such
that D ⊂ B. Then ν(A) < ν(B) and A ⊂ D ⊂ B 6= A which contradicts our
assumption. Thus ν(D) > s. Then ν(F (A, 0)) = ν(A) < s = limn→∞ ν(F (A, n)).
This proves the existence of r in this case. The case ν(A) > s is similar. In both
cases r is unique by Property I.
Analogously, for each B ∈ B − A, B ∈ C∨(X) and there exists a z ∈ R such

that µ(G(B, z)) = t.
Define γ : A → B by γ(A) = A if A ∈ A ∩ B and γ(A) = F (A, r) ∈ B if

A ∈ A− B.
Note that A ⊂ γ(A) or γ(A) ⊂ A. To prove that γ is surjective, let B ∈ B. If

B ∈ A, then B = γ(B). If B ∈ B − A, let z ∈ R be such that µ(G(B, z)) = t.
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Then F (G(B, z), z) = B and G(B, z) ∈ A. Thus γ(G(B, z)) = B. Hence γ
is surjective. To prove that γ is injective, let A1, A2 ∈ A with A1 6= A2. If
A1, A2 ∈ B, then γ(A1) = A1 6= A2 = γ(A2). If A1 ∈ B and A2 /∈ B, then A2 ⊂
γ(A2) 6= A2 or γ(A2) ⊂ A2 6= γ(A2), so γ(A2) /∈ A, and γ(A2) 6= A1 = γ(A1).
If A1, A2 /∈ B, since A1 − A2 6= ∅ and A2 − A1 6= ∅, Property IV implies that
F (A1, r1) 6= F (A2, r2) for every r1, r2 ∈ R. Hence γ(A1) 6= γ(A2). Therefore γ is
injective.
Finally, we will prove that γ is continuous. It is enough to prove that if (An)n

is a sequence in A which converges to an element A ∈ A and γ(An) → B ∈ B,
then ϕ(A) = B. We may suppose that An ∈ B for each n or An /∈ B for each n.
The first case is immediate. In the second case, set γ(An) = F (An, rn). We
consider two subcases:

(a) A ∈ A − B, set γ(A) = F (A, r). We suppose, for example, that r ≤
rn for each n. Then F (An, r) ⊂ F (An, rn) = γ(An), then γ(A) = F (A, r) =
limn→∞ F (An, r) ⊂ limn→∞ γ(An) = B. Since γ(A), B ∈ B, we have that
γ(A) = B.

(b) A ∈ B. Since An ⊂ γ(An) or γ(An) ⊂ An for every n, then A ⊂ B or
B ⊂ A and A,B ∈ B. Thus A = B. This completes the proof that γ is continuous.

Therefore γ is a homeomorphism. �

Proof of Theorem 2: Let A = {A ⊂ C(X) : A is a Whitney level for C(X),
A 6= F1(X) and A 6= {X}}. Let P = {E : E ⊂ SG(X)}. Then P is finite.
Define σ : A → P × P × P by:
σ(A) = ({E ∈ SG(X) : there exists A ∈ A such that E ⊂ A 6= E},
SG(X) ∩ A, {E ∈ SG(X) : there exists A ∈ A such that A ⊂ E 6= A}).

In order to prove Theorem 2, it is enough to show that if σ(A) = σ(B), then A is
homeomorphic to B.
Suppose then that σ(A) = σ(B). By the previous theorem, it is enough to prove

that no element in SG(X) is placed between A and B. Suppose, for example, that
there exists A ∈ A, B ∈ B and E0 ∈ SG(X) such that A ⊂ E0 ⊂ B 6= A. If
A = E0, then E0 ∈ SG(X)∩A = SG(X)∩B ⊂ B, so E0, B ∈ B and E0 ⊂ B 6= E0
which is a contradiction. IfA 6= E0, F (A) = F (B) implies that there existsB1 ∈ B
such that B1 ⊂ E0 6= B1. Thus B1 ⊂ B 6= B1 which is also a contradiction.

Therefore A is homeomorphic to B. �
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