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A remark on a paper by Bhattacharya and Leonetti

Anna D’Ottavio

Abstract. We prove higher integrability for the gradient of bounded minimizers of some
variational integrals with anisotropic growth.
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Introduction

In this note we refer to Bhattacharya and Leonetti’s paper [1]; in the sequel
formulas containing two numbers and a dot in between, like (1.2), are taken from
[1]; on the other hand, formulas containing only one number, like (3), are new and
appear only in the present note. For motivation, definitions and further references
we address the reader to [1]. We study regularity for functions u : Ω → R

N

minimizing the variational integral

(1.1) I(u) =

∫

Ω

F (Du(x)) dx,

where F (ξ) behaves like the model example

1

2

n−1∑
i=1

|ξi|
2 +
1

p
(1 + |ξn|

2)p/2,

precise conditions are given by (1.2), . . . , (1.6). The aim of this note is to show
that the additional assumption “u is bounded” allows us to improve the result
contained in [1] in dimension 4; also, it simplifies the proof very much. In the
scalar case N = 1, Moscariello-Nania [4] and Fusco-Sbordone [2], [3], proved that
minimizers are locally bounded.
More precisely, we have the following

Theorem. Let u : Ω→ R
N verify

(1) u ∈ W 1,1(Ω), Diu ∈ L2(Ω), i = 1, . . . , n − 1, Dnu ∈ Lp(Ω),

Ω bounded, open ⊂ R
n, n ≥ 2, where

(2) 1 < p < 2 if n = 2, 3, 4,
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(1.10) 2− 4/n < p < 2 if n ≥ 5.

Assume that

(3) u ∈ L∞(Ω),

u minimizes the variational integral (1.1) and (1.2), . . . , (1.5) are fulfilled, then

(1.11) Dnu ∈ L2loc(Ω).

Furthermore, the second weak derivatives exist:

(4) DiDu ∈ L2
loc
(Ω), i = 1, . . . , n − 1 and DnDu ∈ Lp

loc
(Ω).

This theorem and [2], [3], yield the following

Corollary. In the scalar case, that is, when u : Ω → R, we assume (1), (2),
(1.10). If u minimizes the variational integral (1.1), if (1.2), . . . , (1.5) are fulfilled
and (0.2) holds with q1 = · · · = qn−1 = 2, qn = p, then u is locally bounded in Ω
and (1.11), (4), hold true.

Proof of the Theorem: We argue as in [1] and we arrive at (3.8); in the
sequel, Ci will denote a positive constant, independent of h. Since we only know
that Dnu ∈ Lp, the integral corresponding to s = n in (3.8) is dealt with as
follows. Let us assume that

(5) Dnu ∈ Lσ
loc(Ω),

for some σ verifying p ≤ σ < 2. We write∫

BR

|τn,hu|2 dx =

∫

BR

|τn,hu|σ|τn,hu|2−σ dx.

We recall our assumption (3): u is bounded; then |u(y)| ≤ C6 for every y ∈ B2R,

thus |τn,hu(x)|(2−σ) ≤ (2C6)
(2−σ) for every x ∈ BR and every h : |h| < R. Since

we assumed (5), we may apply Lemma 2.1 with t = σ and we get

(6)

∫

BR

|τn,hu|2 dx ≤ C7|h|
σ

∫

B2R

|Dnu|σ = C8|h|
σ.

Since σ < 2 and R ≤ 1, (3.8), (6) and (3.7) yield

n∑
s=1

∫

Bρ

|τs,hV̂ (Du)|2 dx ≤ C9|h|
σ ∀h : |h| < R.
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Now via Lemma 2.3 we improve the integrability:

V̂ (Du) ∈ Lr
loc(Ω) ∀ r < 2n/(n − σ).

If we recall (3.5), then

(7) Dnu ∈ Lt
loc
(Ω) ∀ t < pn/(n− σ) = t̂(σ).

So we started from (5) and we boosted the integrability up to (7); let us estimate
t̂(σ) − σ:

t̂(σ)− σ =
σ2 − nσ + pn

n − σ
=

f(σ)

g(σ)
.

When p ≤ σ < 2, 0 < g(σ) ≤ n − p. The function f is decreasing in (−∞, n/2)
and increasing in (n/2,+∞), thus it achieves its minimum value for σ = n/2:
f(σ) ≥ f(n/2) = n(4p−n)/4; such a value turns out to be positive when n = 2 or
n = 3 or n = 4. When 5 ≤ n, we have 2 < n/2, thus f(σ) decreases for σ ∈ [p, 2],
so that

f(σ) ≥ f(2) = 4− 2n+ pn = n(p − (2 − 4/n)) > 0,

since we assumed (1.10). We can summarize as follows: because of (2) and (1.10),

t̂(σ) − σ ≥
minσ∈[p,2] f(σ)

n − p
= δ(n, p) > 0,

for every σ ∈ [p, 2). Let us recall (5) and (7): we have proved that, if for some

σ ∈ [p, 2) we have Dnu ∈ Lσ
loc
, then we also have Dnu ∈ L

σ+δ/2
loc

. This allows us
to start a bootstrap argument which completes the proof of (1.11). The higher
differentiability (4) follows from (1.11) as it is shown in [1]. �
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