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On Fréchet differentiability

of convex functions on Banach spaces

Wee-Kee Tang*

Abstract. Equivalent conditions for the separability of the range of the subdifferential
of a given convex Lipschitz function f defined on a separable Banach space are studied.
The conditions are in terms of a majorization of f by a C1-smooth function, separability
of the boundary for f or an approximation of f by Fréchet smooth convex functions.
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It is known that on a given separable Banach space X all continuous convex
functions are generically Fréchet differentiable if and only if X∗ is separable, and
if and only if X admits a C1-smooth bump function. In this case, every equivalent
norm in X can be uniformly approximated by Fréchet smooth equivalent norms
on bounded sets.
The purpose of this note is to generalize these results. We give some equivalent

conditions for the generic Fréchet differentiability of a given Lipschitz convex
function defined on a separable Banach space in terms of the properties of the
function f rather than that ofX . In this setting, we cover some continuous convex
functions defined on separable non-Asplund spaces. For instance if ‖ · ‖ denotes
the Hilbertian norm on l2 and T is a continuous linear map of a separable Banach
space X into l2, then any Lipschitz convex function f defined on X such that
f(x) ≤ ‖T (x)‖2 for x ∈ X satisfies the assumptions in Theorem 1. At the end of
this note, we show how the methods from variational principles can be applied to
find a sufficient condition for the w∗-lower semicontinuity of convex functions.
A standard notation is used in this paper. We denote by ∂f(x) the sub-

differential of a continuous convex function f at x ∈ X (cf. [DGZ], [Ph]), and
∂f(X) =

⋃
x∈X ∂f(x). If f is defined on X , f∗ denotes the Fenchel dual (or

conjugate) of f , i.e. f∗(x∗) = sup{(x∗, x)− f(x) : x ∈ X}, for x∗ ∈ X∗. A convex
continuous function is said to be generically Fréchet differentiable if it is Fréchet
differentiable on a dense Gδ set. A subset B ⊂ ∂f(X) is called a boundary for f
if B intersects ∂f(x) for each x ∈ X (see e.g. [G]). By a selector for ∂f we mean
a single-valued mapping s : X → X∗ such that s(x) ∈ ∂f(x) for every x ∈ X .
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Unless stated otherwise, all topological terms in dual Banach spaces refer to the
norm topology of these spaces. We refer to [Ph] and [DGZ] for some unexplained
notions and results used in this note.

A main result in this note is the following statement.

Theorem 1. Let X be a separable Banach space and f be a Lipschitz convex

function defined on X . The following are equivalent.

(i) The set ∂f(X) is separable.
(ii) There is a selector s for ∂f such that s(X) = {s(x) : x ∈ X} is separable.
(iii) There is a continuously Fréchet differentiable function φ such that φ ≥ f

on X .

(iv) f can be approximated uniformly on X by Fréchet differentiable convex
functions.

(v) If h is a convex function on X such that h ≤ f on X , then h is generically

Fréchet differentiable on X .

Proof: Clearly (i) ⇒ (ii). We shall show (ii) ⇒ (i) using Simons’ lemma ([S]).
Put B = s(X) and let γ = inf{f∗(y∗) : y∗ ∈ B} < ∞. We show that C :=
dom f∗ ⊂ convB. If this is not so, pick y∗o ∈ C \ convB. By separation theorem,
there exist z ∈ X∗∗ and α, β ∈ R such that z(y∗o) > β > α > z(y∗) for each

y∗ ∈ B. Without any loss of generality, we assume that β−α
2 > f∗(y∗o) − γ. For

every x ∈ X , define a function hx ∈ l∞(B) by

hx(x
∗) = (x∗, x) − f∗(x∗).

Let E = {x ∈ X : ‖x‖ ≤ ‖z‖, x(y∗o) > β}. Since B is separable, there exists
a sequence {xn} in E such that xn converges to z in the topology of pointwise
convergence on B. Define a sequence hn ∈ l∞(C) by hn(x

∗) = hxn
(x∗) for

x∗ ∈ C. Note that for any x =
∞∑

k=1
λkxk, where λk ≥ 0 and

∞∑
k=1

λk = 1, we have

s(x) ∈ B and
∑

λkhk(s(x)) = hx(s(x)) = f(x) = sup{(x
∗, x)− f∗(x∗) : x∗ ∈ C}

= sup{(x∗,
∑

λkxk)− f∗(x∗) : x∗ ∈ C} = sup{
∑

λkhk(x
∗) : x∗ ∈ C}.

Since z(y∗) < α for all y∗ ∈ B, we have lim supxn(y
∗) ≤ α for all y∗ ∈ B. Thus

lim suphn(y
∗) ≤ α− f∗(y∗) for all y∗ ∈ B and consequently sup{lim suphn(y

∗) :

y∗ ∈ B} ≤ α−γ. By Simons’ lemma there is g ∈ conv{hn}, g =
N∑

k=1
̺khk, ̺k ≥ 0,

N∑
k=1

̺k = 1 such that

sup{g(x∗) : x∗ ∈ C} ≤
α+ β

2
− γ.
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On the other hand, g(y∗o) =
N∑

k=1
̺khk(y

∗
o) = (y

∗
o ,

N∑
1
̺kxk)−f

∗(y∗o) > β−f∗(y∗o)

and thus β−f∗(y∗o) <
α+β
2 −γ. Therefore β−α

2 < f∗(y∗o)−γ. This contradiction
shows that (ii) implies (i).

(iii)⇒ (i). We follow the idea in [F]. Let x ∈ X , q ∈ ∂f(x) and ǫ > 0 be given.
The function φ − q is a bounded below continuous function on X . By Ekeland’s
variational principle, there is a xq such that for each h ∈ X and t > 0,

(φ− q)(xq + th) ≥ (φ− q)(xq)− ǫ‖h‖t.

Hence,
‖φ′(xq)− q‖∗ ≤ ǫ.

Therefore ∂f(X) ⊂ {φ′(x) : x ∈ X}. Since φ′ is continuous and X is separable,

the set {φ′(x) : x ∈ X} and thus also ∂f(X) are separable.

(i) ⇒ (v). By using the above argument for the functions h and f , we see that

∂h(X) ⊂ ∂f(X). Therefore ∂h(X) is also separable and the statement follows
immediately from the proof of Theorem 1 in [Pr-Z] (see also [Ph, Theorem 2.11]).

(v) ⇒ (i). Since ∂f(X) ⊂ dom f∗, it suffices to show that dom f∗ is separable.
We split dom f∗ into w∗-compact sets Cn and show that all Cn are norm separable.
We put Cn = {x∗ ∈ X∗ : f∗(x∗) ≤ n}, and note that dom f∗ = ∪∞

n=1Cn.
Assume for some n ∈ N, the set Cn is not norm separable. Since Cn is compact

and metrizable in the w∗-topology, we find a w∗-compact subset A ⊂ CN and ǫ >
0 such that every w∗-slice has diameter greater than ǫ > 0 (see the proof of [Ph,
Theorem 2.19]). Define h(x) = sup〈A, x〉 −N, x ∈ X . Then h(x) ≤ sup{〈x∗, x〉 −
f∗(x∗) : x∗ ∈ CN}, and the function h is nowhere Fréchet differentiable (see the
proof of [Ph, Lemma 2.18]). As h ≤ f on X , we obtain a contradiction.

(i) ⇒ (iv). Let Y = span{∂f(x) : x ∈ X}. Since Y is norm separable, there
is an equivalent norm ‖ · ‖ on X such that its dual norm ‖ · ‖∗ on X∗ is locally
uniformly rotund at points of dom f∗. In other words, if y ∈ dom f∗, yk ∈ X∗,

and lim(
‖yk‖

∗2+‖y‖∗2

2 −‖ yk+y
2 ‖∗2) = 0, then lim ‖yk − y‖∗ = 0 (see e.g. the proof

of [DGZ, Proposition IV.5.2]).

Now, define a sequence of functions {hn} onX
∗ by hn(x

∗)=f∗(x∗)+ 1
4n4

‖x∗‖∗2.

Clearly domhn = dom f
∗. Note that if n ∈ N and lim(

hn(y)+hn(yk)
2 −hn(

y+yk

2 )) =

0, then lim ‖yk − y‖ = 0. Define gn := f�n4‖ · ‖2, the infimal convolution of f
and n4‖ · ‖2. Note that the function gn is a convex continuous function on X for
all n and gn

∗ = hn.
Given n ∈ N, x ∈ X and y ∈ ∂gn(x), note that hn is rotund at y with respect

to x in the sense of [ As-R], i.e., for every ǫ > 0, there exists δ > 0 such that

{v : hn(y + v)− hn(y)− (x, v) ≤ δ} ⊂ ǫBX∗ .
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Indeed, if this is not so, there exists an ǫ > 0 such that for all k ∈ N, there is
a vk, with ‖vk‖ > ǫ and

1

2
hn(y + vk)−

1

2
hn(y)− (x,

vk
2
) ≤

1

2k
.

Since hn = gn
∗, we have x ∈ ∂hn(y), and thus

(x,
vk
2
) ≤ hn(y +

vk
2
)− hn(y)

Putting these two inequalities together, we obtain for every k ∈ N,

hn(y) + hn(y + vk)

2
− hn(y +

vk
2
) ≤

1

2k
.

From the local uniform convexity of hn, we have lim ‖vk‖ = 0, a contradiction.
By [As-R, Proposition 4], gn is Fréchet differentiable at x with the derivative y.
By the proof of Lemma 2.4 in [MPVZ], one can show that lim gn = f uniformly
on X .

(iv) ⇒ (iii). By (iv), there exists a Fréchet differentiable convex function ψ

such that |ψ(x) − f(x)| ≤ 1
2 for every x ∈ X . Then ψ + 1 is a desired function.

This completes the proof of Theorem 1. �

Note that in Theorem 1, the implications (iii) ⇒ (i) ⇒ (v) are still valid with-
out requiring f to be Lipschitz. The assumption of separability of X in the state-
ment of Theorem 1 cannot be dropped in general. Indeed, Haydon constructed
a nonseparable space X where all convex continuous functions are generically
Fréchet differentiable and yet no equivalent norm can be approximated uniformly
on bounded sets by Fréchet differentiable convex functions (see e.g. [DGZ]).
Note also that in Theorem 1, it is crucial that the function f be defined on

the whole of X , as there may exist nowhere differentiable norms bounded on the
open ball by constant functions.
The following statement shows how Ekeland’s variational principle can be used

in questions on w∗-lower semicontinuity of convex functions.

Theorem 2. Let X be a Banach space and f be a w∗-lower semicontinuous

Fréchet differentiable function on X∗. Then every norm-lower semicontinuous

convex function g on X∗ such that g ≤ f on X∗ is w∗-lower semicontinuous

on X∗.

Proof: We first note that f ′(X∗) := ∪{f ′(y) : y ∈ X∗} ⊂ X . Indeed, for any y ∈
X∗, f ′(y) is w∗-lower semicontinuous on BX∗ , as it is a uniform limit of w∗-lower
semicontinuous functions on BX∗ . Since f ′(y) is linear, f ′(y) is w∗-continuous
on BX∗ . By Banach-Dieudonné Theorem, f ′(y) is w∗-continuous on X∗. Hence
f ′(y) ∈ X for any y ∈ X∗.
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We claim that dom g∗ ⊂ X . Indeed, for any h ∈ dom g∗, we have sup{h(x∗)−
g(x∗) : x∗ ∈ X∗} <∞. This implies that f −h is bounded below. As in the proof

of (iii) ⇒ (i), we can show h ∈ f ′(X∗). Therefore h ∈ X .
Since g is norm-lower semicontinuous, we have g = g∗∗↾X∗ . However, g∗∗ =

(g∗)∗ = (g∗↾dom g∗)
∗ = (g∗↾X )

∗. Hence g is a dual to a function defined on X ,
therefore g is w∗-lower semicontinuous. �
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