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On the extremality of regular
extensions of contents and measures

WOLFGANG ADAMSKI

Abstract. Let A be an algebra and K a lattice of subsets of a set X. We show that
every content on A that can be approximated by K in the sense of Marczewski has an
extremal extension to a K-regular content on the algebra generated by A and K. Under
an additional assumption, we can also prove the existence of extremal regular measure
extensions.
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1. Introduction

If A, B, are algebras of subsets of some set X with A C B, then Plachky [9]
has shown by a Krein-Milman argument that every (finite) content on A has an
extremal extension to a content on B. In [2], this result has been generalized
in the following way. If K, £ are lattices of subsets of X with L C L, then
every KC-regular content on «(K), the algebra generated by K, has an extremal
extension to an L-regular content on «(L). It is the aim of this note to give the
following further generalization. If 4 is an algebra and IC a lattice of subsets of
X, then every content on A which can be approximated by K in the sense of
Marczewski [7] has an extremal extension to a K-regular content on a(A U K).
Under an additional assumption, we can also prove the existence of extremal
regular measure extensions. Note that extremal measure extensions are considered
always under some additional assumptions ([2]) or for special situations (e.g. if
the target o-algebra is generated from a given one by adjunction of a family which
either consists of pairwise disjoint sets or is well ordered by inclusion [3], [4], [5]),
since, in general, extremal measure extensions do not exist (see [9], [11]).

Now we fix the notation. X will always denote an arbitrary set. Let C be a sub-
set of P(X), the power set of X. We write a(C), o(C) for the algebra, o-algebra
generated by C, respectively. Furthermore, Cs5 denotes the family of all countable
intersections of sets from C. C is said to be semicompact if every countable sub-
family of C having the finite intersection property has nonvoid intersection. C is
called a lattice if @ € C and C is closed under finite unions and finite intersections.
For a lattice C, we denote by F(C) := {F € X : FNC € C for every C € C}
the lattice of so-called “local C-sets”. Obviously, X € F(C) and C C F(C); in
addition, we have C = F(C) iff X € C.
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If D is another subset of P(X), then C is said to be sequentially dominated
by D if whenever (Cy, € C)pen and Cy, | &, there exists a sequence (Dy, € D)pen
such that D,, | @ and Cy, C D,, for all n € N. Note that a semicompact family is
sequentially dominated by any family D with X € D.

By a content (measure) we always understand a [0, oo)-valued, finitely (count-
ably) additive set function defined on an algebra.

Consider a lattice £ C P(X) and a content x on the algebra A C P(X). Under
the assumption K C A, p is called K-regular if u(A) = sup{u(K) : K € K, K C
A} for all A € A. For the following concept going back to Marczewski [7], we will
use the terminology of [8]:

KC is said to y-approximate A if for every A € A and every € > 0, there exist sets
B e Aand K € K such that B C K C A and u(A — B) < € hold. Note that in
case K C A, K p-approximates A iff p is K-regular.

2. The main results

In this section we consider an algebra A and two lattices I, £ of subsets of X
with IC C £ as well as a content p on A such that K p-approximates A.

If B O A is another algebra, then ba(u, B) denotes the family of all contents
on B that extend p. In addition, we define ba(u,B,K) := {v € ba(u,B) : K
v-approximates B} and ca(u, B,K) := {v € ba(u,B,K) : v is a measure}. Note
that ba(u, B), ba(u, B,K) and ca(u, B, K) are convex sets. If D is any of these
sets, then ex D denotes the set of extreme points of D.

Lemma 2.1. Let B O A be another algebra and v € ba(u,B,K). Then v €
exba(u, B, K) iff v € exba(u, B).

PROOF: Assume v € exba(u, B,K) and let v = %(ul + o) with v1,v9 € ba(u, B).
Since %I/i < v and v € ba(u, B, K) we have v; € ba(u,B,K) for i = 1,2. Thus we
infer v1 = vo from the extremality of v. This proves v € exba(u, B). The other
part of the claim is obvious. O

Lemma 2.2. If Q € F(K) — A and B := a(AU{Q}) then exba(u,B,K) # @.
PrROOF: (1) For every E € P(X), we define p*(F) := inf{u(4) : E C A € A}
and p«(E) :=sup{u(A) : E D A € A}. Tt is well known ([6]) that B = {(A1 N
Q)U (A2 —Q): A1, Az € A} and v(B) := pu*(BNQ) + p«(B — Q), B € B, defines
an element v of ba(u, B).

(2) To prove v € ba(u,B,K) let B € B and ¢ > 0 be given. Then B =
(A1 N Q) U (Az — Q) with some A-sets Ay, Ag. Since pux(B — Q) = ux(A2 — Q) =
sup{u(A) : Ae A, A C Ay — Q}, there is an A-set C satisfying C' C A — @Q and
px(B—Q) < u(C)+ 5. In addition, there exist sets Cp € A and K € K such that
Co C Ko C C and u(C) < u(Co)+%. This together yields (B —Q) < pu(Co)+5.
Furthermore, one can choose sets C7; € A and K7 € K such that C; C K1 C A
and pu(A; — C1) < § which implies *((A; N Q) — C1) < p(A1 — C1) < 5 and
hence 1" (A1NQ) < p*((A1NQ) —C1) +p*(A1NQNCY) < p*(C1NQ) + 5. Now
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=(C1NQU(CH—Q)e B, K*:=(K1NQ)UKy € K, B* C K* C B and
v(B) = p*(BNQ)+px(B=Q) < p*(A1NQ)+1(Co)+35 < p*(C10Q)+u(Co)+e =
p(C1N Q)+ ux(Co — Q) + e =v(B*) + . Thus v € ba(y, B, K).

(3) To prove v € exba(u,B,K) it suffices to show v € exba(u,B). For an
arbitrary ¢ > 0, choose A € A such that Q C A and u(A4) < p*(Q) +¢e. Then
VAANQ)=v(A—-Q) =pu(A—-Q) = pu(Ad) — p*(Q) < e. From [9], Theorem 1
and the associated Remark 2, we infer v € exba(u, B). O

If B is an algebra satisfying A UK C B, then ba(u,B,K) is the family of all
K-regular contents on B that extend p. According to [1, Theorem 3.4], u can
be extended to a K-regular content on a(A U F(K)). The following basic result
shows that even an extremal extension exists.

Theorem 2.3. exba(u,a(AUCE),K) # @ for every sublattice € of F(K).

ProOF: (1) Fix some sublattice £ of F(K) and define I' := {(M,p) : M is
a sublattice of £ and ¢ € exba(u, (AU M),K)}. Note that ({@}7/0 eI. We
order the elements of I" in the following way: (M, o) < (M, o) iff M C M’ and
o is an extension of p.

(2) Now we show that I" is inductively ordered. Consider a chain (M, 0;)ier
in I'. Then M := {J;c; M; is a sublattice of £ and a(AUM) = {J;cr a(AUM;).
For C € a(A U M), define o(C) := g;(C) provided that C € a(AU M;). o
is a content on a(A U M) that extends every p;. It is easy to see that o €
ba(u, a( AU M), K).

To prove ¢ € exba(u,a(A U M),K) consider 71,7 € ba(y,a(A U M), K)
with o = %(7'1 + 72). Fix some ig € I and define 7; := 7; | a(A U M;,) for
j =1,2. Then 7j € ba(p,a(AUM;,)), j = 1,2, and g;, = 5(71 + 72). Since
0i, € exba(u,a(AUM,),K), we infer 71 = 75 from 2.1.

Now consider an arbitrary A € a(A U M). Then A € a(A U M;,) for some
ig € I and hence 11(A) = 71(A4) = T2(A) = m2(A). Thus 71 = 7 which proves
0 € exba(y, a(AUM),K).

Consequently, (M;, 0;) < (M, ) €T for all i € I. So T is inductively ordered.

(3) By Zorn’s lemma, there is a maximal element (M, g) in I'. We will show
M = & which implies that g is the desired extremal element of ba(u, a(AUE), K).

Assume that there is a set Q € € — M. Denoting by K the lattice generated
by M U {Q}, we have a(AUK) = a(B U {Q}) with B := a(AU M). Tt follows
Q ¢ B. By 2.2, there exists an element /i € exba(g, a(AU K),K). .

Next we shall prove /i € exba(u, a(AU K), ) which implies (K, /1) € I'. On
the other hand, (./\/l 0) < (K,f1) and M # K which, however, is in contrast to
the maximality of (M, ). )

It is obvious that i € ba(u, a(A U K),K). To prove the extremality of j, let
= 2(#1 + pg) with p1, pg € ba(u, a(AUK), K) and define fi; := p; | a(.AU/K/lV),
i =1,2. For B € B, g(B) = ji(B) = 5(in(B) + fia(B)), i.e. 0 = 5(fi1 + fia).

215



216

W. Adamski

Since g € exba(u, (A U ./\N/l)) by 2.1, we infer iy = fis = 9. Consequently,
g1, 2 € ba(o, a(AUK)). As fi € exba(g, a(AUK)) by 2.1, we obtain pu1 = o
proving fi € exba(u, (AU K), ). O

Corollary 2.4. exba(u,a(AUE), L) # @ for every sublattice £ of F(L).

PrOOF: Since £ C £ and K p-approximates A, so does £. Thus our claim follows
from 2.3 (with £ instead of K). O

In case A = a(K), the assumption that K p-approximates A is equivalent to
K-regularity of u. Thus we obtain from 2.4

Corollary 2.5 ([2, Theorem 2.3]). Every K-regular content on «(K) admits an
extremal extension to an L-regular content on o(L).

Our next result is concerned with the existence of extremal measure extensions.

Theorem 2.6. If i is a measure and K is sequentially dominated by A, then
exca(u,o0(AUE), Ks) # @ for every sublattice £ of F(Kg).

ProOOF: Fix some sublattice £ of F(Ky) and define B := a(AUE). By 2.4,
there exists an element o € exba(u,B,K5). To show the countable additivity
of o, consider a sequence (By) of sets from B with B, | @. For any ¢ > 0
and n € N, choose C,, € B and K,, € K5 such that C,, C K,, C By, and
o(Bp —Cyp) <e-27". Then D, :=(\i_; C; C (L, K; C By, and o(Bp — Dp) <
o(Uy(Bi = Cy) < 3% 10(Bi —C;) < e for n € N. Furthermore, K, :=
N, K; € K5 and K, | @. Since also Ks is sequentially dominated by A, there
is a sequence (A;) of A-sets satisfying A, | @ and K/, C A, for n € N. This
implies 9(Bp) < o((Bn — Dn) U Ap) < 0(Bn — Dp) + 0(4p) < e+ u(Ap) < 2¢ for
all sufficiently large n. Therefore p is a measure.

Denote by p the unique measure extension of p to o(B) = o(AUE). Then
0 € ca(p, o(B),Ks) by [8, (2.10)]. To prove g € exca(u, o(B), Ks) consider g1, 92 €
ca(u, 0(B),Ks) with g = (1 + 02). Let ¢; :== 0; | B for i = 1,2. Then o =
%(91 + 02). As K5 p-approximates B and %gi < o, Ks also g;-approximates B
which implies g; € ba(u, B, Ks) fori = 1,2. Since p € exba(u, B, Kg), we conclude
01 = 02 and hence g1 = 09. O
Corollary 2.7. If K is semicompact, then exca(u,c(AUE),Kg) # & for every
sublattice £ of F(Ks).
PRrROOF: The semicompactness of K implies that both p is a measure and K is
sequentially dominated by .A. Thus the assertion follows from 2.6. O

Under the additional assumption K C A, the previous results can be strength-
ened in the following way, thus obtaining an “extremal version” of the extension
theorem 3.6 of [1].

Theorem 2.8. Assume K C A.

(a) Then exba(u,B,L) # @ for every algebra B satisfying AUL C B C
a(AUF(K)UF(L)).
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(b) If, in addition, p is a measure and L is sequentially dominated by (AU
F(Ks)), then exca(u, B, Ls) # @ for every o-algebra B satisfying AUL C
BCo(AUF(Ks)UF(Ls)).

PROOF: We only prove (b), since the (simpler) proof of (a) can be performed in
the same way.

(1) We first consider the special case B = o(A U F(Ks) U F(Ls)). Define
C =0(AUF(Ks)), and let v be the Ks-regular measure on C extending p that has
been constructed in the proof of [1, 3.6 (b)]. Since L is sequentially dominated
by C, so is L5. In addition, K5 C L5 and B = o(C U F(Ls)). Thus, by 2.6,
there exists an element 7 € exca(v, B, Ls). Clearly 7 € ca(u, B, Ls). To prove
T € exca(u, B, Ls) consider 11,72 € ca(u, B, Ls) with 7 = %(7'1 + 72). Then

(2.1) v(C) < 7(C) for C€C and i=1,2.

Assume that (2.1) fails to be true. Then v(C) > 7;(C) for some C € C and
some i € {1,2}. Thus we can find a Ks-set K satisfying K C C and v(K) > 7;(C).
Choosing a sequence (K;) in K such that K, | K, we obtain the contradiction
inf,, p(Kyp) = infy, v(Kp) = v(K) > 7;,(C) > 7(K) = infy, 7;(Ky) = infy, p(Ky).
Thus (2.1) holds true.

Since also 7(X) = u(X) = v(X) for i = 1,2, we infer from (2.1) 7 | C =
79 | C = v. Thus 11,72 € ca(v, B, Ls) which together with 7 € exca(v, B, L
implies 71 = 72. So T € exca(u, B, Lg).

(2) Now we consider an arbitrary o-algebra B satisfying AU L C B C £ where
€ = o(AUF(Ks) UF(Ls)). By the special case (1), there exists an element
o € exca(u,E,Ls). Then v := o | B € ca(u, B, Ls). To prove v € exca(u, B, L)
consider v1,v9 € ca(u, B, Ls) with v = %(ul + 1v9). For every E € &, o(E) =
sup{o(L) : L € Ls,L C E} =sup{v(L) : L € L5,L C E} = %(sup{ul(L) L e
Ls,L C E} +sup{va(L): L € L5, L C E}) < 1(#1(E) + 1(E)) where 7; denotes
an arbitrary content on £ that extends v;, i = 1,2. It follows ¢ < %(51 +12) as
well as 3 (71 (X) + 72(X)) = $(v1(X) + 12(X)) = u(X) = o(X) which implies

(2.2) 0= %(51 + 13).

From (2.2) we infer both the countable additivity and the Ls-regularity of 7,
i = 1,2. Therefore g € exca(u, &, Ls) and (2.2) imply 77 = Uy and hence v1 = vs.
So v € exca(u, B, Ls). O

An immediate consequence of 2.8 (b) is [2, Theorem 2.4], various applications
of which are gathered in Section 3 of [2].

The assumptions of 2.8 (b) are, in particular, satisfied if the lattice £ is semi-
compact. Thus we obtain
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Corollary 2.9. If £ is semicompact and K C A holds, then exca(u, B, Ls) # &
for every o-algebra B satisfying AU L C B C o(AU F(K5) UF(Ls)).

The following result is an application of 2.9.

Corollary 2.10. Let C, D be lattices of subsets of X such that C C D C F(Cys).
If C is semicompact and A C (D), then every C N A-regular content on A admits
an extremal extension to a Cg-regular measure on o (D).

ProoOF: The claim follows with X =CN A and £ = C from 2.9. O

The assumptions of 2.10 are, in particular, satisfied if C, D are the lattices of
compact, respectively closed, subsets of a Hausdorff topological space. Thus one
obtains from 2.10 an “extremal version” of Henry’s extension theorem (cf. [10,
Theorem 16, p. 51]).

o
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