Notes on approximation in the Musielak-Orlicz sequence spaces of multifunctions

ANDRZEJ KASPERSKI

Abstract. We introduced the notion of $(\mathbf{X}, \text{dist}, \mathcal{V})$ -boundedness of a filtered family of operators in the Musielak-Orlicz sequence space X_{φ} of multifunctions. This notion is used to get the convergence theorems for the families of **X**-linear operators, **X**-dist-sublinear operators and **X**-dist-convex operators. Also, we prove that X_{φ} is complete.

Keywords: Musielak-Orlicz space, multifunction, modular space of multifunctions, approximation, singular kernel

Classification: 54C60, 28B20

1. Introduction

Let N be the set of all nonnegative integers. Let l^{φ} be the Musielak-Orlicz sequence space generated by a modular

$$\varrho(x) = \sum_{i=0}^{\infty} \varphi_i(t_i), x = (t_i),$$

where $\varphi = (\varphi_i)$ is a sequence of φ -functions with parameter, i.e. for every $i \in \mathbf{N}$ we have: $\varphi_i : R \to R_+ = [0, \infty), \ \varphi_i(u)$ is an even continuous function, equal to zero iff u = 0 and nondecreasing for $u \ge 0$, $\lim_{u \to \infty} \varphi_i(u) = \infty$. Let

 $X = \{F : \mathbf{N} \to 2^R : F(i) \text{ is nonempty and compact for every } i \in \mathbf{N}\}.$

Every function from **N** to 2^R we will be called multifunction. For every $F \in X$ we define the functions f(F) and $\overline{f}(F)$ by the formulas:

$$\underline{f}(F)(i) = \min_{x \in F(i)} x, \ \overline{f}(F)(i) = \max_{x \in F(i)} x \ \text{ for every } i \in \mathbf{N}.$$

Let now [a, b] denote a compact segment for all $a, b \in R, a \leq b$. Define

$$\begin{split} X_{\varphi} &= \{F \in X : \underline{f}(F), \overline{f}(F) \in l^{\varphi}\},\\ \tilde{X}'_{\varphi} &= \{F \in X_{\varphi} : F(i) = \bigcup_{k=1}^{n_i} [a_k(i), b_k(i)] \text{ for every } i \in \mathbf{N}, \text{ where } n_i \in \mathbf{N} \setminus \{0\},\\ a_k(i), b_k(i) \in R \text{ for } i \in \mathbf{N}, k = 1, \dots, n_i\}. \end{split}$$

A. Kasperski

Let **V** be an abstract set of indices. Let \mathcal{V} be a filter of subsets of **V**. Let **0** : **N** \rightarrow *R* be such that **0**(*i*) = 0 for every *i* \in **N**.

In [6] a general approximation theorem in modular spaces was obtained for linear operators. This theorem was extended in [1] and [7] to some nonlinear operators in $L^{\varphi}(\Omega, \Sigma, \mu)$, in [2] to \tilde{X}_{φ} -linear operators in \tilde{X}_{φ} , in [3] to some operators in \tilde{X}_{φ} and in [5] to some operators in $X_{d,\varphi}$. The space X_{φ} was introduced in [4] without studying its completeness. The aim of this note is to prove that X_{φ} is complete and to obtain an extension of the results of [2], [3] to the case of approximation by some families of operators in the sequence spaces of multifunctions \tilde{X}'_{φ} and X_{φ} .

2. General theorems

Definition 1. Let $A, B \subset R$ be nonempty and compact. We introduce the Hausdorff metric by the formula:

$$\operatorname{dist}(A,B) = \max(\max_{x \in A} \min_{y \in B} | x - y |, \ \max_{y \in B} \min_{x \in A} | x - y |).$$

Theorem 1. Let $F_n \in X_{\varphi}$ for every $n \in \mathbb{N}$. If for every $\varepsilon > 0$ and every a > 0there is K > 0 such that $\varrho(a \operatorname{dist}(F_n(\cdot), F_m(\cdot))) < \varepsilon$ for all m, n > K, then there exists $F \in X_{\varphi}$, such that $\varrho(a \operatorname{dist}(F_n(\cdot), F(\cdot))) \to 0$ as $n \to \infty$ for every a > 0.

PROOF: Let the sequence $\{F_n\}$ fulfil the assumptions of the Theorem 1. So $\{F_n(i)\}$ is a Cauchy sequence for every $i \in \mathbb{N}$ in the complete space of all compact nonempty subsets of R with Hausdorff metric. Hence there are compact nonempty $F_i \subset R$ such that $\operatorname{dist}(F_n(i), F_i) \to 0$ as $n \to \infty$ for every $i \in \mathbb{N}$. Let $F(i) = F_i$ for every $i \in \mathbb{N}$. Applying the Fatou lemma we easily obtain that $\varrho(a \operatorname{dist}(F_n(\cdot), F(\cdot))) \leq \varepsilon$ for every n > K. Also we have for every a > 0 and g equal f(F) or $\overline{f(F)}$

$$\begin{aligned} \varrho(ag) &\leq \varrho(a \operatorname{dist}(F(\cdot), 0)) \\ &\leq \varrho(2a \operatorname{dist}(F_n(\cdot), F(\cdot))) + \varrho(2a \operatorname{dist}(F_n(\cdot), 0)) \\ &\leq \varrho(2a \operatorname{dist}(F_n(\cdot), F(\cdot))) + \varrho(4a \underline{f}(F_n)) + \varrho(4a \overline{f}(F_n)). \end{aligned}$$

So $f(F), \overline{f}(F) \in l^{\varphi}$.

The space X_{φ} will be called Musielak-Orlicz sequence space of multifunctions. **Definition 2.** A function $g: \mathbf{V} \to R$ tends to zero with respect to \mathcal{V} , written $g(v) \xrightarrow{\mathcal{V}} 0$, if for every $\varepsilon > 0$ there is $V \in \mathcal{V}$ such that $|g(v)| < \varepsilon$ for every $v \in V$. Let now \mathbf{X} be equal to \tilde{X}'_{φ} or to X_{φ} .

Definition 3. An operator $A : \mathbf{X} \to \mathbf{X}$ will be called an **X**-dist-sublinear operator, if for all $F, G \in \mathbf{X}$ and $a, b \in R$

 $\operatorname{dist}(A(aF + bG)(i), 0) \leq \mid a \mid \operatorname{dist}(A(F)(i), 0) + \mid b \mid \operatorname{dist}(A(G)(i), 0)$ for every $i \in \mathbf{N}$.

Definition 4. An operator $B : \mathbf{X} \to \mathbf{X}$ will be called an **X**-dist-convex operator, if for all $F, G \in \mathbf{X}, a, b \ge 0, a + b = 1$,

dist(B(aF+bG)(i), (aF+bG)(i))

 $\leq a \operatorname{dist}(B(F)(i), F(i)) + b \operatorname{dist}(B(G)(i), G(i))$ for every $i \in \mathbf{N}$.

Definition 5. An operator $C : \mathbf{X} \to \mathbf{X}$ will be called an **X**-linear operator if for all $F, G \in \mathbf{X}, a, b \in R$,

$$C(aF + bG)(i) = aC(F)(i) + bC(G)(i)$$
 for every $i \in \mathbf{N}$.

Remark 1. If A is **X**-linear operator, then it is **X**-dist-sublinear operator and **X**-dist-convex operator.

Definition 6. A family $T = (T_v)_{v \in \mathbf{V}}$ of operators $T_v : \mathbf{X} \to \mathbf{X}$, for every $v \in \mathbf{V}$ will be called $(\mathbf{X}, \text{dist}, \mathcal{V})$ -bounded, if there exist constants $k_1, k_2 > 0$ and a function $g : \mathbf{V} \to R_+$ such that $g(v) \xrightarrow{\mathcal{V}} 0$, and for all $F, G \in \mathbf{X}$ there is a set $V_{F,G} \in \mathcal{V}$ for which

 $\varrho(a\operatorname{dist}(T_v(F)(\cdot), T_v(G)(\cdot))) \leq k_1 \varrho(ak_2\operatorname{dist}(F(\cdot), G(\cdot))) + g(v)$ for all $v \in V_{F,G}$ and every a > 0.

Definition 7. Let $F_v \in X_{\varphi}$ for every $v \in \mathbf{V}$. Let $F \in X_{\varphi}$. We write $F_v \xrightarrow{d,\varphi,\mathcal{V}} F$, if for every $\varepsilon > 0$ and every a > 0 there exists $V \in \mathcal{V}$ such that $\varrho(a \operatorname{dist}(F_v(\cdot), F(\cdot))) < \varepsilon$ for every $v \in V$.

Remark 2. If $F, G \in X_{\varphi}$, then $dist(F(\cdot), G(\cdot)) \in l^{\varphi}$.

Definition 8. Let $S \subset \mathbf{X}$.

 $S_{\mathbf{X},d,\varphi,\mathcal{V}} = \{ F \in \mathbf{X} : F_v \xrightarrow{d,\varphi,\mathcal{V}} F, \text{ for some } F_v \in S, v \in \mathbf{V} \}.$

Theorem 2. Let the family $T = (T_v)_{v \in \mathbf{V}}$ of **X**-dist-sublinear operators for every $v \in \mathbf{V}$, be $(\mathbf{X}, \text{dist}, \mathcal{V})$ -bounded. Let $S_o \subset \mathbf{X}$ and let $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} \mathbf{0}$ for every $F \in S_o$. Let S be the set of all finite linear combinations of elements of the set S_o . Then $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} \mathbf{0}$ for every $F \in S_{\mathbf{X}, d, \varphi, \mathcal{V}}$.

The proof analogous to that of Theorem 1 in [3] is omitted.

Theorem 3. Let the family $T = (T_v)_{v \in \mathbf{V}}$ of **X**-dist-convex operators for every $v \in \mathbf{V}$ be $(\mathbf{X}, \operatorname{dist}, \mathcal{V})$ -bounded. Let $S_o \subset \mathbf{X}$ and let $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_o$. Let now S be the set of all finite convex combinations of elements of the set S_o . Then $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_{\mathbf{X}, d, \varphi, \mathcal{V}}$.

The proof analogous to that of Theorem 2 in [3] is omitted.

Theorem 4. Let the family $T = (T_v)_{v \in \mathbf{V}}$ of **X**-linear operators for every $v \in \mathbf{V}$, be $(\mathbf{X}, \operatorname{dist}, \mathcal{V})$ -bounded. Let $S_o \subset \mathbf{X}$ and let $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_o$. Let now S be the set of all finite linear combinations of elements of the set S_o . Then $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_{\mathbf{X}, d, \varphi, \mathcal{V}}$.

The proof analogous to that of Theorem 1 in [2] is omitted.

A. Kasperski

3. Applications

Let now $\mathbf{V} = \mathbf{N}$ and the filter \mathcal{V} will consist of all sets $V \subset \mathbf{V}$ which are complements of finite sets.

We shall say that φ is τ_+ -bounded, if there are constants $k_1, k_2 \ge 1$ and a double sequence $\{\varepsilon_{n,j}\}$ such that

$$\varphi_{n+j}(u) \le k_1 \varphi_n(k_2 u) + \varepsilon_{n,j}$$

for $u \in R$, n, j = 0, 1, ..., where $\varepsilon_{n,j} \ge 0$, $\varepsilon_{n,0} = 0$, $\varepsilon_j = \sum_{n=0}^{\infty} \varepsilon_{n,j} \to 0$ as $j \to \infty$, $\mathbf{s} = \sup_{j \in \mathbf{N}} \varepsilon_j < \infty$. Let $K_{v,j} : \mathbf{V} \times \mathbf{V} \to R_+$ and let the family $(K_v)_{v \in \mathbf{V}}$ be almost-singular, i.e. $\sigma(v) = \sum_{j=0}^{\infty} K_{v,j} \le \sigma < \infty$ for all $v \in \mathbf{V}$ and $\frac{K_{v,j}}{\sigma(v)} \xrightarrow{\mathcal{V}} 0$ for $j = 1, 2, \ldots$ Let $F \in X_{\varphi}$. We define a family $\mathcal{T} = (\mathcal{T}_v)_{v \in \mathbf{V}}$ of operators by the formula:

$$\mathcal{T}_{v}(F)(i) = \sum_{j=0}^{i} K_{v,i-j}F(j) \text{ for every } i \in \mathbf{V}.$$

Lemma 1. Let $(K_v)_{v \in \mathbf{V}}$ be almost-singular, let $\varphi = (\varphi_i)_{i \in \mathbf{V}}$ be τ_+ -bounded and φ_i be convex for every $i \in \mathbf{V}$, then $\mathcal{T}_v : l^{\varphi} \to l^{\varphi}$ for every $v \in \mathbf{V}$.

The proof analogous to that of Proposition 4 in [6] is omitted.

Lemma 2. If the assumptions of Lemma 1 hold, then the family $\mathcal{T} = (\mathcal{T}_v)_{v \in \mathbf{V}}$ is $(X_{\varphi}, \text{dist}, \mathcal{V})$ -bounded and \mathcal{T}_v is X_{φ} -linear-operator for every $v \in \mathbf{V}$.

PROOF: From Lemma 1 we easily obtain that $\mathcal{T}_v : X_{\varphi} \to X_{\varphi}$. We prove that \mathcal{T} is $(X_{\varphi}, \text{dist}, \mathcal{V})$ -bounded family of X_{φ} -linear operators. Let $a, b \in \mathbb{R}, F, G \in X_{\varphi}, i \in \mathbf{V}$. We have

$$\mathcal{T}_{v}(aF + bg)(i) = \sum_{j=0}^{i} K_{v,i-j}(aF(j) + bG(j))$$
$$= a\sum_{j=0}^{i} K_{v,i-j}F(j) + b\sum_{j=0}^{i} K_{v,i-j}G(j)$$
$$= a\mathcal{T}_{v}(F)(i) + b\mathcal{T}_{v}(G)(i),$$
$$\varrho(a\operatorname{dist}(\mathcal{T}_{v}(F)(\cdot), \mathcal{T}_{v}(G)(\cdot)))$$

Notes on approximation in the Musielak-Orlicz sequence spaces of multifunctions

$$\leq \sum_{i=0}^{\infty} \varphi_i(a \sum_{j=0}^{i} K_{v,i-j} \operatorname{dist}(F(j), G(j)))$$

$$\leq k_1 \varrho(a k_2 \sigma \operatorname{dist}(F(\cdot), G(\cdot))) + c(v),$$

where $c(v) = \frac{1}{\sigma(v)} \sum_{i=1}^{\infty} K_{v,i} \varepsilon_i \xrightarrow{\mathcal{V}} 0$ (see [6], p. 109, the proof of Proposition 4). \Box

We easily obtain (see [7], 8.13 and 8.14) the following

Lemma 3. Let $\varphi = (\varphi_i)_{i=0}^{\infty}$ satisfy the condition (δ_2) . Let $F \in X_{\varphi}$ and $F = (F(i))_{i=0}^{\infty}$. Let F_v be such that $F_v(i) = F(i)$ for $i = 0, 1, \ldots, v$ and $F_v(i) = 0$ for i > v. Then $F_v \xrightarrow{d, \varphi, \mathcal{V}} F$.

Remark 3. If $A \subset R$ is nonempty and compact and $a \in R$, then

$$\operatorname{dist}(aA, A) \le |1 - a| \max_{x \in A} |x|.$$

PROOF: Let $A \subset R$ be nonempty and compact and let $a \in R$, we have

$$dist(aA, A) = \max(\max_{x \in aA} \min_{y \in A} | x - y |, \max_{y \in A} \min_{x \in aA} | x - y |)$$

= $\max(\max_{z \in A} \min_{y \in A} | az - y |, \max_{y \in A} \min_{z \in A} | az - y |) \le |1 - a| \max_{x \in A} |x|.$

Now, let us denote: $x_{j,K_v} = \{\underbrace{0, \dots, 0}_{j-times}, K_{v,1}, K_{v,2}, \dots\}.$

Theorem 5. Let the assumptions of Lemmas 1 and 3 hold. If $x_{j,K_v} \xrightarrow{d,\varphi,\mathcal{V}} \mathbf{0}$ for every $j \in \mathbf{V}$, $K_{v,o} \xrightarrow{\mathcal{V}} 1$, then $\mathcal{T}_v(F) \xrightarrow{d,\varphi,\mathcal{V}} F$ for every $F \in X_{\varphi}$. PROOF: Let us denote:

 $E_k(A) = (\Delta_{i,k}(A))_{i=0}^{\infty}$ with $\Delta_{i,k}(A) = A$ if i = k and $\Delta_{i,k}(A) = 0$ if $i \neq k$, where $A \subset R$ is nonempty and compact. Let

 $\mathbf{S}_o = \{ E_k(A) : k \in \mathbf{V}, A \subset R \text{ is nonempty and compact} \}.$

It is easy to see that $\mathcal{T}_{v}(F) \xrightarrow{d,\varphi,\mathcal{V}} F$ for every $F \in \mathbf{S}_{o}$. Let \mathbf{S} be the set of all finite linear combinations of elements of the set \mathbf{S}_{o} . From Lemma 3 we easily obtain that $\mathbf{S}_{X_{\varphi},d,\varphi,\mathcal{V}} = X_{\varphi}$. So we easily obtain the assertion from Theorem 4.

Now, let us denote:
$$\overline{x}_{j,K_v} = \{\underbrace{0,\ldots,0}_{j-times}, K_{v,0}, K_{v,1},\ldots\}.$$

From Remark 1 we easily obtain the following extension of Theorem 3 from [3]:

A. Kasperski

Theorem 6. Let the assumptions of Lemmas 1 and 3 hold. If $\overline{x}_{j,K_v} \xrightarrow{d,\varphi,\mathcal{V}} \mathbf{0}$ for every $j \in \mathbf{V}$, then $\mathcal{T}_v(F) \xrightarrow{d,\varphi,\mathcal{V}} \mathbf{0}$ for every $F \in X_{\varphi}$.

Let now

 $\overline{X}_{d,\varphi} = \{ F \in X_{\varphi} : F_n \xrightarrow{d,\varphi,\mathcal{V}} F \text{ for some } F_n \in \tilde{X}'_{\varphi}, n \in \mathbf{N} \}.$

Remark 4. For every nonempty and compact $A \in R$ and every $\varepsilon > 0$ there are $n \in \mathbb{N}$ and $a_j \in R$, j = 0, 1, ..., n such that $dist(A, \bigcup_{i=0}^n \{a_i\}) < \varepsilon$.

From Lemma 3 and Remark 4 we easily obtain the following:

Theorem 7. If the assumptions of Lemma 3 hold, then $\overline{X}_{d,\varphi} = X_{\varphi}$.

References

- Kasperski A., Modular approximation by a filtered family of sublinear operators, Commentationes Math. XXVII (1987), 109–114.
- [2] , Modular approximation in \tilde{X}_{φ} by a filtered family of \tilde{X}_{φ} -linear operators, Functiones et Approximatio **XX** (1992), 183–187.
- [3] , Modular approximation in \tilde{X}_{φ} by a filtered family of dist-sublinear operators and dist-convex operators, Mathematica Japonica **38** (1993), 119–125.
- [4] _____, Approximation of elements of the spaces X¹_{\varphi} and X_{\varphi} by nonlinear singular kernels, Annales Math. Silesianae, Vol. 6, Katowice, 1992, pp. 21–29.
- [5] _____, Notes on approximation in the Musielak-Orlicz space of multifunctions, Commentationes Math., in print.
- [6] Musielak J., Modular approximation by a filtered family of linear operators, "Functional Analysis and Approximation, Proc. Conf. Oberwolfach, August 9–16, 1980", Birkhäuser-Verlag, Basel 1981, pp. 99–110.
- [7] _____, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin, 1983.

INSTITUTE OF MATHEMATICS, SILESIAN TECHNICAL UNIVERSITY, KASZUBSKA 23, 44-100 GLI-WICE, POLAND

(Received December 8, 1993)