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Some new versions of an old game

Vladimir V. Tkachuk

Abstract. The old game is the point-open one discovered independently by F. Galvin [7]
and R. Telgársky [17]. Recall that it is played on a topological space X as follows:
at the n-th move the first player picks a point xn ∈ X and the second responds with
choosing an open Un ∋ xn. The game stops after ω moves and the first player wins if
∪{Un : n ∈ ω} = X. Otherwise the victory is ascribed to the second player.
In this paper we introduce and study the games θ and Ω. In θ the moves are made

exactly as in the point-open game, but the first player wins iff ∪{Un : n ∈ ω} is dense
in X. In the game Ω the first player also takes a point xn ∈ X at his (or her) n-th move

while the second picks an open Un ⊂ X with xn ∈ Un. The conclusion is the same as
in θ, i.e. the first player wins iff ∪{Un : n ∈ ω} is dense in X.
It is clear that if the first player has a winning strategy on a space X for the game θ

or Ω, then X is in some way similar to a separable space. We study here such spaces X

calling them θ-separable and Ω-separable respectively. Examples are given of compact
spaces on which neither θ nor Ω are determined. It is established that first countable
θ-separable (or Ω-separable) spaces are separable. We also prove that
1) all dyadic spaces are θ-separable;

2) all Dugundji spaces as well as all products of separable spaces are Ω-separable;
3) Ω-separability implies the Souslin property while θ-separability does not.

Keywords: topological game, strategy, separability, θ-separability, Ω-separability, point-
open game
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0. Introduction

The games we are going to study here are slight variations of the well known
point-open game G which was discovered and studied independently by F. Galvin
[7] and R. Telgársky [17]. Recall that the game G is played on a topological space
X as follows: the n-th move of the first player (from here on denoted by I) consists
in taking a point xn ∈ X . The second player (called II in this paper) answers
choosing an open Un ⊂ X with xn ∈ Un. The play is finished after ω moves and
I is announced to be the winner if ∪{Un : n ∈ ω} = X . Otherwise II wins the
game {(xn, Un) : n ∈ ω}.
F. Galvin [7] proved that it is independent of ZFC whether G is determined

on all subsets of the real line R. Telgársky proved in [17] that if X is a σ-Çech-
complete or pseudocompact space then G is determined on X . Later in [18] he
gave a ZFC example of a space X on which G is undetermined. P. Daniels and
G. Gruenhage [5] as well as S. Baldwin [4] studied the point-open game which
does not end after ω moves.
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The main purpose of this paper is to introduce two new games θ and Ω (it
took the author a long time to try to invent good names for them, but all his
attempts failed) and to study them as well as some of their derivatives. It is worth
mentioning that the author first introduced them (under the names T and TT )
in his book [19] (which is written in Russian and is hence generally unobtainable
by Western readers) and formulated their simplest properties as exercises.
The games θ and Ω differ only a little from the point-open game G. The moves

in θ are exactly the same as in G but the assessment of the play {(xn, Un) : n ∈ ω}
is different: the player I wins if the set U = ∪{Un : n ∈ ω} is dense in X .
Otherwise wins the second player. In the game Ω the first player still has to
pick a point xn ∈ X at his (or her) n-th move, while the second player has more
freedom — he also chooses an open Un ⊂ X but only xn ∈ Un is required. And
again I wins the play {(xn, Un) : n ∈ ω} iff U = ∪{Un : n ∈ ω} is dense in X .
Once the definitions of θ and Ω are given, it is straightforward that for any

separable space X the first player has a winning strategy on X in both θ and Ω.
This is the reason why we call a space X θ-separable (or Ω-separable) if the first
player has a winning strategy on X for the game θ (or Ω respectively). We also
mimic the terminology of [17] in saying that a space X is θ-antiseparable (or
Ω-antiseparable) if the second player has a winning strategy on X in θ (or Ω
respectively). Now what we do in this paper can be reformulated in a very short
way: we study θ(Ω)-(anti)separable spaces.
The results in the foregoing text are numerous, so let us mention only that

— any θ-separable (and hence Ω-separable) space is weakly Lindelöf;
— a first countable θ-separable (or Ω-separable) space is separable;
— any product of separable spaces is Ω-separable (and hence θ-separable);
— the games θ and Ω are both determined on metric spaces;
— there are compact first countable examples of indeterminacy for θ and Ω;
— any Eberlein compact Ω-separable space is metrizable;
— any Ω-separable space has the Souslin property.

1. Notations and terminology

Throughout this paper “a space” means “a Tychonoff space”. If X is a space
then T (X) is its topology and T ∗(X) = T (X)\{∅}. If A ⊂ X then T (A, X) =
{U ∈ T (X) : A ⊂ U} and T (x, X) = T ({x}, X) for any x ∈ X .
The symbol I (II) stands for the first (second) player in a topological game.

The phrase “the player I (II) picks a point xn ∈ X” (an open Un ⊂ X) is
encoded by I → xn ∈ X (or II → Un ∈ T (X) respectively). The end of a proof
of a statement will be denoted by �. If a substatement is proved inside a proof of
some statement (which is not proved yet) we will use the symbol �. For a space
X and A ⊂ X we denote by A the closure of A in X . If it might not be clear in
which space the closure is taken, then we write clX (A) for the closure of A in X .
If we have a function f , then its domain is denoted by dom (f) and ran (f) =

f(dom (f)).
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A map f : X → Y is called d-open, if for every U ∈ T (X) there is a V ∈ T (Y )

such that f(U) ⊂ V ⊂ f(U). The symbol � stands for the power (as well as
for the cardinal number) equal to continuum. If f : X → Y is a map, then

f#(A) = Y \f(X\A) is the small image of A for every A ⊂ X . A cardinal number
τ is identified with the smallest ordinal number having power τ . If X =

∏
{Xα :

α ∈ τ} and Y ⊂ X , then for T ⊂ τ the map πT : X → XT =
∏
{Xα : α ∈ T }

is the natural projection and YT = πT (Y ) ⊂ XT . If T = {α}, then we write πα

instead of πT . Also, if S ⊂ T ⊂ τ , then πT
S : YT → YS is the natural projection.

A Luzin space (or a Luzin set) is an uncountable space with all its nowhere dense
subsets countable.
All other notions are standard and can be found in [6].

2. The games θ and Ω. Basic properties and relevant classes of spaces

To make this paper readable for a non-specialist in topological games we will
start with definitions.

2.1 Definition. Given a space X we say that the game θ (or Ω) is played on X
if and only if

(0) there are two players called I and II who make moves enumerated by
natural numbers;

(1) for every n ∈ ω the n-th move is made first by I and then by II;
(2) the n-th move for I consists in choosing an xn ∈ X while II responds with
a Un ∈ T (X) such that xn ∈ Un (or xn ∈ Un respectively);

(3) after all moves have been made, the player I is announced to be the winner
if ∪{Un : n ∈ ω} is dense in X ;

(4) if ∪{Un : n ∈ ω} is not dense in X , then II wins the play {(xn, Un) : n ∈
ω}.

2.2 Definition. We say that s is a strategy for the player I in θ (or in Ω respec-
tively) on a space X if

(1) s is a function with ran(s) ⊂ X and ∅ ∈ dom(s);
(2) ξ ∈ dom(s)\{∅} if and only if there is an n ∈ ω such that ξ = (U0, . . . , Un),
where x0 = s(∅) ∈ U0 ∈ T (x0, X) (or U0 ∈ T (X) and x0 ∈ U0 respec-
tively), x1 = s(U0) ∈ U1 ∈ T (x1, X) (or U1 ∈ T (X) and x1 ∈ U1 respec-
tively), . . . , xn = s(U0, . . . , Un−1) ∈ Un ∈ T (xn, X) (or Un ∈ T (X) and
xn ∈ Un respectively). Such (U0, . . . , Un) as in (2) are called admissible
for s or s-admissible. It is clear from the definition, that if (U0, . . . , Un)
is s-admissible, then for every k 6 n the (k+1)-tuple (U0, . . . , Uk) is also
admissible for s.

2.3 Definition. A function t is called a strategy for the player II in θ (or in Ω)

on X if t : ∪{Xn : n ∈ ω} → T ∗(X) and t(x0, . . . , xn) ∋ xn (or t(x0, . . . , xn) ∋ xn

respectively) for all n ∈ ω.

2.4 Definition. If s is a strategy for the first (or for the second) player on
a space X , then we say that it is used by I (or by II respectively) in a play
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P = {(xn, Un) : n ∈ ω} if x0 = s(∅), xn+1 = s(U0, . . . , Un) (or Un = s(x0, . . . , xn)
respectively) for all n > 0. The strategy s is called winning or WS for the player
I (or II) on X if I (or II respectively) wins every play on X in which he (or she)
uses the strategy s. A game is determined on a space X if one of the players has
a winning strategy on X (in this game).

2.5 Definition. A space X is called θ-separable (or Ω-separable) if the first
player has a WS on X in θ (or Ω respectively). A space X is θ-antiseparable
(Ω-antiseparable) if the second player has a winning strategy on X in θ (or Ω
respectively).

Now that the reader has been bored enough with definitions, we set to prove the
simplest facts about θ- and Ω-(anti)separability.

2.6 Proposition. (i) If a space X is Ω-separable, then it is θ-separable;
(ii) if a space X is θ-antiseparable, then it is Ω-antiseparable;
(iii) if X is a space and Y is θ-separable (Ω-separable) and dense in X then X

is θ-separable (Ω-separable);
(iv) if X is θ-antiseparable (Ω-antiseparable) and Y is dense in X then Y is

θ-antiseparable (Ω-antiseparable);
(v) if X is θ-separable and U ∈ T ∗(X) then U is θ-separable;
(vi) if X is Ω-separable and U ∈ T (X) then X\U and U are Ω-separable;
(vii) a continuous image of a θ-separable space is θ-separable;
(viii) a d-open continuous image of an Ω-separable space is Ω-separable;
(ix) if X can be mapped continuously onto a θ-antiseparable space, then X is

itself θ-antiseparable;
(x) if X can be d-openly and continuously mapped onto an Ω-antiseparable
space, then X is Ω-antiseparable;

(xi) if a space X is θ-separable (or Ω-separable), then it is weakly Lindelöf and
in particular, every discrete γ ∈ T ∗(X) is countable;

(xii) if X =
⊕

{Xn : n ∈ ω} and each Xn is θ-separable (respectively Ω-
separable), then X itself is θ-separable (respectively Ω-separable).

Proof: As (i) and (ii) are clear, let us start with (iii). Take a winning strategy
s on Y . Let s1(∅) = s(∅) = x0. If moves (x0, U0), . . . , (xn, Un) are made, then let

s1(U0, . . . , Un) = s(U0 ∩ Y, . . . , Un ∩ Y ).

Then s1 is a WS on X and (iii) is done. �
To prove (iv) take any strategy s for the second player on X (in θ or Ω). If
I → y0 ∈ Y (recall that this means that I picked a point y0 ∈ Y ) then let
U0 = s(y0) and s1(y0) = V0 = U0 ∩ Y . After n moves we will have the points
y0, . . . , yn−1 ∈ Y and the sets V0, . . . , Vn−1; U0, . . . , Un−1 with Vi = Ui ∩ Y ,
i = 0, . . . , (n − 1). If I→ yn ∈ Y , then let

Un = s(y0, . . . , yn) and s1(y0, . . . , yn) = Un ∩ Y.

The strategy s1 is a winning one for II on Y so we proved (iv). �
To prove (v) and (vi) we need the following
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2.7 Lemma. Let X be a θ-separable (Ω-separable) space. Then I has a winning
strategy δ on X for θ (for Ω respectively) such that for every n ∈ ω and for any
(U0, . . . , Un) ∈ dom(δ) we have

(∗) δ(U0, . . . , Un) /∈ U0 ∪ · · · ∪ Un if U0 ∪ · · · ∪ Un 6= X ,

(or we have

(∗∗) δ(U0, . . . , Un) /∈ U0 ∪ · · · ∪ Un if U0 ∪ · · · ∪ Un 6= X ,

respectively).

Proof of the lemma: Let s be a WS for the player I on X in θ (or Ω). We
are going to construct a winning strategy δ, satisfying (∗) (or (∗∗) respectively).
Without loss of generality we may define δ only for those (n + 1)-tuples ξ =
(U0, . . . , Un) whose union is not dense in X , for if a “bad” ξ occurs for some n,
then II loses the play at the n-th move and δ may be defined arbitrarily for all
subsequent moves.
Let δ(∅) = s(∅) = x0. If the answer of II is U0, then let

V0 = U0, and k0 = max{p : ( V0, . . . , V0
︸ ︷︷ ︸

(p+1) times

) ∈ dom(s)}.

The defining set for maximum is non-empty, because (V0) ∈ dom(s), and the
maximum exists for otherwise we would have a play {(xn, V0) : n ∈ ω} in which
I uses s and loses.
Now if we put x1 = δ(U0) = s( V0, . . . , V0

︸ ︷︷ ︸

(k0+1) times

), then x1 /∈ U0 (or respectively

x1 /∈ U0), because otherwise ( V0, . . . , V0
︸ ︷︷ ︸

(k0+2) times

) ∈ dom(s) contradicting the choice

of k0.
Now suppose that we defined δ for an n-tuple (U0, . . . , Un−1) in such a way
that we have the sets V0, . . . , Vn−1 and integers k0, . . . , kn−1 with the following
properties:

(1) V0 = U0, Vk+1 = Vk ∪ Uk+1 for k = 0, . . . , (n − 2);

(2) km is maximal among the integers q for which

ξm,q = ( V0, . . . , V0
︸ ︷︷ ︸

(k0+1) times

, . . . , Vm−1, . . . , Vm−1
︸ ︷︷ ︸

(km−1+1) times

, Vm, . . . , Vm
︸ ︷︷ ︸

(q+1) times

) ∈ dom(s).

(3) xm = δ(U0, . . . , Um) = s(ξm,km
) for all m = 1, . . . , (n − 1).

Suppose that II→ Un. Define the set Vn to be Vn−1 ∪ Un and let

kn = max{q ∈ ω : ξn,q = ( V0, . . . , V0
︸ ︷︷ ︸

(k0+1) times

, . . . , Vn−1, . . . , Vn−1
︸ ︷︷ ︸

(kn−1+1) times

, Vn, . . . , Vn
︸ ︷︷ ︸

(q+1) times

) ∈ dom(s)}.

It is easy to see that kn is correctly defined and we can put δ(U0, . . . , Un) =
s(ξn,kn

). It immediately follows from the definition of δ, that it has (∗) (or
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(∗∗) respectively). Now the strategy δ is a winning one because for every play
P = {(xn, Un) : n ∈ ω} in which I uses δ, there is a play Q = {(xn, Wn) : n ∈ ω}
such that I uses s in Q and ∪{Un : n ∈ ω} = ∪{Wn : n ∈ ω}. The strategy s being
winning we have U = ∪{Un : n ∈ ω} is dense in X because U = ∪{Wn : n ∈ ω}.
Thus δ is a WS. �
Returning to the proof of (v) (or (vi) respectively) let us take any U ∈ T (X).
Suppose that s is a winning strategy on X in θ (or Ω respectively) having (∗)
(or (∗∗) respectively). To construct a WS δ on U (or on X\U respectively) let
x0 = s(∅). There are two possibilities: x0 ∈ U (or x0 ∈ X\U respectively) or
x0 /∈ U (or x0 ∈ U respectively).

1) If x0 ∈ U (or x0 ∈ X\U respectively), then let δ(∅) = x0 and if moves
x0, U0, . . . , xn, Un are made, then the (n + 1)-tuple ξ = (V0, . . . , Vn) is in the
domain of s, where Vi = Ui ∪ (X\U) (or Vi = Ui ∪ U respectively). It is clear,
that xn+1 = s(ξ) ∈ U (or xn+1 = s(ξ) ∈ X\U respectively) and if 1) takes place,
we have our strategy δ constructed.

2) If x0 /∈ U (or x0 /∈ X\U respectively), then let V0 = X\U (or V0 = U
respectively). The strategy s has (∗) (or (∗∗) respectively), so y0 = s(V0) has to
belong to U (or X\U respectively). Let δ(∅) = y0 and repeat the construction of
δ we carried out in 1). This completes the construction of the strategy δ.

To see that δ is a WS, note that ∪{Un : n ∈ ω} is dense in U (or X\U respec-
tively) if and only if ∪{Vn : n ∈ ω} is dense in X which is true, because s is a WS.
Therefore we proved (v) and the first part of (vi).
Now to establish that U is Ω-separable in case when so is X , observe that

X\X\U is dense in U and it suffices to apply (iii) and the proved part of (vi). �
Now let f : X → Y be a continuous (d-open) onto map. If s is a WS for I on X
in θ (or Ω respectively) then let x0 = s(∅) and s̃(∅) = f(x0) = y0.
For every n ∈ ω if ξ = (V0, . . . , Vn) ∈ dom(s̃), then let

s̃(ξ) = f(s(f−1(V0), . . . , f
−1(Vn))).

It is clear that
(f−1(V0), . . . , f

−1(Vn)) ∈ dom(s)

(by d-openness of f) so the strategy s̃ is well defined. Evidently, s̃ is a WS on Y
for θ (resp. Ω) so we finished with (vii) and (viii). �
To prove (ix) and (x) take a WS s for II on Y in θ (or Ω respectively). If
I → x0 ∈ X then let y0 = f(x0) and s̃(x0) = f−1(s(y0)). If we defined s̃ for all
(n − 1)-tuples and ξ = (x0, . . . , xn−1, xn) then let

Un = s̃(ξ) = f−1(s(f(x0), . . . , f(xn−1), f(xn))).

The strategy s̃ is well defined because xn ∈ Un (or xn ∈ Un by d-openness of f)
by inductive hypothesis. It is straightforward that s̃ is a winning strategy, so (ix)
and (x) are proved. �
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Assume that X is θ-separable. If X is not weakly Lindelöf, then there is an open
cover γ of X such that for every countable γ1 ⊂ γ the set ∪γ1 is not dense in
X . Now II has the following winning strategy: if I → xn, then II → Un, where
Un is any element of γ, containing xn. This gives a contradiction, so that (xi) is
proved. �
Finally, let Xn have a winning strategy sn for I in θ (or Ω respectively). There
exists a bijection b : ω\{0} → ω × ω such that

1) n > m+ k as soon as b(n) = (m, k);

2) if b(n) = (m, k) and l < k, then b−1((m, l)) < n.

We are going to construct a winning strategy s on X for the first player and the
relevant game.
Let s(∅) = x0 = s0(∅). Observe that without loss of generality we may define s
only on n-tuples (U0, . . . , Un) such that Ui ⊂ Xp(i) for all i = 0, . . . , n. Take any

(U0, . . . , Un) ∈ dom(s) and let b(n) = (m, k). If k = 0, then let s(U0, . . . , Un) =
sm(∅). If k > 0, then by the choice of b we have (Ui0 , . . . , Uik−1) ∈ dom(sm)

for some i0, . . . , ik−1 ⊂ {0, . . . , n}. Let s(U0, . . . , Un) = sm(Ui0 , . . . , Uik−1). The
strategy s being constructed let us check that it is a WS. Indeed, if in a play
P = {(xn, Un) : n ∈ ω} the first player used s, then for every m ∈ ω there is
a subsequence Pm = {(xi(j,m), Ui(j,m)) : j ∈ ω} of P which is a play on Xm with

I using sm. Hence U = ∪{Un : n ∈ ω} intersects every Xm in a dense set, so U
is dense in X and we proved (xii). �
2.8 Remarks to some clauses of 2.6. (i) We could have put 2.6 (i) in a formally
stronger way saying that any WS for I in Ω is also a winning strategy for I in θ.
Another observation to this clause is that a θ-separable space X need not be
Ω-separable. The simplest example of such X is the one point compactification
of a discrete space of power ω1. The space X is θ-separable because I can choose
the unique non-isolated point x0 of X as his (or her) first move. If II answers
with a U0, then the set X\U0 is finite so I wins after a finite number of moves.
The space X is not Ω-separable (and is in fact Ω-antiseparable) for a winning
strategy for II on X in Ω could be described as follows: after any move xn of the
first player II picks a countable Un ∈ T (X) with xn ∈ Un. After ω moves there
will be an isolated point outside ∪{Un : n ∈ ω} so II wins using this strategy;

(ii) a little bit stronger (but still trivial) version of 2.6 (ii) could be stated as
follows: any winning strategy for the second player in θ is also a WS for II in Ω.
The same X as in (i) is an example of an Ω-antiseparable space which is not
θ-antiseparable;

(iii) if a space X is θ-separable and Y is dense in X then Y need not be θ-
separable — the example is still the same X from (i). Indeed, X is θ-separable,
but has a dense uncountable discrete subspace which is not θ-separable by 2.6 (xi);

(iv) the space X from (i) has a dense θ-antiseparable subspace but is not θ-
antiseparable;
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(v)–(vi) the Tychonoff cube I� is separable and hence Ω-separable but it contains
a closed subset Y homeomorphic to βω\ω, which is not θ-separable, because II
has the following WS on Y : at every move he (or she) chooses a clopen set so as
to guarantee that the (finite) union of already chosen sets is not equal to Y . It is
clear that it is possible to stick to it and this strategy will be winning, because
any non-empty Gδ in Y has a non-empty interior. This proves that neither θ- nor
Ω-separability are hereditary with respect to arbitrary closed sets. A space Y can
be θ-separable with θ-antiseparable subset Y \U for some U ∈ T (Y ). Indeed, if
X is the space from (i) then let Y be a space obtained by identifying non-isolated
points in X

⊕
X . If U is any infinite set of isolated points of Y lying in one

of the copies of X in X
⊕

X , then Y \U is not weakly Lindelöf and hence not
θ-separable by 2.6 (xi);

(xi) we have in fact proved a stronger version of 2.6 (xi), namely: if a space is
not weakly Lindelöf then it is θ-antiseparable.

2.9 Corollary.

(i) If a space X is a countable union of its θ-separable subspaces, then X is
θ-separable.

(ii) if X is a space and X = ∪{Xi : i ∈ ω}, where Xi is Ω-separable and
Xi ⊂ IntX(Xi) for all i ∈ ω (in particular, if Xi is open in X for all i ∈ ω)
then X is Ω-separable.

Proof: To prove (i), use 2.6 (vii) and 2.6 (xii). If all Xi’s are as in (ii) it is easy
to see that the natural map u :

⊕
{Xi : i ≤} → X is d-open so all there is to do

is to use 2.6 (xii) and 2.6 (viii). �
2.10 Definition. Given a space X and x ∈ X we say that ∆πχ(x, X) 6 ω if
there exists a countable π-base B at x in X such that x ∈ Un for all n ∈ ω.
Such a π-base is called ∆π-base at x in X .

2.11 Theorem. (i) A first countable θ-separable space is separable;

(ii) if ∆πχ(x, X) 6 ω for every x ∈ X and X is Ω-separable, then it is separable.

Proof: We are going to prove (i) and (ii) simultaneously. For every x ∈ X let
Bx = {Ux

n : n ∈ ω} be a (∆π-)base at x in X . Let s be a winning strategy for the
first player in θ (or Ω respectively) on X . Let y = s(∅) and y(n0) = s(Uy

n0) for all

n0 ∈ ω. Suppose that for all k < m and for any (k+1)-tuple (n0, . . . , nk) ∈ ωk+1

we have a point y(n0, . . . , nk) ∈ X . Fix an (m + 1)-tuple (n0, . . . , nm) ∈ ωm+1

and let
y(n0, . . . , nm) = s(Uy

n0 , U
y(n0)
n1 , . . . , U

y(n0,...,nm−1)
nm

).

Thus we have a countable set Y = {y} ∪ {y(n0, . . . , nm) : (n0, . . . , nm) ∈
ωm+1, m ∈ ω}. We claim that Y is dense in X .
Indeed, if there is a U ∈ T ∗(X) with U ∩Y = ∅, then y /∈ U so there is an n0 ∈ ω

with U
y
n0 ∩U = ∅. If we have n0, . . . , nk ∈ ω such that U

y(n0,...,ni)
ni+1

∩U = ∅ for all
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i 6 (k−1), then y(n0, . . . , nk) /∈ U so there is an nk+1 ∈ ω with U
y(n0,...,nk)
nk+1

∩U =
∅.
Having got the sequence (n0, n1, . . . ) let x0 = y, xk+1 = y(n0, . . . , nk) and

Uk = Uxk
nk+1

for k ∈ ω. Then the play {(xk, Uk) : k ∈ ω} is played by I with the
use of s. However W = ∪{Un : n ∈ ω} is not dense in X because W ∩ U = ∅,
which is a contradiction. �
2.12 Corollary. If a space X is Ω-separable and every x ∈ X is a limit of
a sequence of non-empty open subsets of X then X is separable.

Proof: Recall that a sequence S = {Un : n ∈ ω} converges to a point x ∈ X if
every U ∈ T (x, X) contains all but finitely many elements of S. It is clear that if
S converges to x, then B = {∪{Uk : k > n} : n ∈ ω} is a ∆π-base at x so we may
apply 2.11 (ii). �
2.13 Corollary. Within the class of first countable spaces, θ-separability and
Ω-separability coincide with separability.

2.14 Corollary. A metric space is θ-separable iff it is Ω-separable iff it is sepa-
rable.

2.15 Corollary. Both games θ and Ω are determined on the class of all metric
spaces.

Proof: We need to prove only that on a non-separable metric space, II has
a winning strategy in θ (which of course will be a WS in Ω). If M is metrizable
and non-separable then it is not weakly Lindelöf. Now use 2.8 (xi). �
2.16 Corollary. IfX is an Ω-separable Eberlein compact space, then it is metriz-
able.

Proof: Every x ∈ X is a limit of a sequence of non-empty open subsets of X [14].
Therefore X is separable by 2.12 and metrizable because any separable Eberlein
compact space is metrizable [9]. �
2.17 Proposition. Let f : X → Y be a closed surjective irreducible map. Then

(i) If Y is Ω-separable, then so is X ;

(ii) if X is Ω-antiseparable, then so is Y .

Proof: (i) Let s be a winning strategy for the first player on Y (in the game Ω).
Let y0 = s(∅). Pick any x0 ∈ f−1(y0) and put t(∅) = x0. Suppose that for all k 6

n we have defined the strategy t for all t-admissible k-tuples ξ = (U0, . . . , Uk−1) in

such a way that π = (f#(U0), . . . , f
#(Uk−1)) is s-admissible and s(π) = f(t(ξ)).

Let t(ξ) = xn and t(π) = yn. We know that yn = f(xn). Suppose that II→ Un.

Then yn ∈ f#(Un) because f is irreducible, so that

π̃ = (f#(U0), . . . , f
#(Un)) ∈ dom(s).
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For yn+1 = s(π̃) pick any xn+1 ∈ f−1(yn+1) and put

t(U0, . . . , Un) = xn+1.

The strategy t being defined let us prove that it is a winning strategy. If in
a play P = {(xn, Un) : n ∈ ω} the strategy t has been used, then in the play Q =

{(f(xn), f
#(Un)) : n ∈ ω} the strategy s was applied so that the set ∪{f#(Un) :

n ∈ ω} is dense in Y . Use irreducibility of f once more to assure that ∪{Un : n ∈
ω} is dense in X so we are done.

(ii) Let t be a strategy for the second player on X in Ω. Suppose that for all

l < n we defined a strategy s on Y for all (l + 1)-tuples ξ = (y0, . . . , yl) ∈ Y l+1

in such a way that for every such ξ there are x0, . . . , xl with f(xi) = yi, i =
0, . . . , l. If we have an (n + 1)-tuple π = (y0, . . . , yn−1, yn) and corresponding
points x0, . . . , xn−1, then pick any xn ∈ f−1(yn) and let

s(y0, . . . , yn) = f#(t(x0, . . . , xn)).

The strategy s being defined let us prove that it is a winning strategy. If in
a play P = {(yn, Vn) : n ∈ ω} the strategy s has been used, then there is a play
Q = {(xn, Un) : n ∈ ω} in which the strategy t was applied and such that

Vn = f#(Un) for each n ∈ ω. The set ∪{Un : n ∈ ω} is dense in X because t is
a WS. Therefore ∪{Vn : n ∈ ω} is dense in Y so we are done. �
2.18 Theorem. If a space X is Ω-separable, then c(X) = ω, i.e. X has the
Souslin property.

Proof: The space βX is Ω-separable by 2.6 (iii). Therefore the absolute Z of the
space βX is also Ω-separable by 2.17 and c(Z) = c(X). The space Z is extremally
disconnected, so if c(Z) > ω, then there is a disjoint family γ = {Uα : α ∈ ω1} ⊂
T ∗(Z) such that Uα is a clopen set for all α < ω1.
Let Z1 = ∪γ. Then Z1 is an extremally disconnected compact space which is
also Ω-separable by 2.6 (vi) and hence θ-separable. The set U = ∪γ is dense in
Z1 so Z1 = βU .
Let D = D0 ∪ D1 be the Alexandroff duplicate of the unit segment I = [0, 1],
where D0 is (as a subspace) homeomorphic to I and all points of D1 are isolated.
Let E = {eα : α ∈ ω1} ⊂ D1 be such that its copy in D0 is dense in D0 and
eα 6= eβ for different α and β. The space Y = D0 ∪ E is a first countable
non-separable compact space.
The map g : U1 → Y defined by g(Uα) = {eα} is continuous so there is a con-
tinuous h : Z1 → Y with h ↾ U = g. But then g(Z1) = Y which is impossible by
2.11 (i), because Z1 is θ-separable and Y is not. This contradiction proves that
c(Z) = c(X) 6 ω. �
2.19 Remark. Closed irreducible preimages do not preserve θ-separability. In-
deed, let X be any θ-separable space with c(X) > ω, e.g. the space from 2.8 (i).
If its absolute Y were θ-separable, then it would be Ω-separable, because these
notions are clearly the same for extremally disconnected spaces. But this is a con-
tradiction with 2.18 for c(Y ) = c(X) > ω.
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2.20 Definition. From this moment on the letter b is reserved for a bijection
from ω\{0} to ω × ω such that

(1) if b(n) = (m, k), then n > m+ k;

(2) if b(n) = (m, k) and l < k, then b−1((m, l)) < n.

It is clear that such a bijection exists.

2.21 Theorem. Let Xα be a separable space for all α < τ . Let Y be a dense
subset of X =

∏
{Xα : α ∈ τ} such that there is a retraction r : Y → Z and for

any countable T ⊂ τ the set ZT = πT (Z) ⊂ XT =
∏
{Xα : α ∈ T } is separable.

Then Z is Ω-separable.

Proof: We are going to define a winning strategy s for the first player on Z. Let
s(∅) = z0, where the point z0 ∈ Z is chosen arbitrarily. Suppose that for every
l 6 n we have defined the strategy s for all s-admissible l-tuples ξ = (U0, . . . , Ul−1)
in such a way that for each ξ as above we have sets Ti and Zi, (i 6 (l − 1)) with
the following properties:

(1) T0 ⊂ T1 ⊂ . . . ⊂ Tl−1 ⊂ τ and |Tl−1| 6 ω;

(2) Zi = {zi
k : k ∈ ω} ⊂ Z and πTi

(Zi) is dense in πTi
(Z) for all i 6 (l − 1);

Let zn = s(U0, . . . , Un−1). If II → Un, then the set clX (r
−1(Un)) depends on

countably many coordinates so let Tn be the relevant countable set containing
Tn−1. The set ZTn

is separable, so there is a Zn = {zn
l : l ∈ ω} ⊂ Z such that

πTn
(Zn) is dense in ZTn

. Let b(n) = (m, k), where b is the function defined in

2.20. We have to define zn+1 = s(U0, . . . , Un). Let zn+1 = zk
m.

Our inductive construction is accomplished, so we have a strategy s for the first
player on Z. Let us prove that s is a WS.
For any play P = {(zn, Un) : n ∈ ω} we have defined the sets Tn and Zn. Let

T = ∪{Tn : n ∈ ω}. Fix an O ∈ T ∗(Z). We may assume that O = V ∩Z where V
is open in X , depends on finitely many coordinates and V ∩ Y ⊂ r−1(O). Let B
be the (finite) set of coordinates the set V depends on. Then B = B0∪B1, where
B0 = B ∩ T , B1 = B\B0. There is a k ∈ ω such that B0 ⊂ Tk. The set πTk

(Zk)

is dense in πTk
(Z) so πTk

(zk
m) ∈ πTk

(V ) for some m ∈ ω. Now (m, k) = b(n) for

some n > 0 so that zk
m ∈ clZ(Un) and zk

m ∈ clX(r
−1(Un)).

We claim that Un ∩ O 6= ∅. Indeed, it suffices to show that r−1(Un) ∩ V 6= ∅.
If, on the contrary, r−1(Un) ∩ V = ∅, then F ∩ V = ∅, where F = clX(r

−1(Un)).

Therefore FB ∩ VB = ∅. But (πB
B0
)−1(FB0) = FB so that FB0 ∩ VB0 = ∅. As

zk
m ∈ F we have πB0(z

k
m) ∈ FB0 ∩ VB0 , because πTk

(zk
m) ∈ πTk

(V ) and B0 ⊂ Tk.
The obtained contradiction proves our theorem. �
2.22 Corollary. If Xα is a separable space for every α ∈ τ then X =

∏
{Xα :

α ∈ τ} is Ω-separable (and hence θ-separable).

2.23 Corollary. If every Xα has a countable network for all α ∈ τ then any
dense subset of X =

∏
{Xα : α ∈ τ} is Ω-separable (and hence θ-separable).
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2.24 Corollary. Every dyadic space is θ-separable.

The author did not succeed to clarify whether or not every dyadic space is Ω-
separable. However in case of Dugundji compact spaces this is true. Recall that
a compact space X is Dugundji if for every zero-dimensional compact space Y
and for every continuous map f defined on a closed subset of Y the map f has
continuous extension f1 : Y → X . It is well known that any Dugundji compact
space is dyadic [16].

2.25 Corollary. Any Dugundji compact space X is Ω-separable.

Proof: Use V.V.Uspenskii’s characterization [20] of Dugundji compact spaces:

a compact space X is Dugundji iff X is a retract of some dense subset of Iw(X).
Now use Theorem 2.21. �
2.26 Corollary. Any compact topological group is Ω-separable.

Proof: Any compact topological group is a Dugundji space [16]. Now use 2.25.�
The following two results are concerned with hereditary θ- and Ω-separability.
These properties are very close to hereditary separability, because they imply
countable spread (≡ all discrete subspaces are countable). However, at least
under continuum hypothesis hereditary separability and hereditary Ω-separability
do not coincide.

2.27 Example. If the continuum hypothesis (CH) holds then there is a heredi-
tarily Ω-separable space X which is not hereditarily separable.

Proof: Let Σ = {x ∈ 2ω1 : x(α) 6= 0 only for countably many α ∈ ω1}. It is
known [1] that under CH the space Σ contains a dense Luzin subspace X , where
“Luzin” means all nowhere dense subsets of X are countable. Let us prove that
X is hereditarily Ω-separable.
Take any Y ⊂ X . If Y is countable, then everything is clear. Otherwise let

V = IntXclXY . The set Y \V is nowhere dense in Y and thus countable, because
X is a Luzin space. The set Y ∩ V is dense in an open subset of X and hence in
an open subset U of 2ω1 . Let γ = {Un : n ∈ ω} be a disjoint family of standard

open subsets of 2ω1 with ∪{Un : n ∈ ω} ⊂ U ⊂ ∪{Un : n ∈ ω}. Every Un is
homeomorphic to 2ω1 so Vn = V ∩Un can be densely embedded in 2

ω1 . Therefore
Vn is Ω-separable by 2.23. The set V contains a dense subset homeomorphic to
⊕

{Vn : n ∈ ω} so that V is Ω-separable by 2.6 (xii). Hence Y is Ω-separable. �
In case X is compact the situation is different.

2.28 Theorem. If X is a compact hereditarily θ-separable space, then X is
hereditarily separable.

Proof: We need the following lemma which seems to be of interest in itself.
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2.28 Lemma. A hereditarily θ-separable Corson compact space is metrizable.

Proof: If Y is a Corson compact space, then Y has a dense subset Z with
χ(Z) 6 ω [3]. By assumption of the lemma the space Z is θ-separable and hence
separable by 2.11 (i). Consequently Y is separable. But any separable Corson
compact space is metrizable [9]. �
Now let X be a compact hereditarily θ-separable space. Then t(X) 6 ω because

s(X) 6 ω [2]. Therefore X can be continuously and irreducibly mapped onto
a Corson compact space Y [15]. We know that Y is separable by 2.28, so that X
itself is separable. The same reasoning proves that each closed subspace of X is
separable. Hence X is hereditarily separable [3]. �
3. Some game-theoretical results on θ and Ω

Quite a few topological games have been introduced and studied in the last
twenty years (see [8], [10], [12], [13] and [21] for the games different from the point-
open one). Usually, the main question about every game under consideration was
whether it was determined or not, and if it was not then what were some good
classes of spaces it is determined on. So far we have only proved (see 2.15) that
θ and Ω are determined on the class of metric spaces. R. Telgársky has shown in
ZFC that the point-open game was not determined on the class of Lindelöf P -
spaces. Assuming Martin’s axiom F. Galvin showed that there are undetermined
subsets of the real line for the point open game. R. Telgársky proved [17] that
the point open game is determined on the class of countably compact spaces. In
this section we are going to prove that there are compact spaces on which neither
θ nor Ω are determined. We also introduce some games equivalent to θ and Ω.

3.1 Definition. We say that the game θ∗ (or Ω∗ respectively) is played on X
if two players called I∗ and II∗ take turns playing. At the n-th move I∗ chooses
a family γn ⊂ T (X) such that ∪γn = X (or ∪{U : U ∈ γn} = X respectively)
and II∗ picks a Un ∈ γn. After ω moves the play stops and II∗ is announced to
be the winner in the play P = {(γn, Un) : n ∈ ω} if ∪{Un : n ∈ ω} is dense in X .
Otherwise I∗ wins.

In what follows we are going to use the notion of winning strategy for one of the
players in θ∗ (or Ω∗) without giving definitions. An interested reader can easily
restore them repeating the reasoning in 2.1–2.5.

3.2 Definition. If X is a space, then a family γ ∈ T (X) is called a weak cover
of X if ∪{U : U ∈ γ} = X .

The following theorem explains why we used the letters θ and Ω for defining the
games in 3.1.

3.3 Theorem. The game θ∗ (or Ω∗ respectively) is equivalent to the game θ (or
Ω respectively) i.e. for any space X :

(1) the player I∗ has a winning strategy in θ∗ (or Ω∗ respectively) on the space
X iff II has a winning strategy in θ (or Ω respectively) on the space X ;
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(2) the player II∗ has a winning strategy in θ∗ (or Ω∗ respectively) on the
space X iff I has a winning strategy in θ (or Ω respectively) on the space
X .

Proof: The proof we give here is obtained by making obvious changes in F. Gal-
vin’s proof of an analogous theorem for the point-open game [7, Theorem 1].
That’s why it will be pretty concise — with necessary strategies constructed but
without proofs that they are winning.

Let I∗ have a winning strategy s∗ on X in θ∗ (or Ω∗ respectively). We must
construct a winning strategy s for the second player in θ (or Ω respectively) on
X . Let I → x0. We have the cover γ0 = s∗(∅). Choose any U0 ∈ γ0 such that
x0 ∈ U0 (or x0 ∈ U0 respectively). Let s(x0) = U0. If after n moves I → xn

and we have x0, U0, . . . , xn−1, Un−1 and covers γ0, . . . , γn−1 such that Ui ∈ γi

let γn = s∗(U0, . . . , Un−1) and pick a Un ∈ γn with xn ∈ Un (or xn ∈ Un

respectively). Then define s(x0, . . . , xn) to be the set Un. The strategy s thus
constructed is the needed WS.

Now let the second player have a winning strategy s onX in θ (or Ω respectively).
Announce the cover γ0 = {s(x0) : x0 ∈ X} to be s∗(∅). Suppose that for all l < n
we have constructed s∗(ξ) for all s∗-admissible (l + 1)-tuples ξ = (U0, . . . , Ul) in
such a way that for every such ξ we have (x0, . . . , xl) ∈ dom(s). Let (x0, . . . , xn−1)
correspond to (U0, . . . , Un−1) and assume that II∗ has chosen a Un ∈ γn. Let
s∗(U0, . . . , Un) = γn+1 = {s(x0, . . . , xn−1, xn) : xn ∈ X}.
The strategy s∗ is thus constructed and it is a routine to check that it is winning.�
Suppose that II∗ has a winning strategy s∗ on X in θ∗ (or Ω∗ respectively).
Then there is a point x0 ∈ X such that for every U ∈ T (x0, X) (or for every
U ∈ T (X) with x0 ∈ U) there is a (weak) cover γ with U = s∗(γ). Such x0 exists
because otherwise we would have a “bad” open set Ux ∈ T (x, X) for every x ∈ X .
Then γ = {Ux : x ∈ X} is a (weak) cover of X and s∗(γ) = Uy for some y ∈ X
which is a contradiction by “badness” of Uy. Therefore the promised x0 exists so
let s(∅) = x0.

Suppose that for all l < n and s-admissible (l + 1)-tuples ξ = (U0, . . . , Ul) we
defined what s(ξ) is in such a way that for every such ξ there are covers γ0, . . . , γl

with (γ0, . . . , γl) ∈ dom(s∗). Given ξi = (U0, . . . , Ui−1) let xi = s(ξi) for 0 < i <
n. Assume that the second player chose a set Un. There exists a point xn+1 ∈ X
such that for every U ∈ T (xn+1, X) (or for every U ∈ T (X) with xn+1 ∈ U) there
is a (weak) cover γ such that U = s∗(γ0, . . . , γn−1, γ). Such xn+1 exists because
otherwise we would have a “bad” open set Ux ∈ T (x, X) for every x ∈ X . Then
γ = {Ux : x ∈ X} is a (weak) cover of X and s∗(γ0, . . . , γn−1, γ) = Uy for some
y ∈ X which is a contradiction by “badness” of Uy. Therefore the promised xn+1

exists so let s(U0, . . . , Un) = xn+1. This completes the construction of a WS for
I on X in θ (or Ω respectively).

Finally, let I have a winning strategy s on X in θ (or Ω respectively). If I∗ → γ0
then let x0 = s(∅), pick a U0 ∈ γ0 with x0 ∈ U0 (or x0 ∈ U0 respectively) and let
s∗(γ0) = U0.
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If in the process of playing we have γ0, U0, . . . , γn−1, Un−1, γn and x0 =
s(∅), . . . , xn = s(U0, . . . , Un−1), pick an element Un from γn with xn ∈ Un (or
xn ∈ Un respectively) and announce Un to be s∗(γ0, . . . , γn). Thus the winning
strategy s∗ for the second player on X in θ∗ (or Ω∗ respectively) is constructed.�
3.4 Theorem. A space X is θ-antiseparable (or Ω-antiseparable respectively) if
there exist a cardinal number τ and a family Γ = {U(α0, . . . , αn) : αi ∈ τ, i ∈
(n+ 1), n ∈ ω} ⊂ T ∗(X) with the following properties:

(1) {U(α0) : α0 ∈ τ} is a (weak) cover of X ;
(2) if α0, . . . , αn ∈ τ , then Γ(α0, . . . , αn) = {U(α0, . . . , αn, α) : α ∈ τ} is
a (weak) cover of X ;

(3) For any sequence (αi : i ∈ ω) ∈ τω the set ∪{U(α0, . . . , αn) : n ∈ ω} is
not dense in X .

Proof: It is analogous to the proof of Theorem 6.3 in [18] so we will not go into
details. If Γ is a family with (1)-(3) and moves x0, U0, . . . , xn−1, Un−1, xn are
made in such a way that there are α0, . . . , αn−1 ∈ τ with Ui = U(α0, . . . , αi) for
i ∈ n, then take any Un ∈ T (xn, X)∩Γ(α0, . . . , αn−1) (or Un ∈ Γ(α0, . . . , αn−1),
Un ∋ xn respectively) and let s(x0, . . . , xn) = Un. The strategy s thus constructed
is a winning one. �
If a strategy s onX is given, then let Γ = {s(x0, . . . , xn) : xi ∈ X, i ∈ (n+1), n ∈

ω} is as required after an evident identification of X with τ = |X |. �
3.5 Corollary. If X is a Lindelöf space, then it is θ-antiseparable iff there is
a family Γ = {U(k0, . . . , kn) : ki ∈ ω, i ∈ (n+ 1), n ∈ ω} ⊂ T ∗(X) such that

(1) Γ0 = {U(k0) : k0 ∈ ω} is a cover of X ;
(2) Γ(k0, . . . , kn) = {U(k0, . . . , kn, k) : k ∈ ω} is a cover of X for every
(k0, . . . , kn) ∈ ωn+1;

(3) for every sequence (kn : n ∈ ω) ∈ ωω the set ∪{U(k0, . . . , kn) : n ∈ ω} is
not dense in X .

3.6 Corollary. If X is a Ω-antiseparable space with c(X) = ω, then there is
a family Γ = {U(k0, . . . , kn) : ki ∈ ω, i ∈ (n+ 1), n ∈ ω} ⊂ T ∗(X) such that

(1) for the family Γ0 = {U(k0) : k0 ∈ ω} we have ∪Γ = X ;

(2) ∪Γ(k0, . . . , kn) = X , where Γ(k0, . . . , kn) = {U(k0, . . . , kn, k) : k ∈ ω};
(3) for every sequence (kn : n ∈ ω) ∈ ωω the set ∪{U(k0, . . . , kn) : n ∈ ω} is
not dense in X .

3.7 Example. There exists a Lindelöf P -space X on which θ is undetermined,
i.e. neither of players has a WS.

Proof: Let X be the space used by R. Telgársky [18, Theorem 7.1] to prove that
the point-open game is undetermined on X . We do not need to know exactly what
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the structure of X is. It suffices for us to know that X is a Lindelöf P -space which
has a dense set of isolated points with the property that whatever a strategy s of
I is there is a play {(xn, Un) : n ∈ ω} on X (in point-open game, but remember
that θ has the same moves and the same definitions of strategies!) in which I
used s and ∪{Un : n ∈ ω} did not cover an isolated point from X . This of course
means that the first player has no winning strategy on X in θ.
If II had a WS on X in θ, then this strategy would be winning in the point-open
game which is impossible, because the point-open game is undetermined on X
[18]. �
3.8 Theorem. If the continuum hypothesis (≡CH) holds, then for any space X
with c(X) > ω the second player has a winning strategy in Ω on X .

Proof: By 2.17 (ii) and 2.6 (iii) it suffices to prove 3.8 for extremally disconnected
compact spaces. If X is such a space, then pick a disjoint family γ = {Uα : α <
ω1} of non-empty clopen subsets of X . Let D = D0 ∪ D1 be the Alexandroff
duplicate of the unit segment I = [0, 1], whereD0 is (as a subspace) homeomorphic
to I and all points of D1 are isolated. Then D is a first countable non-separable
compact space. Use CH to enumerate all points of D1 with countable ordinals:
D1 = {dα : α < ω1}.
Let Z1 = ∪γ. Then Z1 is an extremally disconnected compact space. The set

U = ∪γ is dense in Z1 so Z1 = βU . The map g : Z1 → D defined by g(Uα) = {dα}
is continuous so there is a continuous h : Z1 → D with h ↾ U = g.
It is clear that if Z1 is θ-antiseparable, then so is X . The space X being ex-
tremally disconnected in this case we will have it Ω-antiseparable, so it suffices
by 2.6 (ix) to prove that D is θ-antiseparable.
To obtain a WS for II in θ on D suppose that I→ xn. Let Un be the copies in

D0 and D1 of the set (xn − 4−n, xn + 4
−n) ∩ I. It is evident that ∪{Un : n ∈ ω}

cannot cover D1 so the strategy thus defined is a winning one for II. �
3.9 Remark. Theorem 3.8 shows that under CH the space X from 3.7 is anti-
separable being an uncountable Lindelöf P -space. It is known that the point-open
game is determined on the class of compact spaces [17]. Although the space X
from 3.7 cannot serve as an example of indeterminacy for both games θ and Ω, we
are going to produce such an example (and even compact one) under the negation
of Souslin hypothesis.

3.10 Example. If a Souslin continuum exists, then both θ and Ω are undeter-
mined on it.

Proof: Let X be a Souslin continuum. Then it is first countable and non-
separable, so I cannot have a WS in θ (and hence in Ω) on X by 2.11.
All there is to do is to prove that II cannot have a WS on X in Ω. If there were
such a strategy then by 3.6 we would have a family Γ = {U(k0, . . . , kn) : ki ∈
ω, i ∈ (n+ 1), n ∈ ω} ⊂ T ∗(X) such that

(1) for the family Γ0 = {U(k0) : k0 ∈ ω} we have ∪Γ = X ;
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(2) ∪Γ(k0, . . . , kn) = X , where Γ(k0, . . . , kn) = {U(k0, . . . , kn, k) : k ∈ ω};

(3) for every sequence (kn : n ∈ ω) ∈ ωω the set ∪{U(k0, . . . , kn) : n ∈ ω} is not
dense in X .
Every element of Γ is a countable disjoint union of intervals. Let S be the
closure of the set of ends of all those intervals. Then S is nowhere dense in X
and X\S = ∪{Wn : n ∈ ω}, where every Wn is an interval.
Now, for every n ∈ ω let II pick some U(k0, . . . , kn) containing some point

xn ∈ Wn. The set U(k0, . . . , kn) must contain Wn, because otherwise some
endpoint of an interval which is clopen in U(k0, . . . , kn) would be inside Wn,
which is impossible. Hence ∪{U(k0, . . . , kn) : n ∈ ω} ⊃ ∪{Wn : n ∈ ω}, so some
∪{U(k0, . . . , kn) : n ∈ ω} is dense in X , which is a contradiction. �
3.11 Example. If Martin’s axiom and the negation of CH hold, then the Alexan-
droff duplicate D of the unit segment I = [0, 1] contains a compact subspace on
which the game θ is not determined.

Proof: Let D = D0 ∪ D1, where D0 and D1 are like in 3.8 and let E be any
subset of D1 of cardinality ω1. The space X = D0 ∪ E is as required.
Indeed, I does not have a WS on X because X is first countable and non-
separable (see 2.11 (i)). Suppose that X is θ-antiseparable. Let Q be the set of
rational points of D0. Fix a family Γ like in 3.5. For any f ∈ ωω let Wf =
∪{U(f(0), . . . , f(n)) : n ∈ ω} and if x ∈ Q ∪ E, then Gx = {f ∈ ωω :Wf ∋ x}.

Assume, that ξ = (m0, . . . , mn) ∈ ωn+1 and let

O(ξ) = {f ∈ ωω : f(i) = mi for all i ∈ n}

be an arbitrary standard open subset of ωω. The family Γ(ξ) is a cover of X so
x ∈ U(m0, . . . , mn, mn+1) for some mn+1 ∈ ω. It is clear that if f(i) = mi for
all i 6 (n+ 1), then Wf ∋ x so that the set Gx is open and intersects any O(ξ).
This implies Gx dense in ωω.
It follows from Martin’s axiom [11, Theorem 2.20] that F = ∩{Gx : x ∈ Q∪E} 6=

∅. Take any f ∈ F . Then the set Wf covers Q∪E and hence is dense in X which
gives a contradiction with 3.5 (3). �
4. Open questions

In this section the author collected most of the problems he was unable to solve
while working on games θ and Ω. The given list shows that there is still a lot to
be done on the topic developed in this paper.

4.1 Question. Let X be Ω-separable and f : X → Y a continuous onto map.
Must then Y be Ω-separable?

4.2 Question. Let X be Ω-separable and f : X → Y a quotient map. Must
then Y be Ω-separable?
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4.3 Question. Let X be Ω-separable and f : X → Y a closed onto map. Must
then Y be Ω-separable?

4.4 Question. Let X be Ω-separable and f : X → Y a perfect onto map. Must
then Y be Ω-separable?

4.5 Question. Let X be Ω-separable and f : X → Y a retraction. Must then Y
be Ω-separable?

4.6 Question. Let X = X1 ∪ X2 and Xi is Ω-separable for i = 1, 2. Is then X
Ω-separable?

4.7 Question. Let X = ∪{Xn : n ∈ ω} and Xi is Ω-separable for all i ∈ ω. Is
then X Ω-separable?

4.8 Question. Is the product of two θ-separable spaces θ-separable?

4.9 Question. Is the product of two Ω-separable spaces Ω-separable?

4.10 Question. Is the product of an Ω-separable space and a separable space
Ω-separable?

4.11 Question. Is any σ-compact topological group Ω-separable?

4.12 Question. Is any Lindelöf-Σ topological group Ω-separable?

4.13 Question. Is any Lindelöf-Σ topological group θ-separable?

4.14 Question. Let X be an Ω-separable space. Must then the Markov free
topological group FM (X) be Ω-separable?

4.15 Question. Is it consistent with ZFC that every hereditarily θ-separable
space is separable?

4.16 Question. Is it consistent with ZFC that every hereditarily Ω-separable
space is separable?

4.17 Question. Is there a hereditarily θ-separable space which is notΩ-separable?

4.18 Question. Is any hereditarily θ-separable Lindelöf Σ-space hereditarily sep-
arable?

4.19 Question. Is any hereditarily Ω-separable Lindelöf Σ-space hereditarily
separable?

4.20 Question. Is there a space X in ZFC on which Ω is undetermined?

4.21 Question. Is there a Lindelöf Σ-space X in ZFC on which θ is undeter-
mined?

4.22 Question. Is there a Lindelöf Σ-space X in ZFC on which Ω is undeter-
mined?

4.23 Question. Is there a compact X in ZFC on which θ is undetermined?
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4.24 Question. Is there a compact X in ZFC on which Ω is undetermined?

4.25 Question. Does c(X) > ω imply in ZFC that X is Ω-antiseparable?

4.26 Question. Is every dyadic compact space Ω-separable?

4.27 Question. Is every Corson compact Ω-separable space metrizable in ZFC?

4.28 Question. Is every Gul’ko compact Ω-separable space metrizable in ZFC?

4.29 Question. Is every Miliutin compact space Ω-separable?

4.30 Question. Is every Ω-separable compact X with t(X) = ω separable in
ZFC?
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