
Comment.Math.Univ.Carolin. 36,1 (1995)171–176 171

Distinguishing Lindelöfness and inverse Lindelöfness

V.I. Malykhin

Abstract. On ω1 a Hausdorff inverse Lindelöf non Lindelöf topology has been con-
structed.
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1. Introduction

M.V. Matveev [1] calls a topological space X inversely compact if for every
open cover U of X , one can select a finite cover V of X which consists of the
elements of U or their complements, but of course V is prohibited to contain both
U and X \ U for any U ∈ U . In the sequel we will use the following

1.1 Reformulation. A space X is inversely compact if for every open cover

U of X there exists a finite function f : U → {0, 1} such that ∪{Uf(U) : U ∈
dom(f)} = X (by a finite function we mean a function with a finite domain; here
and henceforth U0 = U and U1 = X \ U for any subset U of X).

We obtain inverse countable compactness if in this definition we consider only
countable covers; likewise, a space X is inverse Lindelöf if in this definition we
consider countable functions.
In [1] Matveev has obtained the following criterion for inverse compactness:

1.2 Criterion. A space X is inversely compact iff every independent family of
closed subsets of X has nonempty intersection.

Let us remind that a family F is called independent if for every finite function
f : F → {0, 1} the intersection ∩{F f(F ) : F ∈ dom(f)} is nonempty.
Analogous criterion holds for inverse Lindelöfness:

1.3 Criterion. A space X is inversely Lindelöf iff every countably independent
family of closed subsets of X has nonempty intersection.

In this connection a family F is called countably independent if for every
countable function f : F → {0, 1} the intersection ∩{F f(F ) : F ∈ dom(f)} is
nonempty.
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1.4. There are various questions about inverse compactness and inverse Lin-
delöfness, for instance:

(Matveev) Does there exist a T2, inversely compact, noncompact space?

(Matveev) Which properties of Hausdorff compact spaces remain valid for
inversely compact spaces? For instance: Does countable compactness (inverse
countable compactness) + inverse Lindelöfness imply (inverse) compactness?

In this article we answer some such questions.

1.5 Remark. The characterization of inverse compactness via independent fami-
lies of closed sets and also some results of Katětovmotivated the author to consider
the general idea of introducing properties weaker than compactness: one should
demand that only some (not all) centered families of closed sets have nonempty
intersection. Inverse compactness can be considered an instance of this general
approach.

2. The inverse Lindelöfness and CH

2.1 Theorem. Every space of the power smaller than C is inversely Lindelöf.

Proof: Let us suppose that a space is not inversely Lindelöf, then there exists
a countably independent family F with empty intersection. It is evident that F
is uncountable. Let E be a some infinite countable subfamily. For every function
e : E → {0, 1} we have Ke = ∩{Ee(E) : E ∈ E} 6= ∅ and if e1 6= e2 then
Ke1 ∩ Ke2 = ∅. So ∪{Ke : e runs the set of all functions from E into {0, 1}} has
the power non smaller than C, so the whole space has the power non smaller than
C as well.

2.2 Corollary. It is impossible to prove in ZFC the coincidence of inverse Lin-

delöfness and (usual) Lindelöfness.

Indeed, under the negation of CH a discrete space of the power ℵ1 is inversely
Lindelöf, but non Lindelöf.
Now we need the following

2.3 Lemma. On a set of cardinality mℵ0 , m > ω, there exists a countably
independent family of cardinality m with empty intersection.

Proof: In 2m let us consider the subset X = {x ∈ 2m : |x−1(1)| ≤ ℵ0}, i.e.
the Σ-product of m disconnected two-points with the base point 0 = (0, . . . ).
For every α ∈ m let Aα = {x ∈ X : x(α) = 1}. It is easy to see the family
{Aα : α ∈ m} is as desired. �

2.4 Theorem. A discrete space is inversely Lindelöf iff its cardinality is smaller

than C.

Proof: According to Theorem 2.1 it is sufficient to prove that a discrete space
of the power C is not inversely Lindelöf (as Matveev [1] proved that inverse com-
pactness and inverse Lindelöfness are closed-hereditary). For this let us take in
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Lemma 2.4 m = C and consider X with discrete topology, then {Aα : α ∈ m} is
the countably independent family of closed subsets with empty intersection. �

2.5 Corollary. Under CH every uncountable discrete space is not inversely Lin-

delöf.

2.6 Corollary. CH is equivalent to the non inverse Lindelöfness of a discrete

space of cardinality ℵ1.

2.7 Corollary. For discrete space of cardinality ℵ1 the property to be inversely
Lindelöf is undetermined in ZFC.

2.8 Lemma. Let m be a regular cardinal and mℵ0 = m, then on m there exists
a countably independent family {Aα : α ∈ m} such that α ∩ Aα = ∅ for every
α ∈ m.

Proof: We shall construct such family by the transfinite induction. Let us
consider a general step of this induction.
Let us suppose that for some α ∈ m one has defined yet subsets Aβγ for all

β < α and β ≤ γ < α and also all |Aβγ | < m, some other inductive assumptions
yet unspecified are fulfilled as well.
Let e be any countable function from m into {0, 1} and dom(e) ⊂ α. Let

δ = Sup(∪{Aβγ : β ≤ γ < α}) and θ = max{δ, α} + 1. For β < α let us

set A′

βα = ∪{Aβγ : β ≤ γ < α}. Further let us set Aβα ∪ {θ} if e(β) = 0 and

Aβα = A′

βα if e(β) = 1. Let us also set Aαα = {θ}. The general step of transfinite

induction has been completed. Now let Aα = ∪{Aαγ : α ≤ γ < m} for every
α ∈ m. �

2.9 Theorem [CH]. ω1 with ordered topology is not inversely Lindelöf.

Proof: There exists an uncountable discrete subspace Z = {zβ : β < ω1} ⊂ ω1.
Let us take in Lemma 2.8 m = ω1, then under CH the conditions of this lemma
are fulfilled. Let {Aα : α ∈ ω1} be the corresponding family of this lemma. Let
us set Eα = {zβ : β ∈ Aα} and Fα = Eα. It is easy to verify that {Fα : α ∈ ω1}
is a countably independent family of closed subsets of ω1 with empty intersection.

�

2.10 Corollary. The implication “Countable compactness (inverse countable
compactness) + inverse Lindelöfness” → “Inverse compactness” is improvable in
ZFC.

As this implication does not take place for ω1 with ordered topology under
the negation of CH (let us note that this space is not inversely compact—see the
proof in [2]).

3. The inverse Lindelöfness and Ostaszewskii’s space

3.1 Theorem. If each closed subset of a space is countable or its complement is

countable, then this space is inversely Lindelöf.
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Proof: Let F be a countably independent family of closed subsets of the con-
sidered space X with empty intersection and F be an arbitrary member of F .
As it is easy to see, F cannot be countable, so X \ F is countable. Let A be
any countable infinite subfamily of F \ {F}. For every function e : A → {0, 1}

Ke = (X \ F ) ∩ (∩{Ae(A) : A ∈ A}) 6= ∅ and all these Ke are disjoint. But this
contradicts countability of the set X \ F . �

3.2 Corollary. An Ostaszewskii’s space is inversely Lindelöf.

Let us note that in [2] it was proved that no Ostaszewskii’s space is inversely
compact.

4. The inverse Lindelöfness of ω1 \ {x} for some x

4.1 Theorem. There exists some x such that the space ω∗ \ {x} is not inversely
Lindelöf.

Proof: We use Theorem 4.4.4 of [3] stating that every P -space of weight non
greater that C can be embedded in ω∗.
For every α ∈ ω1 let Aα be a discrete space of the power C and X = {∗} ∪

(∪{Aα : α ∈ ω1}), where ∗ is a special point with basic neighbourhoods Bβ =
{∗} ∪ (∪{Aα : α ∈ ω1 \ β}); the other points of X are isolated. It is clear that
X is a P -space, hence, X ⊂ ω∗, let x be ∗ under this embedding. Let us note
that ∩{Bβ : β ∈ ω1} = {x} (the closure is taken in ω∗), because for every point
y ∈ ω∗ \ {x} there exist β ∈ ω1 and a neighbourhood Oy so that Bβ ∩ Oy = ∅.

On every Aβ let us take, according to Lemma 2.3 a countable family Eβ =

{Eβ
α : α < β}, which is countably independent and let Kα = ∪{Eβ

α : α < β < ω1}
for every α ∈ ω1. It is easy to see that {Kα : α ∈ ω1} is a countably independent
family of closed subsets with empty intersection. �

4.2 Theorem [CH]. For every x ∈ ω∗ the space ω∗\{x} is not inversely Lindelöf.

Proof: Under CH for every x ∈ ω∗ there exists an uncountable subset {zα : α ∈
ω1} such that |{zβ : zβ /∈ Ox}| ≤ ℵ0 for every neighbourhood Ox of x. Now we

use Lemma 2.8 for m = C = ℵ1. Let Eα = {zβ : β ∈ Aα} and Fα = Eα (the
closure is taken in ω∗\{x}). It is easy to check that {Fα : α ∈ ω1} is the countably
independent family of closed subsets in ω∗ \ {x} with empty intersection. �

5. Examples of inversely Lindelöf non Lindelöf spaces under CH and

in ZFC

5.1 Example [CH]. On ω1 there exists a Hausdorff locally countable topology θ,
such that for every infinite subset A ⊂ ω1 there exists an α, such that [α, ω1) ⊂ A.

Construction. Let {Aα : α ∈ ω1 \ ω} be an enumeration of the family [ω1]
ω

such that Aα ⊂ α for every α ∈ ω1 \ α. Let all points n ∈ ω be isolated. Let us
describe a general step of the transfinite induction.
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Let us suppose that on some α ∈ ω1 \ω a Hausdorff topology τ with countable
base has been defined and for every β ∈ α \ ω a countable family Aβ ⊂ [β]ω has

been fixed such that β ∈ A for every A ∈ Aβ . Let Aα = {Aβ : β ∈ α}, so Aα

is countable. Now our task is to define on α + 1 a Hausdorff topology µ with
countable base, τ ⊂ µ and in that β ∈ A for every A ∈ Aβ and β ≤ α.
5.2 Lemma. Let on a set Z a countable family E of infinite subsets be given,
then there exist a disjoint family P of infinite subsets and one-to-one function
φ : E → P such that φ(E) ⊂ E for each E ∈ E .

This lemma belongs to the set-theoretic folklore.
So, according to this lemma if we take the family (∪{Aβ : β ≤ α}) as E we will

obtain families Bβ, β ≤ α, elements of Bβ are refined into elements of Aα, β ≤ α,
and ∪{Bβ : β ≤ α} is a disjoint family.
5.3 Lemma. Let on a countable infinite set X for every point x ∈ X an infinite
subset Ex be given, so that if x1 6= x2 then Ex1 ∩ Ex2 = ∅. Further on each
subset Ex a free filter Fx is given. Let us define a topology ν on X in the

following manner: a set V on X is open iff for each x ∈ V there exists Fx ∈ Fx,

Fx ⊂ V . Then this topology ν is normal and T1 (moreover it is Hausdorff).

Proof: For every point x ∈ X the subset X \ {x} is open, as all filters Fy,
y ∈ X , are free. So, ν is a T1-topology. Let us prove its normality. Let A, B
be two closed disjoint subsets. Let us find their disjoint neighbourhoods. As it
is easy to see, a set {y} ∪ F is closed for every y ∈ X and F ∈ Fy. As B is
closed, X \ B is open, hence for an arbitrary point a ∈ A there exists Fa ∈ Fa

such that (A ∪ Fa) ∩ B = ∅. Let us note that A ∪ Fa is closed as it is the sum
of two closed subsets: A and {a} ∪ Fa. Having been performing countably many
similar operations let us find subsets W and T , A ⊂ W , B ⊂ T , W ∩ T = ∅ and
such that for every x ∈ W some Fx ∈ Fx is contained in W , analogously for the
subset T . But this means that W and T are open.
Let us continue in the construction of our example. Recall that the sets Tβ =

∪Bβ , β ≤ α, are disjoint. On each Tβ , β < α, let us consider a filter Fβ formed by
the family {(Tβ ∩ V ) \∆ : V is a neighbourhood of β and ∆ is an arbitrary finite
subset of α}. On Tα let us consider a filter Fα formed by the family {Tα \∆ : ∆
is an arbitrary finite subset of α}, each filter Fβ , β ≤ α, is free, of course. Let us
denote by δ a topology formed on α+1 by system filters {Fβ : β ≤ α} according

to Lemma 5.3. Let us note that β ∈ A for every A ∈ Aβ and β ≤ α with respect
to topology δ. It is easy to see that τ ⊂ δ. Indeed, if M is open in τ , then
M ⊂ α and for each point β ∈ M M is the neighbourhood for β. However then
M ∩ Tβ ⊂ M , hence M ∈ δ.
Let us note that τ has a countable base, denote it by S. As δ is Hausdorff

there exists a countable subfamily W ⊂ δ such that for every x, y ∈ α+1, x 6= y,
there are U, V ∈ W are disjoint neigbourhoods of x, y. The family W ∪ S is
countable, let µ be a smallest topology, containing W ∪ S. It is clear that µ has
a countable base and β ∈ A for each A ∈ Aβ and β ≤ α concerning µ. The general
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step of transfinite induction has been described. Now the join of all intermediate
topologies will form the base of θ. �

5.4 Theorem [CH]. The space (ω1, θ) is inversely Lindelöf, but non Lindelöf.

Indeed, as this space is locally countable, so it is not Lindelöf. Later, each
closed subset is either countable or its complement is countable. According to
Theorem 3.1 it implies inverse Lindelöfness.

5.5 Example. On ω1 there exists a locally countable topology∆ that is inversely
Lindelöf under CH. Hence the space (ω1,∆) is inversely Lindelöf non Lindelöf
space.

Construction. Let {Aα : α ∈ C \ ω} be an enumeration of the family [ω1]
ω by

smallest ordinal (it is evidently, C) such thatAα ⊂ α for every α ∈ C\ω. Now carry
out the transfinite induction exactly as in Example 5.1, but only making the first
ω1 steps. Denote the topology so constructed ∆. It is clear that ∆ is Hausdorff
and locally countable. Hence it is not Lindelöf. Under CH C = ω1, hence we
will have made all necessary steps of the transfinite induction of Example 5.1 and
therefore ∆ will coincide with θ, so under CH (ω1,∆) is inversely Lindelöf. If CH
does not hold then (ω1,∆) is still inversely Lindelöf by Theorem 2.1, because it
has the power ℵ1 < C.
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