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Estimators for epidemic alternatives

Marie Hušková

Abstract. We introduce and study the behavior of estimators of changes in the mean
value of a sequence of independent random variables in the case of so called epidemic
alternatives which is one of the variants of the change point problem.
The consistency and the limit distribution of the estimators developed for this situa-

tion are shown. Moreover, the classical estimators used for ‘at most change’ are examined
for the studied situation.
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1. Introduction

Consider the following model:

Xi = θ0 + ei, i = 1, ...,m1,

= θ0 + δn + ei, i = m1 + 1, ...,m2,

= θ0 + ei, i = m2 + 1, ..., n,

where θ0, δn, 1 ≤ m1 < m2 < n are unknown parameters, e1, ..., en are i.i.d.
random variables, Eei = 0 and 0 < var ei = σ2 < ∞ with σ2 unknown. The
model describes the situation, where the normal state with the mean value θ0
runs up to the m1-th observation then it changes to the epidemic one with the
mean value θ0 + δn that goes from m1 +1-st through m2-nd observation and the
normal state is restored afterwards. This model is called the epidemic alternative.
The testing problem H0 : δn = 0 against H1 : δn 6= 0 was first considered by

Kline and Levin [13] for the case when ei’s have normal distribution. Yao [16]
published a survey of the available test procedures together with their comparison.
Lombard [14] and Gombay [9] deal with rank test procedures. Brodsky and
Darkhovsky [6] constructed estimators (see (2.3) below) of the change points
m1,m2 in a series of dependent observations and proved their consistency.
The object of the present paper is to develop estimators of the change points

m1,m2 and to derive their asymptotic properties for local changes (δn → 0).
Namely, we shall study an estimator related to the maximum likelihood one when
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the errors ei’s are normally distributed (see (2.2) below) and the estimator in-
troduced by Brodsky and Darkhovsky [6] based on the argmax of differences of
certain averages (see (2.3) below). Moreover, the performance of three types of
estimators used for the case ‘at most one change’ (see (2.4)–(2.9) below) is ex-
amined in the model (1.1). It is shown that all considered estimators have the
same rate of consistency and have the limit distribution as the argmax of cer-
tain Gaussian processes. The main results are formulated in Theorem 2.1 and
Theorem 2.2. Results of simulation study will be published in [3].

2. Main results

The estimators of the change points are based on the partial sums

(2.1) Sk =

k
∑

i=1

(Xi −Xn), k = 1, ..., n,

where

Xn =
1

n

n
∑

i=1

Xi.

The estimator related to the maximum likelihood estimator when the errors ei’s
have normal distribution is defined as follows:

(2.2) (m̂11(ǫ), m̂21(ǫ)) = argmax {
√

n

(k2 − k1)(n− k2 + k1)
|Sk2 − Sk1 |;

1 ≤ ki ≤ n, i = 1, 2, nǫ ≤ k2 − k1 ≤ (1− ǫ)n},
where 0 < ǫ < 1/2.
Darkhovsky and Brodsky [6] introduced the estimator

(2.3) (m̂12(ǫ), m̂22(ǫ)) = argmax {
n2

(k2 − k1)(n− k2 + k1)
|Sk2 − Sk1 |;

1 ≤ ki ≤ n, i = 1, 2, nǫ ≤ k2 − k1 ≤ (1− ǫ)n}

= argmax {| 1

(k2 − k1)
Sk2 −

1

(n− k2 + k1)
(Sk1 + Sn − Sk2)|;

1 ≤ ki ≤ n, i = 1, 2, nǫ ≤ k2 − k1 ≤ (1− ǫ)n},
where 0 < ǫ < 1/2. They investigated the consistency when δn = δ 6= 0 is fixed
(not depending on n) and Xi, i = 1, ..., n, need not be independent.
The following three estimators for the case ‘at most one change’ will be inves-

tigated:

(2.4) m̂13(ǫ) = min{ argmax {
√

n

k(n− k)
Sk;nǫ ≤ k ≤ n(1− ǫ)},

argmin {
√

n

k(n− k)
Sk;nǫ ≤ k ≤ n(1− ǫ)}},
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(2.5) m̂23(ǫ) = max{ argmax {
√

n

k(n− k)
Sk;nǫ ≤ k ≤ n(1− ǫ)},

argmin {
√

n

k(n− k)
Sk;nǫ ≤ k ≤ n(1− ǫ)}},

(2.6) m̂14 = min{ argmax {Sk; 1 ≤ ki ≤ n}, argmin {Sk; 1 ≤ k ≤ n}},

(2.7) m̂24 = max{ argmax {Sk; 1 ≤ ki ≤ n}, argmin {Sk; 1 ≤ k ≤ n}}
and

(2.8) m̂15(G) = min{ argmax {Sk+G − 2Sk + Sk−G;G < k < n−G},
argmin {Sk+G − 2Sk + Sk−G;G < k < n−G}},

(2.9) m̂25(G) = max{ argmax {Sk+G − 2Sk + Sk−G;G < k < n−G},
argmin {Sk+G − 2Sk + Sk−G;G < k < n−G}},

where 0 < ǫ < 1/2 and G should be small w.r.t. n (see assumption (2.17) below).
The behavior of the estimators m̂i3(ǫ) and m̂i4, i = 1, 2, in the case of at most
one change was deeply studied in [4]. The behavior of m̂i5(G), i = 1, 2, both in
the case of at most one change and more changes was studied in a more general
framework in [2].
The following expectations give a simple transparent picture on the behavior

of the estimators

(2.10)

ESk = −δnk
m2 −m1

n
1 ≤ k ≤ m1,

= δn(k
n−m2 +m1

n
−m1) m1 < k ≤ m2,

= −δn(n− k)
n−m2 +m1

n
m2 < k ≤ n,

and

E(Sk+G − 2Sk + Sk−G) = 0 G < k ≤ m1 −G,

= δn(k +G−m1) m1 −G < k ≤ m1

= δn(G− k +m1) m1 < k ≤ m1 +G,

= 0 m1 +G < k ≤ m2 −G,(2.11)

= −δn(k +G−m2) m2 −G < k ≤ m2,

= −δn(G− k +m2) m2 < k ≤ m2 +G,

= 0 m2 +G < k < n−G.

We see that ESk, k = 1, ..., n and E(Sk+G − 2Sk + Sk−G), k = G+1, ....., n−G,
are piece-wise linear functions in k with extremes at k = m1,m2.
Now, we shall state two main results.
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Theorem 2.1. Let X1, ..., Xn follow the model (1.1) and let, as n→ ∞,
mi

n
→ γi, i = 1, 2, 0 < γ1 < γ2 < 1(2.12)

δn → 0, |δn|
√
n→ ∞(2.13)

then

(2.14)
δ2n
σ2
(m̂ij(ǫ)−mi)

d−→ argmax{Wj(s)− |s|gij(s), s ∈ R}
and

(2.15)
δ2n
σ2
(m̂i4 −mi)

d−→ argmax{W4(s)− |s|gi4(s), s ∈ R}

for i = 1, 2; j = 1, 2, 3 and 0 < ǫ < min(γ1, 1− γ2, γ2 − γ1, 1− γ2 + γ1), where

(2.16)
Wj(s) =Wj1(s) s < 0

=Wj2(s) s > 0,

Wj1 and Wj2 are independent Wiener processes, j = 1, ..., 4,

gj1(s) = 1/2 s ∈ R, j = 1, 2

g12(s) = 1− γ2 + γ1 s < 0

= γ2 − γ1 s > 0

g13(s) =
1

2
(1− 1− γ2

1− γ1
) s < 0

=
1

2
(1 +

1− γ2
1− γ1

) s > 0

g23(s) =
1

2
(1 +

γ1
γ2
) s < 0

=
1

2
(1− γ2

γ1
) s > 0

and
g12(s) = g22(−s) = g14(−s) = g24(s) s ∈ R

Proof: is postponed to Section 3. �

Theorem 2.2. If the assumptions of Theorem 2.1 are satisfied and if, as n→ ∞,
(2.17) G/n→ 0, |δn|−2G ln

n

G
→ 0

then

(2.18)
δ2n
σ2
(m̂i5(G) −mi)

d−→ argmax {W5(s)− |s|/6, s ∈ R},

where W5 is the two-sided Wiener process described in (2.16).

Proof: is a consequence of Theorem 4.1 in [2], where we put ψ(x, θ) = x − θ,
x ∈ R, θ ∈ R. �
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Remarks.

1. If δn and σ
2 are replaced by consistent estimators, the assertions of Theo-

rem 2.1 and Theorem 2.2 remain true.

2. Khakhubia [12] and Gombay and Horváth [10] derived the distribution of
argmax {W1(s)− |s|/2, s ∈ R}, which together with the previous item enables us
to construct the confidence interval for m1 and m2.

3. Going through the proof of Theorem 2.1 we find that m̂1i(ǫ) and m̂2i(ǫ) are
asymptotically independent, i = 1, 2, 3. The pairs (m̂14, m̂24) and
(m15(G), m̂25(G)) have the same property.

4. TheM -type analogs of the estimators can be constructed as follows. Replace
the residuals Xi −Xn, i = 1, ..., n by the M -residuals ψ(Xi − θn(ψ)), i = 1, .., n,

where ψ is a suitable score generating function and θ̂n(ψ) is theM -estimator of θ0
with the score function ψ in the model (1.1) with δn = 0 (i.e. θ̂n(ψ) is a solution
of the equation

∑n
i=1 ψ(Xi − θ) = 0). The respective properties can be obtained

along the line of [2].

5. Since γ1 and γ2 are unknown, it is hardly to check the assumption (2.12).
We should choose ǫ > 0 sufficiently small in order the assumption (2.12) is met.
If we put ǫ = 0, the estimators need not be consistent since the maximum can be
reached for ki /∈ (mi − nǫ∗,mi + nǫ

∗), i = 1, 2, for some ǫ∗ > 0 with probability
larger than some positive constant. For instance, if ei has the density

f(x) =
2 +∆

2
|x|−3−∆ |x| ≥ 1

= 0 |x| < 1

with ∆ > 0 then

max{
√

n

(k2 − k1)(n− k2 + k1)
|Sk2 − Sk1 |;

1 ≤ ki ≤ n, i = 1, 2, nǫ ≤ k2 − k1 ≤ (1− ǫ)n}
= δ2nn(γ2 − γ1)(1− γ2 + γ1)(1 + op(1)),

while

P (max{
√

n

(k2 − k1)(n− k2 + k1)
|Sk2 − Sk1 |;

1 ≤ k1 < k2 ≤ n} > Q
√

log n)→ 1

for some Q > 0, which means that if |δn| = op(n
−1/2√logn) the maximum need

not be reached by (k1, k2) close to (m1,m2).
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3. Proof of Theorem 2.1

Because of a similarity of the proofs of the assertions on m̂ij −mi for i = 1, 2,
j = 1, 2, 3, 4 we shall treat in detail m̂11(ǫ) and m̂21(ǫ) and give an outline of the
others.
The proof is divided into three steps. We start with auxiliary results, then show

that the rate of consistency of the estimators m̂i1(ǫ) is δ
−2
n , i.e. m̂i1(ǫ) −mi =

Op(δ
−2
n ), i = 1, 2, and in the last step we derive the limit distribution of the

estimator.
In the rest of the paper we shall assume δn > 0, n ≥ 1. The case δn < 0 for

some n ≥ 1 can be treated quite analogously.
The estimators (m̂11(ǫ), m̂21(ǫ)) can be defined equivalently as

(3.1) argmax { n

(k2 − k1)(n− k2 + k1)
(Sk2 − Sk1)

2

− n

(m2 −m1)(n−m2 +m1)
(Sm2 − Sm1)

2;

1 ≤ ki ≤ n, i = 1, 2; nǫ ≤ k2 − k1 ≤ n(1− ǫ)}.
Moreover, noticing

(3.2) Sk =

k
∑

i=1

(ei − en) + δn

k
∑

i=1

(I{m1 < i ≤ m2} −
m2 −m1

n
),

where I{A} denotes the indicator of the set A, we may write for 1 ≤ k1 < k2 ≤ n

(3.3)
n

(k2 − k1)(n− k2 + k1)
(Sk2 − Sk1)

2

= A1(k1, k2) + 2δnA2(k1, k2) + δ
2
nA3(k1, k2),

where

A1(k1, k2) =
n

(k2 − k1)(n− k2 + k1)
(

k2
∑

i=k1+1

(ei − en))
2,

A2(k1, k2) =
n

(k2 − k1)(n− k2 + k1)

k2
∑

i=k1+1

(ei − en)

k2
∑

j=k1+1

(I{m1 < j ≤ m2} −
m2 −m1

n
),

A3(k1, k2) =
n

(k2 − k1)(n− k2 + k1)
(

k2
∑

j=k1+1

(I{m1 < j ≤ m2} −
m2 −m1

n
))2.

Useful results on Ai(k1, k2), i = 1, 2, 3, are proved in the following three lem-
mas.
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Lemma 3.1. If the assumptions of Theorem 1.1 are satisfied then, as n→ ∞,

(3.4) max{A1(k1, k2); 1 ≤ ki ≤ n, i = 1, 2, nǫ ≤ k2 − k1 ≤ n(1− ǫ)} = Op(1)

(3.5) max{|A1(k1, k2)−A1(m1,m2)|; |ki −mi| ≤ nǫn, 1 ≤ ki ≤ n, i = 1, 2}
= Op(

√
ǫn)

for any 0 < ǫ < min{γ2 − γ2, 1 − γ2 + γ1}, for any ǫn ≥ 0 satisfying ǫn → 0 and
nǫn → ∞.
Proof: The first assertion is an easy consequence of the Kolmogorov inequality.
The assertion (3.5) is implied by the following relations

A1(k1, k2)−A1(m1,m2) = (

k2
∑

i=k1+1

(ei − en))
2

n(m2 − k2 −m1 + k1)(n−m2 +m1 − k2 + k1)

(k2 − k1)(m2 −m1)(n− k2 + k1)(n−m2 +m1)

+
n

(m2 −m1)(n−m2 +m1)
(

k2
∑

i=k1+1

(ei − en)−
m2
∑

i=m1+1

(ei − en))

(

k2
∑

i=k1+1

(ei − en) +

m2
∑

i=m1+1

(ei − en))

= Op(ǫn) +Op(
√
ǫn) = Op(

√
ǫn).

which holds uniformly for |ki −mi| ≤ nǫn, 1 ≤ ki ≤ n, i = 1, 2. �

Lemma 3.2. If the assumptions of Theorem 1.1 are satisfied then, as n→ ∞,

(3.6) max{A2(k1, k2), 1 ≤ ki ≤ n, i = 1, 2, nǫ ≤ k2 − k1 ≤ n(1− ǫ)}
= Op(

√
n)

(3.7) max{|A2(k1, k2)−A2(m1,m2)|(|k2 −m2|+ |k1 −m1|)−1;

qnδ
−2
n ≤ |ki −mi| ≤ nǫn, 1 ≤ ki ≤ n, i = 1, 2} = Op(δnq

−1/2
n )

and

(3.8) max{|A2(k1, k2)−A2(m1,m2)−
k2
∑

k1+1

ei +

m2
∑

m1+1

ei|

(|k2 −m2|+ |k1 −m1|)−1; |ki −mi| ≤ nǫn, 1 ≤ ki ≤ n, i = 1, 2} = Op(ǫn
√
n)
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for any 0 < ǫ < min{γ2 − γ1, 1 − γ2 + γ1}, for any qn → ∞ and for any ǫn > 0,
n ≥ 1 such that ǫn → 0 and nǫn → ∞.
Proof: The first assertion is a direct consequence of the Kolmogorov inequality.
Since

A2(k1, k2)−A2(m1,m2)−
k2
∑

k1+1

(ei − en) +

m2
∑

m1+1

(ei − en)

=

k2
∑

k1+1

(ei − en)
n

(k2 − k1)(n− k2 + k1)

k2
∑

j=k1+1

(I{m1 < j ≤ m2} − 1−
m2 − k2 −m1 + k1

n
)

= Op(n
−1/2(|k1 −m1|+ |k2 −m2|))

holds uniformly for |ki −mi| ≤ nǫn, i = 1, 2, the assertion (3.8) is valid. Finally,
by the Hájek-Rényi inequality (see [8, p. 230]) we have for any λ > 0

P (max{ 1

|ki −mi|
|

ki
∑

j=1

ej −
mi
∑

j=1

ej |;

δ−2n qn ≤ |ki −mi| ≤ nǫn, 1 ≤ ki ≤ n, i = 1, 2} ≥ λ)

≤ 2λ−2
∗

∑

(
1

j2
− 1

(j + 1)2
)jσ2 ≤ D1λ

−2δ2nq
−1
n

where
∑

∗ denotes the summation over the set {ki, δ
−2
n qn ≤ |ki −mi| ≤ nǫn, 1 ≤

ki ≤ n, i = 1, 2}, for some D1 > 0, which together with (3.8) implies (3.7). �

Lemma 3.3. Under the assumptions of Theorem 1.1 there exist B1 > 0 and
B2 > 0 (not depending on n) such that

(3.9) max{A3(k1, k2)−A3(m1,m2), nǫn ≤ |ki −mi|, i = 1, 2,
nǫ ≤ k2 − k1 ≤ n(1− ǫ), i = 1, 2, 1 ≤ k1 < k2 ≤ n} ≤ −B1nǫn

and
(3.10)

|A3(k1, k2)−A3(m1,m2) + |m2 − k2|+ |m1 − k1||(|m2 − k2|2 + |m1 − k1|2)−1;
|ki −mi| ≤ nǫn, 1 ≤ ki ≤ n, i = 1, 2

for any 0 < ǫ < min{γ2 − γ1, 1− γ2 + γ1}, for any ǫn > 0, n = 1, 2, . . . satisfying
ǫn → 0 and nǫn → ∞.
Proof: To show (3.9) we decompose the set of indices (k1, k2) as follows:

{(k1, k2); |ki −mi| ≥ nǫn, i = 1, 2, nǫ ≤ k2 − k1 ≤ n(1− ǫ), 1 ≤ k1 < k2 ≤ n}
= C1n ∪C2n ∪ C3n ∪ C4n ∪ C5n ∪ C6n,
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where

C1n = {(k1, k2); 1 ≤ k1 < k2 ≤ m1, nǫ ≤ k2−k1 ≤ (1−ǫ)n}
C2n = {(k1, k2);m2 < k1 < k2 ≤ n, nǫ ≤ k2−k1 ≤ (1−ǫ)n}
C3n = {(k1, k2); 1 ≤ k1 ≤ m1−nǫn,m2+nǫn ≤ k2 ≤ n, nǫ ≤ k2−k1}
C4n = {(k1, k2);m1+nǫn ≤ k1 <, k2 ≤ m2−nǫn, nǫ ≤ k2−k1},
C5n = {(k1, k2);m1+nǫn ≤ k1 ≤ m2,m2+nǫn < k2 ≤ n, nǫ ≤ k2−k1 ≤ n(1−ǫ)},
C6n = {(k1, k2); 1 ≤ k1 ≤ m1−nǫn,m1 < k2 ≤ m2−nǫn, nǫ ≤ k2−k1 ≤ n(1−ǫ)}.

Direct computations give that

(3.11) max{A3(k1, k2)−A3(m1,m2); (k1, k3) ∈ C1n}

≤ − m2 −m1
n−m1 + 1

(n−m2 +m1)

and

(3.12) max{A3(k1, k2)−A3(m1,m2); (k1, k3) ∈ C2n} ≤ −m2 −m1
m2 + 1

(m1 + 1)

Further,

A3(k1, k2) =
(m2 −m1)

2

n
(−1 + n

k2 − k1
) for (k1, k2) ∈ C3n

and hence

(3.13) max{A3(k1, k2)−A3(m1,m2); (k1, k3) ∈ C3n}

≤ (m2 −m1)
2

n
(−1 + n

m2 −m1 + 2nǫn
)−A3(m1,m2) ≤ −D2nǫn.

for some D2 > 0. Similarly,

A3(k1, k2) =
(n−m2 +m1)

2

n
(−1 + n

n− k2 + k1
) for (k1, k2) ∈ C4n

which implies

(3.14) max{A3(k1, k2)−A3(m1,m2); (k1, k3) ∈ C4n}

≤ (n−m2 +m1)
2

n
(−1 + n

n−m2 −m1 + 2nǫn
)−A3(m1,m2)

≤ −D3nǫn
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for some D3 > 0. Next, for (k1, k2) ∈ C5n

A3(k1, k2) = A3(m1,m2)

− (k2 −m2)(1 −
m2 − k2
k2 − k1

)− (k1 −m1)(1 −
m1 − k1

n− k2 + k1
)

and hence

(3.15) max{A3(k1, k2)−A3(m1,m2); (k1, k2) ∈ C5n} ≤ −D4nǫn

for some D4 > 0. Quite analogously, we have

(3.16) max{A3(k1, k2)−A3(m1,m2); (k1, k2) ∈ C6n} ≤ −D5nǫn

for some D5 > 0. Combining (3.11)–(3.16) we receive (3.9). The validity of (3.10)
can be checked by direct computations. �

Denoting

Zn(k1, k2) =
n

(k2 − k1)(n− k2 + k1)
(Sk2 − Sk1)

2, 1 ≤ k1 < k2 ≤ n

we find that

(3.17) Zn(m1,m2) =
n

(m2 −m1)(n−m2 +m1)
(

k2
∑

i=k1+1

(ei − en))
2

+ 2δn

k2
∑

i=k1+1

(ei − en) + δ
2
n
(m2 −m1)(n−m2 +m1)

n

= Op(1) +Op(|δn|
√
n) + δ2n

(m2 −m1)(n−m2 +m1)

n

= δ2nn(γ2 − γ1)(1− γ2 + γ1)(1 + op(1)).

Next, by (3.4), (3.6), (3.7) and (3.9) we have

(3.18) max{Zn(k1, k2)− Zn(m1,m2); |ki −mi| ≥ nǫn, 1 ≤ ki ≤ n, i = 1, 2,

nǫ ≤ k2 − k1 ≤ n(1− ǫ)}Op(1) +Op(
√
n|δn|)−B1nδ

2
nǫn

= −B1nǫn(1 + op(1)).

By (3.5), (3.7) and (3.10) we obtain
(3.19)

max{Zn(k1, k2)− Zn(m1,m2); δ
−2
n qn ≤ |ki −mi| < nǫn, 1 ≤ ki ≤ n, i = 1, 2,

nǫ ≤ k2 − k1 ≤ n(1− ǫ)}

= Op(
√

|ǫn|)−B1qn(1 + o(1) + op(q
−1/2
n )).
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Now, (3.17), (3.18) and (3.19) imply that as n→ ∞ with probability tending to 1
the maximum of Zn(k1, k2)−Zn(m1,m2) is reached for ki ∈ (mi−nǫn,mi+nǫn),
i = 1, 2, i.e. as n→ ∞,

P (|m̂i1 −mi| ≤ qnδ
−2
n )→ 1 i = 1, 2

for any qn → ∞.
Thus the limit distribution of

argmax{Zn(k1, k2); 1 ≤ ki ≤ n, i = 1, 2, nǫn ≤ k2 − k1 ≤ n(1− ǫn)}

is the same as that

argmax{Zn(k1, k2)− Zn(m1,m2); |ki −mi| ≤ qnδ
−2
n , 1 ≤ ki ≤ n, i = 1, 2}

Moreover, noticing that by (3.5), (3.8) and (3.10) we get

max{Zn(k1, k2)− Zn(m1,m2)− 2δn
k2
∑

i=k1+1

ei + 2δn

m2
∑

i=m1+1

ei

+ δ2n|k1 −m1|+ δ2n|k2 −m2|;
|ki −mi| < δ−2n qn, 1 ≤ ki ≤ n, i = 1, 2} = op(1),

which finally implies that the limit distribution of

argmax {Zn(k1, k2); 1 ≤ ki ≤ n, i = 1, 2, nǫn ≤ k2 − k1 ≤ n(1− ǫn)}

is the same as that of

(argmax {2V1n(s)− |s|, s ∈ R}, argmax {2V2n(s)− |s|, s ∈ R}),

where

Vin(s) = (−1)i+1δn
mi
∑

j=mi+[δ
−2
n s]

ej s < 0

= (−1)iδn
mi+[δ

−2
n s]

∑

j=mi+1

ej s > 0

= 0 s = 0

i = 1, 2. The processes {V1n(s); s ∈ R} and {V2n(s); s ∈ R} are independent.
According to Theorem 16.1 of [5] they converge in distribution to the two-sided
Wiener processes {W1(s); s ∈ R} and {W2(s); s ∈ R}, respectively, described by
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(2.16). This implies that the limit distribution of m̂i1(ǫ) is the same as that of
argmax {Wi(s)− |s|/2; s ∈ R}, i = 1, 2, respectively, and that m̂11(ǫ) and m̂21(ǫ)
are asymptotically independent. The proof of (2.13) for j = 1 is finished.

To prove the assertion (2.14) for j = 2 we proceed similarly as above. Therefore
we give some crucial relations only. For 1 ≤ k1 < k2 ≤ n we have, as n→ ∞,

n2

(k2 − k1)(n− k2 + k1)
(Sk2 − Sk1) =

n2

(k2 − k1)(n− k2 + k1)

(

k2
∑

i=k1+1

(ei − en) + δn

k2
∑

i=k1+1

(I{m1 < i ≤ m2} −
m2 −m1

n
))

and hence, as n→ ∞,

n2

(m2 −m1)(n−m2 +m1)
(Sm2 − Sm1) = Op(n

−1/2) + nδn = nδn(1 + op(1))

n2

(k2 − k1)(n− k2 + k1)
(Sk2 − Sk1) ≤ D6nǫnδn(1 + op(1))

uniformly for |ki −mi| ≥ nǫn, ǫn → 0 and √
nǫnδn → ∞, i = 1, 2 and for some

D6 > 0.
Finally,

n2

(k2 − k1)(n− k2 + k1)
(Sk2 − Sk1)−

n2

(m2 −m1)(n−m2 +m1)
(Sm2 − Sm1)

=
1

(γ2 − γ1)(1− γ2 + γ1)
(

k2
∑

i=k1+1

ei −
m2
∑

i=m1+1

ei

+min(k2,m2)−k2−max(k1,m1)+k1+(γ2−γ1)(k2−m2−k1+m1))(1+op(1))

for |ki −mi| ≤ nǫn, ǫn → 0 and √
nǫnδn → ∞, i = 1, 2.

The assertion (2.14) for j = 3 and (2.15) can be proved along the same line as
Theorem 2 in [4].
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