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A note on intersection dimensions of graph classes

Petr Hliněný, Aleš Kuběna

Abstract. The intersection dimension of a graph G with respect to a class A of graphs is
the minimum k such that G is the intersection of some k graphs on the vertex set V (G)
belonging to A. In this paper we follow [Kratochv́ıl J., Tuza Z.: Intersection dimensions
of graph classes, Graphs and Combinatorics 10 (1994), 159–168 ] and show that for some
pairs of graph classes A, B the intersection dimension of graphs from B with respect to
A is unbounded.
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1. Introduction

In this paper we consider finite undirected graphs without loops or multiple
edges. Classes of graphs are understood to be closed under isomorphism. The
vertex set (edge set) of a graph G is denoted V (G) (E(G)), and we write G =
(V (G), E(G)). Given a set V , we denote byKV the complete graph and byDV the
discrete graph (graph with no edges) on the vertex set V . For some set V , |V | = n,
we also denote by Kn (Dn) the graph KV (DV ). The complement −G of a graph

G is the graph (V (G),
(V
2

)

−E(G)). As the intersection (union) of two graphs G,
H on the same vertex set we understand the graph (V (G) = V (H), E(G)∩E(H))
((V (G) = V (H), E(G) ∪ E(H))). The Zykov sum G ⊕ H of two graphs G, H is
defined as their disjoint union plus all edges between the graphs.
We call a set of vertices U ⊆ V (G) in a graph G independent if there is no

edge between the vertices of U . Similarly we call U ⊆ V (G) a clique if there are
all edges between them in G. A chromatic number of a graph G (denoted by
χ(G)) is the minimum number of colours needed to colour the vertices of G such
that no edge has end vertices of the same colour. It is easy to see that for every
two graphs G, H , χ(G ∪ H) ≤ χ(G) · χ(H) (we colour vertices of G ∪ H by pairs
of colours composed from colours of proper colourings of G and H). A graph of
chromatic number 2 is called bipartite.
Several types of graph dimensions that could be seen as intersection dimensions

with respect to some special graph classes (boxicity as intersection dimension
with respect to interval graphs, circular dimension – circular-arc graphs, overlap
dimension – circle graphs, see [1], [3]) have been previously studied. The notion of
intersection dimension (with respect to graphs having some property) was actually
introduced by Cozzens and Roberts in [2]. We define it in a slightly different way
as in [8]:
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Definition 1.1. Given a class A of graphs and a graph G = (V, E), the intersec-
tion dimension of G with respect to A (otherwise called the A-dimension of G)
is

dimAG = min{ k | ∃E1, . . . , Ek ⊆

(

V (G)

2

)

s.t. (V (G), Ei) ∈ A for each i and E =
k
⋂

i=1

Ei} .

Definition 1.2. Given classes A, B of graphs, the intersection dimension of B
with respect to A (the A-dimension of B ) is

dimAB = sup
G∈B

dimAG

(we write ∞ if the dimension is unbounded).

The intersection graph of some set family M is a graph isomorphic to the
graph, whose vertices are sets fromM and two vertices are adjacent iff these two
sets have nonempty intersection. We define following special classes of graphs:

Definition 1.3. Intervals graphs (denoted by INT) are intersection graphs of
intervals on a line, circular-arc graphs (CA) are intersection graphs of intervals
(arcs) on a circle, circle graphs (CI) are intersection graphs of chords of a circle,
permutation graphs (PER) are intersection graphs of straight line segments with
end points on two parallel lines, line segment graphs (SEG) are intersection graphs
of line segments in the plane, function graphs (FUN) are intersection graphs of
continuous functions on a closed interval, chordal graphs (CHOR) are graphs in
which each cycle of length greater than 3 has a chord, split graphs (SP) are graphs
whose vertices can be divided into a clique and an independent set.

Note that for each above defined class A and any graph G the A-dimension
of G is well defined, because each of these classes contains all complete graphs
and all complete graphs minus an edge. There are some clear inclusions between
them, e.g. INT ⊆ CA, PER ⊆ CI, SP ⊆ CHOR, INT ⊆ CHOR, INT ⊆ SEG,
CI ⊆ SEG. For characterizations of the classes INT, PER and FUN see [4].
We will use here the fact that function graphs are exactly the complements of
comparability graphs. As was proved in [7], for each SEG graph we have line
segment representation where no two segments are parallel.
We include the table of dimensions computed in [8], the number dimAB is

placed in the row A and the column B. We add the class SEG to the table and fill
its known dimensions — the numbers marked by ′ follow from PER ⊆ CI ⊆ SEG,
the one marked by ∗ follow from INT ⊆ SEG and the ones marked by ◦ are

consequences of ∗. The items marked by (1) are proved here in Section 2, the ones
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marked by (2) are proved in Section 3 and for the ones marked by (3) this paper
gives a different proof than [8]. The number dimSEGFUN =∞ answers a question
whether FUN ⊆ SEG asked in [6]. There are still two remaining unknown items
marked by ? in the table.

INT CA CI PER SEG SP CHOR FUN

INT 1 ∞ ∞ ∞ ∞′ ∞(3) ∞(3) ∞(3)

CA 1 1 ∞(2) ∞(2) ∞(2) ∞(1) ∞(1) ∞(3)

CI ∞ ∞ 1 1 ∞◦ ∞(1) ∞(1) ∞(3)

PER ∞ ∞ ∞ 1 ∞◦ ∞(1) ∞(1) ∞(3)

SEG 1∗ ? 1′ 1′ 1 ∞(1) ∞(1) ∞(1)

SP ∞ ∞ ∞ ∞ ∞′ 1 ∞ ∞
CHOR 1 ∞ ∞ ∞ ∞′ 1 1 ∞
FUN 1 2 2 1 ? 2 2 1

2. Small and large classes

The main idea of this section is to compute how “large” are graph classes (how
many graphs on a fixed n-element set they contain). We prove that if a class B
is “much larger” than a class A, then there exists a graph G ∈ B with arbitrary
high A-dimension.

Definition 2.1. For any class A of graphs and any integer n > 0 we denote the
set

An = {G ∈ A | V (G) = {1, 2, . . . , n}} .

Lemma 2.2. Let A, B be classes of graphs such that A contains all complete
graphs and all complete graphs minus an edge (i.e. the A-dimension of any graph
is well defined). Then

dimAB ≥ sup
n∈N,n>1

log |Bn|

log |An|
.

Proof: If dimAB = ∞, there is nothing to prove. Let us suppose that there

exist d, n0 ∈ N for which d = dimAB <
log |Bn0 |
log |An0 |

, that means |Bn0 | > |An0 |
d.

Due to the definition of the A-dimension of B, each graph G ∈ Bn0 should be an
intersection of at most d graphs fromA. We may add complete graphsKn0 so that
G is the intersection of exactly d graphs (not necesarily distinct) H1, . . . , Hd ∈ A.
But from Definition 2.1 we have that H1, . . . , Hd ∈ An0 and we can choose d

graphs from An0 in at most |An0 |
d ways, so |Bn0 | ≤ |An0 |

d, a contradiction. �
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To use the previous Lemma 2.2, we need to compute the aproximate number
of graphs in the considered classes. For this purpose we use the notation f(n) =
Θ(g(n)), which means that there exist constants b > a > 0 such that a · g(n) <
f(n) < b · g(n) for almost all n. We divide the graph classes into two groups

INT, CA, CI, PER, SEG of aproximate size eΘ(n logn) and SP, CHOR, FUN of

aproximate size eΘ(n
2). Although it is enough to prove here the upper bound

for the first group and the lower bound for the second group, the proof of tight
aproximate size is not difficult.

Lemma 2.3. For every integer n, |CAn| ≤ (2n)2n.

Proof: For n arcs on a circle there are at most 2n distinct end points of these
arcs, and the intersection graph of these arcs if fully determined by their circular
order. So we can construct all CAn graphs by taking 2n distinct points on a circle
and for each of n arcs we choose from these 2n possibilities the start point and
the end point. Therefore |CAn| ≤ (2n)2n. �

Lemma 2.4. For every integer n, |SEGn| ≤ n6n ·
(n
2

)n
.

Proof: Firstly we determine how many possibilities there are of placing n lines
denoted by p1, p2, . . . , pn into the plane such that no two of them are parallel
and two configurations are distinct if some line crosses the other lines in different
orders. This is exactly the dual problem to the problem to compute the number
of distinct order types of simple numbered configurations of n points in the plane.
The upper bound of at most n6n distinct configurations for that problem is proved
in [5].

Each graph from SEGn we can represent (see [7]) as an intersection graph of
line segments, where no two segments are parallel. Such representation is fully
determined by the configuration of n lines that the segments lie on, and by the
position of each segment on its line with respect to the crossing points with other
lines. The number of possibly distinct configurations of lines we determined above,
and for each line that has at most n − 1 crossings with other lines, we have at
most

(n
2

)

distinct possibilities to choose the line segment. Thus the number of
distinct line segment graphs with n labelled vertices is

|SEGn| ≤ n6n ·

(

n

2

)n

.

�

Lemma 2.5. For every integer n, |SPn| ≥ 2
(n−1)2

4 .
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Proof:

A⌊n/2⌋ ⌈n/2⌉

Figure 1

We may divide the vertices {1, 2, . . . , n} into two parts of size ⌊n/2⌋ and ⌈n/2⌉.
Then we add all edges inside the first part (see Figure 1), no edge inside the second

part and an arbitrary choice of edges between them, and we get 2⌊n/2⌋·⌈n/2⌉ ≥

2
(n−1)2

4 distinct graphs from SPn. �

Lemma 2.6. For every integer n, |FUNn| ≥ 2
(n−1)2

4 .

Proof: We use nearly the same construction as in Lemma 2.5, the only difference
is that we add all edges inside both parts (and arbitrary choice of edges between
them). Constructed graphs are in FUN because their complements are bipartite,
hence comparability graphs. �

Theorem 2.7. For any arbitrary pair A from INT, CA, CI, PER, SEG and B
from SP, CHOR, FUN

dimAB =∞ .

Proof: From Lemma 2.3 and INT ⊆ CA we have log |INTn| ≤ log |CAn| ≤
Θ(n logn). Lemma 2.4 implies (we know PER ⊆ CI ⊆ SEG) log |PERn| ≤
log |CIn| ≤ log |SEGn| ≤ Θ(n logn). On the other hand, we know from Lemmas
2.5, 2.6 that log |CHORn| ≥ log |SPn| ≥ Θ(n2) and also log |FUNn| ≥ Θ(n2).
Therefore for arbitrary A from INT, CA, CI, PER, SEG and B from SP, CHOR,
FUN we have

dimAB = sup
n∈N,n>1

Θ(n2)

Θ(n logn)
=∞ .

�

3. The CA-dimension

In this section we give arguments that the CA-dimension of permutation graphs
and hence also circle and line segment graphs is unbounded, although these classes
have aproximately the same number of graphs.
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Lemma 3.1. Suppose that graphs G, H are such that −G is not bipartite and
G ⊕ H ∈ CA. Then H is a complete graph.

Proof:

A
B

y

A

x

Figure 2

Let us suppose that there are two non-adjacent vertices x, y in the graph H .
Consider now the CA-representation of the graph G⊕H and denote by A, B two
points on the circle that lie between arcs representing vertices x, y (see Figure 2).
Then for every vertex v ∈ V (G) (which is adjacent to both x and y) the arc
representing v must cross the point A or the point B, and we can divide the
vertices of G into two sets (not necessarily disjoint) V (G) = VA∪VB , such that all
arcs representing the vertices from VA cross the point A and all arcs representing
the vertices from VB cross the point B. But this means that sets VA, VB are
independent in −G and hence the graph −G is bipartite, which is a contradiction.

�

Lemma 3.2. Let F be a non-complete graph such that dimCAF ≥ d, and let
n = 2d + 1. Then dimCAF ⊕ Dn ≥ d+ 1.

Proof: Let us denote V = V (F ), G = F ⊕ DW where |W | = n, then V (G) =
V ∪ W , V ∩ W = ∅. For a contradiction let us suppose that dimCAG ≤ d, i.e.
there exist graphs Hi ∈ CA for i = 1, 2, . . . , d such that V (Hi) = V (G) and

G =
d
⋂

i=1
Hi (for dimCAG < d we add complete graphs). Because G contains all

edges between vertices from V andW , each Hi should also contain all these edges

and we can write Hi = H1i ⊕H2i where V (H1i ) = V , V (H2i ) =W and
d
⋂

i=1
H1i = F ,

d
⋂

i=1
H2i = DW .

If there exist j ∈ {1, . . . , d} such that −H2j is not bipartite, we can use

Lemma 3.1 for the graph Hj = H1j ⊕ H2j and thus H1j is a complete graph,

which is not possible when d = 1 and for d > 1 we can write

E(F ) =
⋂

i∈{1,...,j−1,j+1,...,d}

E(H1i ), i.e. dimCAF ≤ d − 1, a contradiction.
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Hence −H2i is bipartite for every i. But
d
⋂

i=1
H2i = DW , therefore

d
⋃

i=1
−H2i =

KW and n = χ(KW ) ≤ χ(−H21 ) · . . . ·χ(−H2d) ≤ 2
d = n− 1, a contradiction. �

Theorem 3.3. dimCAPER = dimCACI = dimCASEG =∞.

Proof: Define G1 = D2 and Gd+1 = Gd ⊕ D2d+1 by means of recursion. Since
every discrete graph is a permutation graph, and the Zykov sum of two permuta-
tion graphs is again a permutation graph, Gd ∈ PER for every d. On the other
hand, it follows by induction from Lemma 3.2 that dimCAGd+1 ≥ d + 1 for ev-
ery d. Hence dimCAPER =∞.

�
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